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Abstract

We investigate a particular type of curvaton mechanism, under which inflation can occur at Hubble scale of order 1 TeV. The curvaton is
pseudo Nambu—-Goldstone boson, whose order parameter increases after a phase transition during inflation, triggered by the gradual decre.
the Hubble scale. The mechanism is studied in the context of modular inflation, where the inflaton is a string axion. We show that the mechan
is successful for natural values of the model parameters, provided the phase transition occurs much earlier than the time when the cosmolo
scales exit the horizon. Also, it turns our that the radial mode for our curvaton must be a flaton field.

0 2006 Elsevier B.VOpen access under CC BY license.

Inflation is the only compelling theory to date for the so- In an analogous manner, one can attribute the generation of
lution of the horizon and flatness problems of the big banglensity perturbations during inflation to a field other than the
cosmology as well as for explaining structure formation in theinflaton [3]. This so-called curvaton field allows inflation to
Universe. Recent precise observations have confirmed the biake place at a much lower energy scale than the typically re-
sic predictions of the inflationary paradigm by ascertaining thequired GUT-scald4] and, in general, may relax a number of
spatial flatness of the Universe and the approximate scale irtonstraints regarding inflation model-buildifg]. Low-scale
variance of the density perturbations, which give rise to thénflation can revamp a number of inflation models that are well
anisotropy of the Cosmic Microwave Background Radiationmotivated on particle physics grounf4. It is important to
(CMBR) and seed structure formation. These exciting develstress here that the curvatomist an ad hoc additional degree
opments have rendered the inflationary paradigm a necessanffreedom introduced “by hand”, but it may be a realistic field,
extension to the hot big bang standard cosmology. already present in simple extensions of the standard model. In-

In the light of precision data, inflation model-building can be deed, many such examples exist in the literaf@ré.
upgraded beyond the simple single-field stage of its early begin- However, even when a curvaton field is considered, there ex-
nings. Indeed, more complex and realistic models of inflationjsts a lower bound for the inflationary scale, which, for generic
with tighter connections to the theory, less fine tunning and eneurvaton models, can be quite tigBi. This lower bound can be
hanced predictability and falsifiability are now possible to con-substantially relaxed for certain types of curvaton models
struct, making use of the rich content of particle physics. A firstwhich enables inflation to be directly connected to realistic, be-
such example is the well-known hybrid inflation mod#],  yond the standard model physics.
which couples the inflaton field to the Higgs field of a Grand In this Letter | present a curvaton model which allows infla-
Unified Theory (GUT) in order to obtain without tunning the tion at a Hubble scale as low as 1 TeV. The curvaton field is
desired false vacuum energy scf2é. In hybrid inflation the a pseudo Nambu—-Goldstone boson (PNGB), whose order pa-
inflationary period is terminated through the dynamics of thisrameter is substantially increased after the cosmological scales
other field. exit the horizon during inflation. As shown [8], the result of

this increase is to amplify the curvaton’s perturbations. This en-
ables even low-scale inflation to generate density perturbations
of the observed amplitude. In the curvaton model presented, the
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tion during inflation, which releases the radial mode from thevaluem, . Hence, in the followingve assume that the curvaton

top of the potential hill. mass has already assumed its vacuum value before the onset
The use of a PNGB curvaton is highly motivated becausef the curvaton oscillationsgConsequently, the curvaton oscil-

such a curvaton can be naturally light during inflation, since itdations begin when

mass is protected by the global1l) symmetry[7]. This dis-

penses with the danger imposed by supergravity correctiondlosc™ Mo (6)

which typically lift the flatness of the scalar potentia0]. We  Before the oscillations begin the curvaton is overdamped and
investigate the performance of the curvaton model in the conremains frozen. This means thags. ~ 6,, where the ¥’ de-

text of modular inflation, which corresponds to Hubble scale ofyotes the values of quantities at the time when the cosmological
order 1 TeV. Modular inflation is a well motivated model, which g¢gjes exit the horizon during inflation and
uses a string axion as the inflatfri].

Let us begin by presenting the amplification mechanism fof = o /v, (7
the curvature perturbations. We discuss here the case of a0 € (=7, ). Hence, for the curvaton fractional perturba-
PNGB curvaton, whose order parameter has a different (Iarge[.On we find T '
expectation value in the vacuum than during inflation and, in

particular, when the cosmological scales exit the horizon. Thugdo | _ 86| o ()
the potential for the curvaton fietd is ol, 0l 0 losc
V(o) = (vﬁzg)z[l — cog(a/v)] Now, for the perturbation of the curvaton we have
1. H,
= V(o] <v)~ Em?,az, (1) don= E* 9)

wherev = v(¢) is the order parameter determined by the ex-We assume that the expectation value of the radial field during
pectation value of the radial fielgp| andm, = i, (v) is the inflation is smaller compared to its VEV by a factor
mass of the curvaton at a given moment. In the true vacuumwe

havev = vg andsni, = m, With vg being the vacuum expecta- & = U—Z <1 (10)

tion value (VEV) of the radial field angk, being the mass of o o

the curvaton in the vacuum. Combining Eqgs(8), (9) and (10)in view also of Eq(7), we
Let us demonstrate that the curvaton perturbations can gind

amplified by the non-trivial evolution of the radial field. We . Hs 11

begin by using the fact thég]: Tose™ 5 (11)

¢ ~ Qaects 2) which means that after the end of inflation, when the radial field
’ assumes its VEMhe curvaton perturbation is amplified by a

where¢ ~ /P, =2 x 1075 is the curvature perturbation of factore~1 (seeFig. 1). From Eqgs(2) and (4)we have

the Universe24ec < 1 is the density fraction of the curvaton

density over the density of the Universe at the time of the deca§fosc™ ($2dec/¢)d00sc (12)

of the curvaton: Using Egs(9) and (11) we can recast the above as

Po
2dec= — <1 3) - Hy 24ec
ec P) dec Oosc Eé_ . (13)

and ¢, is the curvature perturbation of the curvaton field \ye may obtain a lower bound anas follows:
which is given by

e H,
8 ) <1 = e>émn=5—0, (14)
on¥], | o o e
dec os¢ where we have used Egg), (9) and (10)and thatopsc < vo.

where ‘osc’ denotes the time when the curvaton oscillationghe above, however, is only the lowestin principle. The

begin. Note that, non-Gaussianity constraints from the obsewbbservational constraints on non-Gaussianity, impose a more
vations from the WMAP satellitgl 2] restrict the range a2qec  stringent lower bound on. Indeed, from Eqs(2), (4) and (5)

as follows: we obtain
102 < Rgec< L. (5) Emin _%0%osc . ¢
™ Oosc $2dec

In this Letter we consider the inflationary Hubble scale to Qgec
be comparable to the tachyonic mass of the radial field, which = €2 emin > 5 x 10Pemin, (15)
determines the value of the order parameter of our PNGB cur- ¢
vaton. This means that the evolution of the radial field ceases athere we used that= 2 x 10~°.
(or soon after) the end of inflation. Therefore, at the end of infla- Now, as is shown 9], in the case when the curvaton os-
tion, v — vg and the mass of the curvaton assumes its vacuuruillations begin after the radial field has attained its VEV, we
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A \% This bound may be relaxed ifis small enough. In particular,
for a PNGB curvaton we may have, < H,. Comparing the
bound in Eq.(17) with the one in Eq.(20) we find that the

/ . former bound is more stringent if
1 TsBN 1/3< H, )5/6 _3.—1/2 5/6
E< ———| —— — ~107°8 H,/my)*®.

| (21)
Red , 00 =1 Thus, fore « 1, the second bound is typically less stringent
= | than the first one.

I 81)0| During inflation, the evolution of the order parameter of the

PNGB curvaton, is subject to an important constraint, which
has to do with preserving the scale invariance of the spectrum
of the curvature perturbations.

The amplitude of the density perturbations is determined by
Fig. 1. Schematic representation of the amplification of the PNGB curvatonFhe r_nagthde_ of the perturbatlons of the_curvaton ﬂeld’_ which,
perturbation, when the order parametdncreases from the value it has when [N this scenario, apart from the scale & is also determined
the cosmological scales exit the horizon= ¢y to its vacuum valueg. The by the amplification factoe—1. The latter is determined by the
perturbation at horizon crossing has amplitdee ~ H,, which correspondsto  value of the order parameter, when the curvaton guantum
a phase perturbation for the radial fielgl of magnitude’é = do./v«. Asthe — flctyations exit the horizon during inflation. A strong varia-

order parameter grow® remains constant (the phase perturbation is frozen onti n of v(7) at that time results in a strong dependence @f
superhorizon scales) but the amplitude of the curvaton perturbation is increasecP v g aep

IIIl q) €~ 1 H*

up toso ~ e~ LH,. on the comoving momentum scalewhich would reflect itself
on the perturbation spectrum threatening significant departure
havé from scale invariance.
In Ref.[9] is was shown that, in order for this to be avoided,
H Y5/ max Haom, Ty} \Y° o ,
H, ~ _Qd_2/5< : * ) ( dom, 1 o ) the rate of change of the radial field must be constrained as
e¢ \ min{m,, Int} HppN ) -
. _ H.
X (8{)4/5(T§BNM%)1/5, (16) [0/vlx = |¢/¢lx K Hy ( )

where I'nt and I, are the decay rates of the inflaton and thewhere|¢| is the radial field, which Qetgrmines the value of the
curvaton fields respectivelyigom is the Hubble parameter at order parameter. In fact, the contribution to the spectral index

. . 71 .
the time when the curvaton density dominates the Universe (ifu€ t0 the evolution ob is dn, = —2H,(v/v).. From the
above it is evident that, in order not to violate the observational

(BBN), with Tagn ~ 1 MeV. bation spectrunthe roll of the radial field has to be at most very

Now, we require that the curvaton decays before BBN, i eSlow when the cosmological scales exit the horizéowever,

I, > Hgan. We also havelns < H,. Hence, Eq(16) provides this cannot remain so.inde.ﬁnitely because we nﬁﬁ)ﬂ> Uy tO
the following bound have substantial amplification of the perturbations é.e 1).

Consequentlyy has to increase dramatically at some paifat

H,y > 25220)5(T3aym3)Y° ~ (c%/24e)”° x 10" GeV. e the exit of the cosmological scales from the horizon. This
(17)  requirement is crucial for model-buildirfg.
Furthermore, we also note that In our model, we will show that the evolution ofbegins at
m3 a phase transition during inflation. Initially, the growthofs
r,> —‘; (18)  very slow, but later, near the end of inflatiangrows substan-
mp tially until it reaches its vacuum valug).
where the equality corresponds to gravitational decay. The Let us now briefly describe the model of inflation. We are
above can be show8] to imply that going to consider a PNGB curvatenwhose radial field¢| is
L m, my 12 of bgre mass similar to the Hubble parameter during inflation,
Hy > 245480) mp( A ) max{ 1, T } , (29) that is
which results in the bound mg ~ Hi. (23)
H, > Qd—elc(gg)ZmP<@> ~ (SZ/QdeC) % 100 Gev(ﬁ)_ This has th_e adyantage that the radial field rolls sub_stantially by
H, H, the end of inflation so thatcan be very small. In particular, we

(20)

ERYP. ) o 2 The requirement in Eq22) may be even more fundamental in origin. In-
We use natural units, where= /i = 1 and Newton’s gravitational constant geed, a PNGB with rapidly varying order parameter cannot be treated as an
isG = 87rm,§2 with mp = 2.44 x 1018 GeV being the reduced Planck mass.  effectively free field. I would like to thank D.H. Lyth for pointing this out.
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will assume that the tachyonic mass of the radial field is a soft Let us turn our attention to the curvaton model. Consider the
mass generated by supersymmetry breaking and it is, thereforsyperpotential
roughly of the electroweak scates/>. Hence, we consider in-

A ¢n+3
flation at the intermediate scale = -, (33)
e 0 n+3 mp
Vit~ Jmaamp ~1019° GeV = H, ~m3). (24)  wheren > 0 and the complex fielg can be thought to contain
A particular example of such an inflation model (but, by all the curvaton phase fietd and one radial fieldip| as follows:
means, not the only one) is modular inflatidd], where the in- b= ple = || exp(ia/ﬁv). (34)

flaton fields is a string axion, whose flatness is lifted by gravity . _
mediated supersymmetry breaking. In this model the inflationThen the scalar potential can be written as
ary potential is of the form:

22\ 412 A gntS
1 VZ(C¢H —m¢)|¢>| + (CAH+A)n—+3 . + h.c.
V.t 22, A
V(s) = Vint SMS (25) o

where the ellipsis denotes terms, which are expected to stabilise T A m2
the potential atvey ~ mp. Therefore, in the above we have P

4
|21+

— (CsH? — m2 Vb2 + 22
Vint ~ (m3j2mp)®  and mg ~ Hing ~ m3)2, (26) (Co mg)lpl + 2
where Hinf 2 «/Vin /3mp. 2. |p|" T3
This inflation model results in fast roll inflatida 3], where +(Cal + A)~ T3 mp cod(n + 3], (35)
3 wheremg and A are soft supersymmetry breaking mass-scales
=sineXp(F;AN) and Fy=—(y/1+4c/9-1 ¢ :
$ = Sin €XU(F, AN) s 2( e/ ) at zero temperature, both given by the electroweak sgale.
. ms \2 Note that we have put negative mass-squared for¢hdield
with ¢ = < mf) ~1, (27)  atzero temperature to break thély symmetry. We also con-

) ) sidered corrections coming from supergravity, which provide
where AN is the number of the elapsed e-foldings. From thegffective mass terms of ordéf [10] (for their effect on curva-
above one can gasny obtain the inflation scsile-foldings be- {5, physics see RefL5]). Absorbing the(r + 3) factor intod
fore the end of inflation, as (and shifting the latter byr)* we can write the curvaton poten-

V(N) ~ Vinf(l — e_ZFSN), (28) tial as:

n
Even though fast-roll, modular inflation keeps the HubbleV (o) ~ A(CsaH + A)v3<i> [1— cos<z>]. (36)
parametet rather rigid. Indeed, it can be easily shown that mp v
) We are going to assume that the¢lly symmetry is broken
_ }F2<i> ~ Lp22nN g (20) @tsome moment during inflation with, ~ m ~ m3/>. Hence
2 \mp) 2° ’ we takeCy ~ +1. After this moment the radial fielg| begins
because; ~ 1 ands < mp during inflation, withe < 1 being to grow, which can result ia « 1. In time, after the symmetry

one of the so-called slow roll parameters defined as breaking, the tachyonic effective mass of the radial field ap-
) proaches its vacuum valueg as the supergravity correction
_H 30 diminishes due to the gradual decrease of the Hubble parame-
€="gz (30) ter.
For modular inflation the initial conditions for the inflaton  After the phase transition, the time-dependent minimum of
field are determined by the quantum fluctuations, which send'€ Potential of the radial field is given by

the field off the top of the potential hill. (The modulus can . L
be considered to be originally placed at the local maximum®Imin = (?» mip fm3 — C¢H2> -, (37)

because the latter can be thought of as a fixed point of the SYNhich gradually grows. SooRp|min assumes its vacuum value:
metries.) Hence, we expect that the initial value for the inflaton

€

1
Is vp ~ (K_lm'ém(i,) res i) (38)
Sin > Hing/ 2. (31) From the above and also in view of E¢%) and (36)we find
Using the above and considering that the final valus/is ~ -2 v "
. ~AMCaAH+A — . 39
mp, We can estimate, through the use of E2Y), the total num- Mo (Cali+ A mp (39)
ber of e-foldings as
Now 1 In mp 32 3 such type of superpotential is reminiscent of supersymmetric realisations
tot — Fs ms2 (B2)  otthe Peccei-Quinn symmetry in which the Peccei—Quinn scale is generated

dynamically[14].
where we took into account ER6). 4 This, in effect, means considering the rangeZi; < 6 — 7 < ;25.
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Evaluating the above after the order parameter assumes its vanteresting possibility is realised by introducing the following
uum valuev — vp we obtain coupling betweew and the Higgses:

¢n+1

m2 ~ (CaH + A)ymyg, (40)

where we used Eq38). Sincemy ~ A ~ m3/2, C4 ~ 1 and
H < H, we find that

AW = Ay h. (48)

ml’l
P
In this case, as is evident from E(B8), our curvaton model
also solves the.-problem fora, /A ~ 1.
(41) Now, the interaction of with ordinary particles is governed

However, during inflation the effective mass of the curvatonPy the effectiveu-term in Eq.(48), which results into the fol-
is much smaller. Indeed, in view of E(R9), we get lowing decay rate of into two Higgs particles:

mg ~m3/2 ~ H,.

~2 n+1 (n+ 1)2 m3
e (Y i ~e"F I~ — 49
mg <U0> = m(f(v*) &2 me, (42) o 47'[ vg ( )
where we used Eq(10). Therefore, since « 1 andm, ~  Demanding thal’, > Hggn results in the bound
m3/2 ~ H, we see that, during inflatiorh, < H,, i.e. the 3
PNGB is appropriately light and can act as a curvaton field. 1 ~ 1 el (ﬂ) TeV > Hggn ~ 1027 TeV
Let us now calculate the value efrequired so that the sce- Tev
nario works. Firstly, we note that, in our case, the curvaton my > 10571 TeV, (50)

assumes a random value at the phase transition, which typically _ _
is o ~ v. After the end of inflation and before the onset of theWhere we used Ed38). Since we consider, ~ m3/2 < TeV
oscillations the field is overdamped and remains frozen. Henc&ve see that there is a mild upper boundrowhich, roughly,

we expect that at the onset of the oscillations we have: demands: < 9. _
To proceed further, we have to consider separately the cases

(43)  when the curvaton decays before or after it dominates the Uni-
verse. Suppose, at first, that the curvaton decays before domi-

where, typically,6 ~ O(1) and we took into account that the i 1), In thi durina the radiati h and
radial field assumes its VEV very soon after the end of inflation/"aton (2dec < 1). In this case, during the radiation epoch an

Oosc™ Ovo,

. ) fter the onset of the oscillations, for the curvaton density frac-
Eqs(13) and (43)we f a *
Combining Eqs(13) and (43)we find tion we havep, /p oca(r) o« H1/2. Hence, we find

Q FEs |
e~ dec<m3/2) ’ (44)

0 \ mp

where we also used E(B8) takingm ~ m3/» andi ~ 1. The
above is always larger thamn, where

ms;2 w41
Emin ™~ | — ,
mp

where we also used E(@L4) with H, ~ m3z5.
Let us now enforce the constraint in E@.7), which, for
H, ~ m3/>, reads

5 1/2 5/4
- kY dec( mp ) <m3/2) Nl(r“m.

¢ IBBN mp

(45)

(46)

From Eqgs.(44) and (46}t is easy to find that the above bound

can be satisfied only if is large enough:

_ 8+ log(v/$2dec/6)
7 —109(v/Rdec/0)

(47)

According to Eq.(5), we see that, at the best of cases, (whergravitationally. However, since reheating has to occur before

Q2dec~ 1072 andg ~ 1) we haven > 1. Hence, we see thdie

radial field must correspond to a flaton field, stabilised by non-
renormalisable termsAn upper bound on can be obtained by 10~

requiring that the curvaton decays before BBN.

: r 1/2 2
Qdec~ (W) (@) , (51)
Iy mp
where we have used E¢.3)and
Poi (@)2 (52)
P losc mp )’

With (p5)osc™ 3m2 02 andposc~ m2m3. Using Eq.(49)into
Eq.(51)and also Eq913) and (38)wve obtain

1,n+2
882dec [ m3/2 3G
o (2 , (53)
mp

where we have also used thaks < H, ~ m3/2 ~m, and
(54)

with the mass of the inflaton fieldtaken to ben, < H, ~ m3)2

Fing ~ gzms/z,

and g being the coupling of the inflaton to its decay products.

In principle, g can be as low as:;/mp if the inflaton decays

BBN, g has to lie in the range:

The decay of the curvaton depends on its coupling to othefFombining Eqs(44) and (53)we find the relation

particles. The lowest decay rate corresponds to gravitational n—
decay withl, ~ m§ /m,%. However, if¢ is part of a supersym-

metric theory we may expect a much larger value fpr An

110732 g 21 (55)
mp
n—2
8 L [mya\H (56)
$£2dec 62 mp ’
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Let us now consider the case when the curvaton decays aftef growth of the order parameter is
domination €24ec~ 1). In this case, the curvaton dominates the

. 2 1

energy density of the Universe wheéh = Hgom, WhereHgom U _ |¢Imin _ € ( mg 1) H (65)
is given by v |¢lmin  n+1\CyH? ’

e\ 4 wheree is defined in Eq(29). From Eqgs.(62) and (65)we
Hdom~ <ﬂ:) min{m, Finf}. (57) obtain

mp

. —2(n+1
Now, using Eqs(43), (49) and (54)t can be shown that the (V/V)x ™ €xé U H,. (66)
requirement’;, < Hgom results in the bound Comparing this with Eq(22), we find that, for the scale invari-
a2 ance of the spectrum to be preserved, we require
1 m3/2 n+l 58

g> 72\ o . (58) €, < 2D (67)

The fact that the case of curvaton domination requires a largevheree, = e(sy).

value ofg [compare the above with E¢G6)] is to be expected Now, if the growth of|¢|min is so rapid that the radial field

because, this means that the inflaton decays earlier and, theg&nnot follow it, then we exped#| to roll, instead, down the

fore, the density fractiop,, /o grows substantially, allowing the potential hill. In this case the order parameter is determined by

latter to dominate the Universe before its decay. The highier  the rolling|¢|.

the more dominant the curvaton will be. When the cosmological scales exit the horizon the radial
Note also, that, when the curvaton decays after it dominatefeld has to be slowly rolling because we need the order para-

the Universe, the hot big bang begins after curvaton decaypeter to vary slowly enough, not to destabilise the approximate

which suggests the reheating temperature scale invariance of the perturbation spectrum [cf. E2R)].

- Therefore, the Klein—Gordon equation fgi is:

m3/2> 260

Treh~ v/ Ismp ~ m3/2(— (59) 3H*|<1.5| - ’7_1¢|¢| ~0, (68)
mp

It can be easily checked that the above is higherfbgt when where
n <9, in agreement with the bound from E§O). ﬁzé — mé _ C¢H2. (69)

From Egs(56) and (58)we see that, in general,

, Using the above, the rate of growth of the order parameter, in

Qdec [ m3/2\ "L 60 this case, can be easily found to be
Z g2 <m—P> . (60) _ ,
v_lel_ 1 ¢ _1)\H (70)
For 6 ~ 1 and in view of Eqs(5) and (55)the above bound 7 — E ¢ CyH? :
suggests The variation of the order parameter is expected to follow the
n>2, (61) less rapidly changing rate of growth. Hence, by comparing the
o ) two rates in Eqs(65) and (70)we see that the order parameter

which is tighter than the bound in E@L7). follows the variation ofg|min Only if

We now concentrate of the evolution of the radial fighd,
which has to be such, as to achieve the required value foet &40 > ¢, (71)

us assume, at first, that the radial field follows the growth of

- . . where we used again E¢2) and alsoCs ~ 1. It is evident
the temporal minimum given by E@37). In this case we can ; o " : .
e that, if the above constraint is satisfied, then so is the require-
calculate the amplification factor as

ment in Eq.(67). Note, however, that if the above constraint is
violated then the order parameieis determined by the rolling

a1
e= (Imin)« = [1 —Cy <&> } e . (62) |¢| and not by the varyingp|min, in which case the requirement
vo e in Eq.(67)is not valid, while also the amplification factor is not
Using Eqs(37) and (39)ne finds that, in this case, the curva- the one shown in Eq62).5
ton’s mass is given by In this latter case, we find the amplification factor as follows.
Using Eq.(28) we can write|¢| as a function of the numbe¥
n}g ~ (CpH + A) /mi — CyH?. (63)  of the remaining e-foldings of inflation. Starting from E§8)

and after a little algebra we obtain
The above and Eq62) suggest that
3 dinjp| e 2l o=2EN

1— €—2FSN ’ (72)

~ 2
My My ni1 C dN
o) ~ (A4 CaH) 2L et 64 %
() =@+ car’nt (64)

which agrees with Eq42), given thatC, ~ 1 andH, ~ A ~ 5 If v follows the growth of|¢| instead of|¢|min thene is expected to be
mg ~ mq ~ m3s. From Eq(37)itis easy to show that the rate smaller that the one in E¢62) because, at any given time(r) < |¢|min(t)-
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where Ny corresponds to the phase transition which changet dominate the Universe. In this case, Esf) suggests
the sign ofin3. By definition

) , , - 8~ 2decS 1. (82)
=CypH; ~CyHe(1—e “"s7x), 73 . .
"o ¢ ¢ '”f( ¢ ) (73) Such a large coupling can be understood only if the VEV of the
whereHy = H (Ny). Integrating Eq(72) we get inflaton modulus is an enhanced symmetry point. As a result of
16| the above, the reheating temperature after the end of inflation is
I ( *> found to be
C¢> |¢|x
2FNx _ 1 Tren~ g/maamp ~ g x 101%° GeV. 83
=(1-e2B%)F N ezﬁ‘ C(Ng— Ny, (74) TSV § 83)
et —1 From the above we see that, in order not to challenge the grav-
where|d|x = |d|(Nx). itino constraint, we have to choose the lowest possible value

The displacement of the field from the origin at the phaseof g, which, according to Eq$5) and (82)corresponds to
transition is determined by its quantum fluctuations. This means

|px > Hx/27. (75) Hence, from Eq9(81) and (82)wve obtain the values
We also have e~10"7 and g~1072 (85)

_ |9l _ 1]« Hye = |pl~ ¢ He (76) From Eq.(31) and (26)and also, using Eq29), it is easy to

Vo H, vo Emin 27 see that
where we used Eq14). 30
In view of Eqg.(70), the requirement in Eq22) becomes € > 107, (86)

3 1 — o—2Fs(Nx—Ny) where we considered that > si,. Hence, from Eqs(85)

C_¢e_ FN*<W> «1 (77)  and (86)it is straightforward to see that the constraint in

Eq.(71)is badly violated, which means that the order parame-

where we took into account E(3). ter v follows the slow roll of thej¢g| field and not the variation
Finally, another issue to be addressed concerns the requirgf the minimum of the potentigt|min. Consequently, the am-

ment that the radial fieldoesslow roll at the time when the plification factore is notgiven by the expression in E¢52)in

cosmological scales exit the horizon. In order for this to occurthis case. Instead, we can estimate the amplification factor with

its quantum fluctuations should not dominate its motion|¢g.  the use of Eq(76).

has to be outside the quantum diffusion zone. The condition for Using Eq.(45) with n = 2 we find

this to occur isH, /27 < (¢/H), or equivalently

av

Emin ™~ 10710 (87)

Comparing this with Eq(85) we see that the value ef satu-
rates the bound in E@15). This is expected since E(B4)also
saturates the non-Gaussianity bound in &4}.

Eqgs.(45), (76), (85) and (873uggest

= 25 (H) |l > HY. (78)

Using Egs(69) and (73and working as before, the above con-
straint is recast as

In<|¢|*) 2F,N, —In(Cy4/ )+In( 1o ) H
> . — T —_———— s

bl ‘ ¢ 1— e=2R (=N [~ 10°27 (88)
1, (1—e 2N i

+ > In(m) (79)  The above can, in principle, be used in E¢&) and (79)to

¢ constrain the parameters of the underlying model.
To illustrate the above we present an example, taking A useful quantity to calculate in order to evaluate EG¢)
and (79)is the number of e-foldings, which corresponds to the
n=2 and 1,0~1. (80)

cosmological scaled,.. The cosmological scales range from a

The bound in Eq(50) suggests that this is acceptable providedfew times the size of the horizon today H, * down to scales

ms 25 GeV. Using Eq(44) we obtain the value of the ampli- ~ 10‘6H corresponding to masses of order® A0, [16].

fication factor, necessary for the model to work: Typically thls spans about 13 e-foldings of inflation. For the

s estimate of N, we will chose a scale roughly in the middle

& ~ 107" 2gec (81)  of this range; the scale that re-enters the horizon at the time
If the curvaton decays after domination then E8g) de- when structure formation begins, i.e. at the timggof matter—

mands g > 1, which is not compatible with the range in radiation equality. Then, in the case when the curvaton decays

Eq.(55). Therefore, we have to assume that the curvaton decayefore domination it is straightforward to obtain

before domination, in which cas@gec < 1, with the bound sat-

urated when the curvaton decays approximately wheniitis aboGP(N:) ~ 1/311#6 leq™ 8 1/6\/ m3y2leq, (89)
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where we have used E(p4) and thatH, ~ m, ~ mgz/p. Using  This bound, in view of Eq(27) results in

Eq. (85), we obtain
myg < 0.041Hy¢, (99)

N, =43 (90) which is somewhat tight and implies that inflation is not re-
The number of e-folds that corresponds to decoupling (wheally of the fast-roll type, but the inflaton is light enough to roll
the CMBR is emitted) is roughly,. + 1.5, while the one which  slowly down its potential hill. From Eq$32) and (98)one ob-
corresponds to the present horizomigv, + 9. tains

In the attempt to obtain the allowed parameter space for
our model it soon becomes clear that, while the requiremenlfftot >6.1x 10" (100)

in Eq. (79) is relatively easy to satisfy, the major difficulty is Thys, if the phase transition, which releaggsfrom the ori-
reconciling Eq.(74) with the bound in Eq(77) coming from  gin, occurs not much later than the onset of inflation, then the
the spectral index requirements. This is especially true in VieWnproximation in Eq(91) can be well justified. Similarly, using

of the recent WMAP result 7], which correspond to spectral gqs.(90) and (98) Eq. (93) gives the bound
indexn; = 0.964 0.02, i.e.ng; > 0.92 at 95% c.l. This means

that the left-hand side of E¢77) should not exceed 0.04By ~ C4 < 5.9 x 1073, (101)
careful investigation of Eqg.74) and (77)it is found that the
above difficulty is more alleviated the larger the value\gfis,
i.e. the earlier the phase transition occurs. In fact, a solution i§1¢ < 0.077Hjps. (102)
only possible if

In view of Egs.(73) and (91}he above bound suggests

The values ofn, andmg can approactHins if one decreases
2F Ny > 1. (91) Ny but then the constraint in E77) becomes seriously chal-
lenged. It can be easily checked that, with the above values the
requirement in Eq(96) is satisfied as well.
The above results suggest that, for the 2 case and when

In view of the above Eqg74) and (77)can be respectively
approximated as

C ~
In(%) ~ _% In(1— 2PN, 92) A, 60 ~ 1, the model can work for masses of the order
SOPPTR my $0.1mzp, and my < 0.01mg)z, (103)
Cy < 0.12(e2HN+ — 7). (93) _ _ _
) ) wheremsz;, ~ 1 TeV. Such values imply only a mild tuning on
Now, using Eq(75)we can write: the masses; predominantly on the mass of the inflaton modulus.
[Pl 2m|@ls ((Hy This is necessary because the variationtofshould be kept
6l H. Hy small, since only then can the tachyonic effective mass of the

2R, radial fieldmg remain small enough fog| to be slow-rolling
N In<|¢|*) N |n<2n|¢|*) n hn(L), (94)  and the constraint in E22)to be satisfied. Note that, a tuning
|p1x H, 2 \1—e2hM of the inflaton mass is quite plausible, since the latter is a string

where we have considered also E28), using thatH2(N) ~  axion. . _ .
V(N)/3mp. In view of the above and according to the approx- ©ONn€ may wonder why, since both the inflaton figldnd

imation in Eq.(91) we can recast E492) as the radial .field|¢| tqrn—out tq bellight. when the cosmological
scales exit the horizon during inflation, we cannot use those
|n(2” |¢I*) ~ _(} + Cy > In(l _ e—ZFAvN*). (95) fields to generate the observed curvature perturbations. The rea-
H, 2  6F; son is that, in contrast to the PNGB curvaton, the perturbations
Under the same approximation, §@9) becomes of those fields are not amplified. Hence their contribution to

the overall curvature perturbation is insignificant. Indeed, for
In(2ﬂ|¢l*) = 2F,N, —In(Cy/m) +In(1— e 25N), (96) the inflaton we haver; ~ (mj/s,) ~ 10717, which is much
H smaller than the observed valge~ 2 x 10°. Similarly, for
where we have also used H84). lp| it is easy to show that, ~ eZ, ~ 10712, where we used
Solving Eq.(95)in terms ofC4 and using Eq(93)we obtain ~ thatés ~¢. .
In conclusion, we have seen that our mechanism can work
_ 2K N, [1 6In10 } _ 0.04(825,1\/* ~1) <0, (97) with ngtural values of the parameters with o_nly a mi!d tuning
86 IN(1 — e—2FsNx) on the inflaton mass. Another important requirement is that the

where we have also employed E¢88) and (90) Solving nu- phase transition, which releases the radial field from the origin,

*

merically we obtain the bound occurs much earlier than the time when the cosmological scales
exit the horizon, in order not to destabilise the flatness of the
v < 1 ~56x 1074 (98)  curvature perturbation spectrum. '
1780 Our PNGB curvaton is such that can be easily accommo-

dated in simple extensions of the standard model. Indeed, in
6 Note that, in our model, all other contributions to the deviation of the spec-R€f.[19] we present in detail such a realisation, using as curva-
tral index from unity{18] are negligible. ton an angular degree of freedom orthogonal to the QCD axion
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in a class of supersymmetric constructions of the Peccei—Quinn K. Hamaguchi, M. Kawasaki, T. Moroi, F. Takahashi, Phys. Rev. D 69

symmetry. Presumably, other PNGB curvatons, such as the ones (2004) 063504;
in Ref [7] can also be utilised S. Kasuya, M. Kawasaki, F. Takahashi, Phys. Lett. B 578 (2004) 259;

. . K. Enqgvist, A. Jokinen, S. Kasuya, A. Mazumdar, Phys. Rev. D 68 (2003
We should note here that, although the modular inflation d y Y (2003)

X - NN , o 103507;
model, which we considered, is highly motivated, it is by K. Dimopoulos, G. Lazarides, D.H. Lyth, R. Ruiz de Austri, JHEP 0305
no means the only possibility. Other inflationary models with ~ (2003) 057;

J. McDonald, Phys. Rev. D 68 (2003) 043505;
K. Dimopoulos, Phys. Rev. D 68 (2003) 123506;
M. Postma, Phys. Rev. D 67 (2003) 063518;
M. Bastero-Gil, V. Di Clemente, S.F. King, Phys. Rev. D 67 (2003)
103516;
M. Bastero-Gil, V. Di Clemente, S.F. King, Phys. Rev. D 67 (2003)
083504,
K. Engvist, A. Mazumdar, Phys. Rep. 380 (2003) 99;
K. Engvist, S. Kasuya, A. Mazumdar, Phys. Rev. Lett. 90 (2003) 091302.
K. Dimopoulos, D.H. Lyth, A. Notari, A. Riotto, JHEP 0307 (2003) 053;
R. Hofmann, hep-ph/0208267;
E.J. Chun, K. Dimopoulos, D.H. Lyth, Phys. Rev. D 70 (2004) 103510.
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Hubble-scale of order 1 TeV may also be applj2@]. Need-
less to say that designing inflationary models at such energy
scale can allow direct contact with particle physics.

Acknowledgement

| am grateful to G. Lazarides for stimulating discussions.
[7

References

103517,
J. McDonald, Phys. Rev. D 70 (2004) 063520;
K. Enqvist, Mod. Phys. Lett. A 19 (2004) 1421;

G. Lazarides, Q. Shafi, Phys. Lett. B 489 (2000) 194.

[15] K. Dimopoulos, G. Lazarides, D.H. Lyth, R. Ruiz de Austri, Phys. Rev.

D 68 (2003) 123515.

K. Enqgvist, A. Mazumdar, A. Perez-Lorenzana, Phys. Rev. D 70 (2004)[16] A.R. Liddle, D.H. Lyth, Cosmological Inflation and Large Scale Structure,

103508;

Cambridge Univ. Press, Cambridge, UK, 2000.

M. Bastero-Gil, V. Di Clemente, S.F. King, Phys. Rev. D 70 (2004) [17] D.N. Spergel, et al., Astrophys. J. Suppl. 148 (2003) 175.

023501,

K. Engvist, S. Kasuya, A. Mazumdar, Phys. Rev. Lett. 93 (2004) 061301,

[18] G. Lazarides, R. Ruiz de Austri, R. Trotta, Phys. Rev. D 70 (2004) 123527;

G. Lazarides, Nucl. Phys. B (Proc. Suppl.) 148 (2005) 84.

A. Mazumdar, A. Perez-Lorenzana, Phys. Rev. Lett. 92 (2004) 251301; [19] K. Dimopoulos, G. Lazarides, Phys. Rev. D 73 (2006) 023525.
A. Mazumdar, R.N. Mohapatra, A. Perez-Lorenzana, JCAP 0406 (2004)20] K. Dimopoulos, M. Axenides, JCAP 0506 (2005) 008;

004;
J. McDonald, Phys. Rev. D 69 (2004) 103511,

J.C. Bueno-Sanchez, K. Dimopoulos, in preparation.



	Inflation at the TeV scale with a PNGB curvaton
	Acknowledgement
	References


