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Abstract

Carpooling can cut costs and help to solve congestion problems but does not seem to be popular. Behavioral models

allow to study the incentives and inhibitors for carpooling and the aggregated effect on the transportation system. In

activity based modeling used for travel forecasting, cooperation between actors is important both for schedule planning

and revision. Carpooling requires cooperation while commuting which in turn involves co-scheduling and co-routing.

The latter requires combinatorial optimization. Agent-based systems used for activity based modeling, contain large

amounts of agents. The agent model requires helper algorithms that deliver high quality solutions to embedded opti-

misation problems using a small amount of resources. Those algorithms are invoked thousands of times during agent

society evolution and schedule execution simulation. Solution quality shall be sufficient in order to guarantee realistic

agent behavior. This paper focuses on the co-routing problem.
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1. Introduction and Context

Carpoolers need to solve two essential problems while negotiating for shared rides: finding a suitable

route (coRouting) and finding a new timing for their agenda for the day (reScheduling).

Activity based modeling (ActBM) is used to predict daily schedules for each individual in a synthetic

population based on data mining and statistical methods application to census and survey data on one hand

and stated preference evidence on the other. A schedule (daily agenda) is a sequence of episodes each one

consisting of a trip to a specific location and an activity executed at that location. ActBM integrates be-

havioral rules stating the individual’s sensitivity to external factors. The result is a set of almost mutually
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independent agents whose joint behavior reproduces the statistic distributions found in the actual society.

Generated schedules specify activities, their duration and location : those are used for traffic demand pre-

diction under several scenarios.

Agent based modeling (AgnBM) simulates interactions between individuals in order to assess the effect

on the society as a whole. We use AgnBM to investigate interaction between carpooling people. Agent

interaction influences travel timing, mode choice and routing. The carpooling case has been selected as

a first study domain because the problem is well-defined, because the characteristics of the participating

population probably make the problem tractable and because it contains both coRouting (i.e. determining a

route that suits all carpoolers) and reScheduling (i.e. schedule adaptation) problems.

Symbol Meaning

C̄ Set of carpool parkings

ct(a, b) Cost to travel from a to b

D̄ Set of destinations

d̄(p) Destination for participant p

MPT Function mapping participants to feasible transferia sets

MT P Function mapping transferia to supported participants sets

ō(p) Origin for participant p

Ō Set of origins

P Set of participants

P(S ) Set of all partitions of set S

ps(t) Participant set that can be supported by transferium T

ts(p) Transferia set suitable for use by participant p

T̄ Set of all transferia

uc(p) Upper limit for the cost accepted by participant p to travel from ō(p) to d̄(p)

2. AgentBased model for carpooling

The agentBased model simulates between 1000 and 5000 individuals belonging to the synthetic popu-

lation generated for Flanders (Belgium). This amount of agents is sufficient to investigate the carpooling

phenomenon and is expected to be small enough to keep the problem computationally tractable. A social

network joining the agents is built and evolves as described in [1], [2]. Small sets of agents (typically 2 . . . 5)

negotiate route choice and travel time in order to carpool e.g. for commuting on a specific day of the week.

Schedule execution is simulated and introduces stochastic deviations between the actual and planned sched-

ule versions. Behaviorally relevant factors such as VOT (value of time) and time use flexibility are involved.

The model is used to evaluate both the effect of (a) travel-parking costs and carpool parks availability on the

overall travel demand and (b) the complexity of the drivers cooperation process itself as an inhibiting factor

(due to required schedule adaptation).

Carpooling candidates explore their social networks in order to detect possible fellow travelers and ne-

gotiate a route (coRouting) which requires schedule adaptation (reScheduling). Key components are explo-

ration, negotiation (requiring coRouting and reScheduling) and schedule execution. Those are coordinated

by the agentBased model. Rescheduling involves shifting activities (and hence travel) in space-time using

limited activity reordering and making use of VOT, disutility functions and lists of feasible locations for

actvity execution. CoRouting includes route choice and mode selection (walk, bike, car, public transporta-

tion) and affects route duration but not absolute time (trip start time). CoRouting and reScheduling thus are

orthogonal concepts: they can be studied independently. By negotiating, each agent tries to minimize their

total cost which is the sum of travel cost and schedule adaptation disutility cost. Each passenger pays a

weighted part of the drivers original trip distance cost plus a weighted part of the excess generalized cost for

the driver caused by trip distance and duration increase. Both coRouting and reScheduling involve frequent

solution of moderately sized optimisation problems. The coRouting subproblem is covered in this paper.
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Fig. 1. Trips driven by carpooling people Pi numbered from 1 to 5. Hi are home locations (set O of origin locations on the left). Wi

are work locations(set D of destination locations on the right). CPi are carpool parkings. Person P5 is the driver. P1 and P2 leave the

participants set at NB where they continue to their work location using a different mode (e.g. subway). P3 is dropped at its destination.

P4 and P5 work at the trip endpoint. nA is the head of the join (backward) hyperArc, nB is the tail of the fork (forward) hyperArc.[3]

3. CoRouting in the carpooling context

A set P of identified participants pi ∈ P and for each participant the origin o(pi) ∈ Ō and destination

d(pi) ∈ D̄ locations, the upper limit uc(pi) for the generalized route cost (duration, distance) acceptable

by pi to travel from o(pi) to d(pi) are considered to be given (i.e. supplied by the agentBased model).

Furthermore, a set C̄ of carpool parks on the road network is given. Ō∪ C̄ ∪ D̄ is the set of transferia i.e. the

set of locations where joint rides can start or end. We assume that on each shared ride, all participants are on

board on at least one link in the network (from nA to nB). As a consequence , the shared ride route consists

of a join subtree (where participants come on board) and a fork subtree (where participants alight from the

car) as shown in Fig. 1. The problem is to find the route that brings all participants from their origin to their

destination via a set of transferia while minimizing the overall cost. Mode selection is not covered by this

study. The root nodes (nA and nB in the figure) for the join and fork trees respectively, are determined by the

agentBased model and thus considered to be given here. This paper analyses the join subtree.

4. Calculations a priori

Before tackling the coRouting problem, some supporting concepts will be explained.

4.1. Reduced network

The generalized cost ct(t0, t1) to travel between transferia t0 and t1 is calculated a priori for all pairs in

(Ō× Ō)∪ (Ō× C̄)∪ (C̄ × C̄)∪ (C̄ × D̄)∪ (D̄× D̄) (hence for a graph that contains some complete subgraphs).

4.2. Limited detour network

Let NRN denote the set of nodes and LRN denote the set of links in the road network represented by the

digraph RN = 〈NRN , LRN〉 with LRN ⊆ NRN × NRN . For each candidate participant p the Limited Detour

Network LDN(p) (space-time prism) is calculated a priori. LDN(p) is a subgraph of the road network RN.

LDN(p) = 〈NLDN(p) , LLDN(p)〉,NLDN(p) ⊆ NRN ∧ LLDN(p) ⊆ LRN ∧ o(p) ∈ NLDN(p) ∧ d(p) ∈ NLDN(p) (1)

∀n ∈ NLDN(p) : (∃q = path(o(p), n, d(p)|cost(q) ≤ uc(p)) (2)

path(a, b, c) is a path joining a to c and containing b. Hence d(p) can be reached from o(p) via each node

in LDN(p) at a cost acceptable to participant p. If a transferium t ∈ NLDN(p) then t is said to be contained in

LDN(p) (see Fig. 2).
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Fig. 2. Left: Participant specific Limited Detour Network perimeter encloses its home location (Hi), the target (nA) and zero or

more transferia (home locations Hj and carPoolParks (CPk). The containment relation defined over the participant sets associated

with the carPoolParks, defines a partial order over the carPoolParks. See also table 1, fig. 2/Right. Right:Transitive reduction of

the partial order on the set of transferia induced by the containment relation between the corresponding participants sets (ps(H4) ⊂

ps(CP3) ⊂ ps(CP7) ⊂ ps(nA) ∧ ps(H4) ⊂ ps(CP5) ⊂ ps(CP6) ⊂ ps(nA) ∧ ps(CP2) ⊂ ps(CP7) ∧ ps(CP2) ⊂ ps(CP5) ∧ ps(CP0) ⊂

ps(CP5) ∧ ps(CP0) ⊂ ps(CP1) ⊂ ps(CP6)). See also table 1, fig. 2

4.3. Transferium usability partial order relations

Transferia not contained in the LDN of any participant are ignored. For each participant, the set of usable

transferia t ∈ NLDN(p) is determined: this maps each participant to a set of transferia MPT : P ⇒ 2T̄ : p �→

ts(p). From this, the reverse mapping MT P : T̄ ⇒ 2P : t �→ ps(t) follows. Examples corresponding to Fig.

2/Right are shown in tables 1. Transferium t0 is said to be more specific than t1 if and only if the participant

set for t0 is a subset of the one for t1 and thus can also be serviced by t1. Since set containment induces a

partial order over 2P the ISM (isMoreSpecificThan) relation is a partial order. Refer to Fig. 2/Right for the

ISM relation derived from Fig. 2.

(t0 ≺ t1 ⇔ ps(t0) ⊂ ps(t1)) ∧ (t0 � t1 ⇔ ps(t0) ⊆ ps(t1)) (3)

5. Problem model

The problem model consists of a mathematical structure one part of which representing the ways people

can combine to cooperate and the other one representing the carpool parking selection.

5.1. Combining participants

While establishing the join tree we need to decide who will join at a specific transferium. A priori all

possible combinations of participants need to be evaluated. Therefore, every partition of the participants set

P is considered. The number of partitions is given by the Bell number B|P| and grows rapidly with the set

size (see [4] and table 2).

Consider all partitions having the same number of cells. The relation hasSameNumberOfCells induces

a partition on P(P) whose equivalence classes are called layers. Layers are numbered by he cardinality of

the elements they contain. Low numbered layers are at the top of the graph in Fig. 3/Right. Figure 3/Left

shows a Hasse diagram (see [5] for more info) forP(P) for |P| = 4. Each rectangle represents a partition and

edges represent the refinement relation. In this representation, each arrow shows the target is derived from

the source by combining excatly two cells. Each arrow corresponds to a join operation in the carpooling

problem. This diagram is called the joinGraph.
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P⇒ T

Transferia

Participant Homes CarPoolParks

P1 H1, H2 CP0, CP1, CP4, CP5, CP6

P2 H2 CP1, CP4, CP6

P3 H3 CP2, CP4, CP5, CP6, CP7

P4 H4, H5 CP3, CP4, CP5, CP6, CP7

P5 H5 CP3, CP7

T ⇒ P

Transferium Participants

H1 P1

H2 P1, P2

H3 P3

H4 P4

H5 P4, P5

CP0 P1

CP1 P1, P2

CP2 P3

CP3 P4, P5

CP4 P1, P2, P3, P4

CP5 P1, P3, P4

CP6 P1, P2, P3, P4

CP7 P3, P4, P5

Table 1. Left: mapping of participants to transferia that can be feasible (are not infeasible). See also fig. 2, fig. 2/RightRight: mapping

of transferia to sets of participants for whom use of the transferia can be feasible (is not infeasible). See also table 1, fig. 2, fig. 2/Right

B1 = 1 B7 = 877

B2 = 2 B8 = 4140

B3 = 5 B9 = 21147

B4 = 15 B10 = 115975

B5 = 52 B11 = 678570

B6 = 203 B12 = 4213597

Table 2. Bell numbers (taken from http://oeis.org/A000110 (The On-Line Encyclopedia of Integer Sequences))

Fig. 3. Left: Hasse diagram for the transitive reduction of the refinement relation for a 4-element set partitioning. Right:the graph

represents the Hasse diagram (most edges not drawn). The layer number gives the number of parts in each participants set partition.

The leftmost of the vertical bars shows the ordered set of layer-transferium assignments. The central vertical bar represents a partition

of the ordered set: different transferia have been assigned to each part (cell). The rightmost vertical bar represents the ordered set of

transferia (see section 4.3).
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5.2. Transferium assignment

Fig. 3/Right combines the concepts developed before in sections 4.3 and 5.1. The idea is to assign a

transferium to each layer in the joinGraph. Each level transition in the joinGraph denotes exactly one join

operation. Joining more subgroups of participants at a single transferium t0 corresponds to successive layers

to get assigned t0. In order to realize this, the set of layers L in turn is partitioned in all possible ways P(L).

A different transferium is assigned to each layer partition. Each layer inherits the transferium assigned to

the cell it belongs to.

The order in which participant groups g0 = ps(t0) and g1 = ps(t1) are joined is irrelevant in case g0 and

g1 are unrelated with respect to ISM (i.e. (g0, g1) � IS M). Hence, it is not relevant in which order t0 and t1
get considered for join operations. On the other hand, if the optimal solution contains t0 and t1 where t0 ≺ t1
then t0 is assigned to a higher level layer since t0 can server less people.

Consider a totally ordered set of transferia TOTS using an order relation R so that IS M ⊂ R. The

element order in every subset of TOTS complies with IS M and thus can be used to assign transferia to

layers. For efficiency reasons it is mportant that only one transferium order is to be investigated.

6. Algorithm

The smallest number of feasible transferium assignments is generated so that all possible different solu-

tions are enumerated. Each of those assignments is used to prune the joinGraph by deleting links that join

participants at transferia infeasible for them. After assigning a transferium to each layer, ps(t) is used to

label nodes in the joinGraph as (in)feasible. Finally the least cost path from the infimum to the supremum in

the joinGraph is determined by a traversal algorithm and the cheapest one over all assignments is kept.

Observe that it does not make sense to assign transferium t0 to a transferium cell τ in case |ps(t0)| < |τ|

because |τ| is the number of layers spanned and at least one participant joins another one at each layer. Other

pruning techniques have not been commented due to lack of space.

Finally, the algorithm for transferium assignment (before joinGraph pruning) is

for all q ∈ P(L) do � for each layerSet partition

for all τ ⊆ TOTS ||τ| = |q| do � foreach TOTS subset with size equal to the layerSet partition size

if ∀i < |q| : |q[i]| ≤ |ps(τ[i]| then � no oversized layerSet partition cells : partition usable

for all i < |q| do � foreach layerSet partition cell

∀l ∈ q[i] : tl ← τ[i] � assign transferium to all layers in cell

end for

end if

end for

end for

7. Conclusion

The problem structure for coRouting in the carpooling context has been analysed in order to find an

algorithm suitable in the agentBased modeling context. The idea is to constrain the search space as much

as possible. After this analysis, algorithm implementation should not pose a problem. Experiments still are

required to estimate the performance.
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