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Abstract

Recent publications defined requirements for inter-subunit contacts in a benzodiazepine-sensitive GABAA receptor (GABAARa1h3g2).
There is strong evidence that the heteropentameric receptor contains two a1, two h3, and one g2 subunit. However, the available data do not

distinguish two possibilities: When viewed clockwise from an extracellular viewpoint the subunits could be arranged in either g2h3a1h3a1
or g2a1h3a1h3 configurations. Here we use molecular modeling to thread the relevant GABAAR subunit sequences onto a template of

homopentameric subunits in the crystal structure of the acetylcholine binding protein (AChBP). The GABAA sequences are known to have

15–18% identity with the acetylcholine binding protein and nearly all residues that are conserved within the nAChR family are present in

AChBP. The correctly aligned GABAA sequences were threaded onto the AChBP template in the g2h3a1h3a1 or g2a1h3a1h3
arrangements. Only the g2a1h3a1h3 arrangement satisfied three known criteria: (1) a1 His102 binds at the g2 subunit interface in proximity

to g2 residues Thr142, Phe77, and Met130; (2) a1 residues 80–100 bind near g2 residues 91–104; and (3) a1 residues 58–67 bind near the h3
subunit interface. In addition to predicting the most likely inter-subunit arrangement, the model predicts which residues form the GABA and

benzodiazepine binding sites.

D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Members of the superfamily of ligand-gated ion channels

(LGICs) include nicotinic acetylcholine (nAChR), GABAA,

glycine, and 5-HT3 receptors. We have previously built

molecular models of homopentameric LGICs, for example

the glycine alpha 1 receptor [1–3]. These models were

useful for visualizing the effect of site-directed mutations on

potentiation of GABA and glycine currents by inhalational

anesthetics [2,4] and alcohols [5]. However, there is a need

to expand these studies to include putative anesthetic bind-

ing sites in heteropentameric GABAA receptors [5–7]. The

heteropentameric receptors are important for mediating the

effects of benzodiazepines [8,9] as well as alcohol and

inhalational anesthetics [10–13]. The present study inves-

tigates the correct assignment of intersubunit associations in

a GABAAa1h3g2 receptor in preparation for building a

molecular model of this heteropentameric ion channel.

GABAA receptors are heteropentamers formed from

subunits belonging to multiple classes: a, h, g, y, q, k,
and U [14,15]. Although functional receptors can be made

from a and h subunits, one g subunit is required for

expression of sensitivity to benzodiazepines [9,16]. The

frequently studied GABAAa1h3g2 receptor is now known

to be assembled from two a1, two h3, and one g2 subunit

[17]. However, Tretter et al. [17] showed six possible ways

to arrange these five subunits into a receptor. The six

possible subunit arrangements were reduced to two when

Klausberger et al. demonstrated that GABAAa1 residues

(58–67) mediate assembly with GABAAh3 subunits [18]

and that GABAAa1 residues (80–100) make inter-subunit

contacts with g2 residues (91–104) but not with h3 subunits
[19] (Fig. 1).

Similar progress has been made on the structure of the

benzodiazepine-binding site in these receptors [15]. Two

studies have demonstrated that GABAAa1 His102 is

involved in binding of the benzodiazepine analog flunitra-
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zepam [8,20]. In addition, two tyrosine residues in the a1

subunit, Tyr160 and Tyr210 (numbered Tyr159 and Tyr209 in

Amin et al.), were shown to be crucial for benzodiazepine

binding [21]. Expression of a g subunit is necessary for

benzodiazepine binding although photolabeling of this sub-

unit with [3H] flunitrazepam was much less than the a

subunit [22]. On the other hand, site-directed mutations in

the g2 subunit demonstrated that Thr142 [23], Phe77 [24],

and Met130 [24] modulate response to application of GABA.

The key to using comparative modeling to assign subunit

associations is the recent publication of the crystal structure

of the acetylcholine binding protein (AChBP) [25]. The

possibility of using this three-dimensional structure as a

template for preparing molecular models of other LGICs

was predicted in an overview [26]. A composite model of

the Torpedo NAChR was made by comparison of the

AChBP structure with the electron density in cyroelectron

micrographs [27]. Recently, models of three major types of

nAChRs have been built by threading the corresponding

primary sequences onto the structure of the AChBP [28].

We have used a similar threading technique to prepare a

model of the ligand-binding domain of a homopentameric

glycine a1 receptor in order to interpret the effect of a D97R

mutation in that receptor {5820}.

Here we use comparative modeling and combine

available data to distinguish the remaining two possibil-

ities of GABAA subunit assembly: The arrangements of

g2h3a1h3a1 versus g2a1h3a1h3 that are shown in Fig. 1.

The GABAA sequences are known to have 15–18% identity

with the AChBP and higher homology with conserved

residues. The GABAA sequences were aligned with those

of the AChBP template and were then threaded onto the

template in the g2h3a1h3a1 or g2a1h3a1h3 arrange-

ments. Loops were generated in regions of the GABAA

sequences where there were no corresponding residues in

the AChBP template. A successful model of the subunit

arrangements should satisfy three known criteria described

above: (1) a1 His102 binds at the g2 subunit interface in

proximity to g2 residues Thr142, Phe77, and Met130; (2) a1

residues 80–100 bind near g2 residues 91–104; and (3) a1

residues 58–67 bind near the h3 subunit interface. Only the

g2a1h3a1h3 arrangement satisfied these criteria.

2. Materials and methods

Coordinates of the AChBP [25] were obtained from the

Protein Data Bank (1I9B). This structure contains 205

amino acid residues that were shown, using multiple

sequence alignment, to have 24% sequence identity with

nAChR alpha 7 and 15–18% identity with GABAA recep-

Fig. 1. The two subunit arrangements described by Klausberger et al. [19].

(A) The subunits are arranged in an g2h3a1h3a1 sequence (clockwise

from extracellular view). (B) The subunits are arranged in an g2a1h3a1h3
sequence. The proposed inter-subunit binding sites for GABA and

benzodiazepines (BZ) are indicated.

Fig. 2. The alignment of the a1, h3, and g2 GABAA sequences with the AChBP template is based on the alignment of a1 and h1 GABAA by Brejc et al. [25].

The h3 and g2 GABAA sequences were aligned with the ClustalW algorithm [29]. The sequence number of the first residue in the mature sequence (signal

sequence removed) is shown in parentheses. Gaps in the sequence alignment are shown as periods.
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Fig. 3. The amino acid sequences of subunits of GABAAa1g2h3 (human) were aligned to correspond to the sequence in the PDB crystal structure of the

AChBP. Then the coordinates of corresponding backbone atoms from one subunit of the crystal structure were assigned to the appropriate GABAA subunit

sequence. In all models the backbone traces of a1, h3, and g2 subunits are colored red, blue, and green, respectively. In models A and B the subunits are

arranged in g2a1h3a1h3 (GABAB) and g2h3a1h3a1 (GBABA) sequences, respectively. Residues g2 (91–104) are colored orange, residues a1 (80–100)

are colored purple, residues a1 His102 are rendered as space-filling surfaces and colored yellow, and residues a1 (58–67) are colored black. Only model A

satisfies the known criteria for inter-subunit association. (C) is a side view of the h3/a1 interface that reveals the GABA binding site. (D) is a side view of the

a1/g2 interface that shows the close spatial proximity of g2 subunit residues (all rendered as space-filling surfaces) in the g2a1h3a1h3 model in (A): Thr146

(brown), Phe77 (gray), and Met130 (blue) with a1 subunit residues H102 (yellow), Tyr160 (black, partially obscured), and Tyr210 (orange). These six residues

have been shown to be involved with benzodiazepine binding.
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tors [25]. The alignment of the a1, h3, and g2 GABAA

sequences with the AChBP template is based on the align-

ment of a1 and h1 GABAA by Brejc et al. [25] except that

the h3 and g2 GABAA sequences were aligned with

ClustalW [29] (Fig. 2).

The backbone atoms of the appropriate GABAA sequen-

ces were assigned the corresponding coordinates from the

crystal structure of the AChBP using the Homology module

of Insight 2000 (Accelrys, San Diego, CA.). Two models

were made, one with the arrangement of g2h3a1h3a1 and

the second with arrangement g2a1h3a1h3 (clockwise when
viewed from the extracellular side, they are the mirror image

models described by Klausberger et al. [19] and Tretter et al.

[17]). It was immediately apparent that only the

g2a1h3a1h3 model fulfilled the three criteria described

above. In order to use the latter model to predict important

residues near the GABA binding site and the a/g or a/h
subunit interfaces, loops were built to fill in the gaps between

the GABAA sequences and the template sequence (Fig. 2).

The default values of the loop/generate command were used

with a minimum of three residues in the ‘‘flexible’’ loop-

forming region. This model was then refined by an iterative

procedure of finding the optimum position of all possible

side-chain rotomers in each substituted residue using the

auto-rotomer feature in the Biopolymer module of Insight

2000 (Fig. 3). The backbone atoms (C, Ca, N) of each

GABAA residue were tethered to the coordinates of corre-

sponding residues in the AChBP template with a force

constant of 5 kcal/A2 and the structure was optimized with

the Discover 2000 module of Insight 2000. The optimization

was made using the CFF91 force field and Polak Ribiere

conjugate gradient algorithm for 5000 steps with a movement

limit of 0.2 Å per step to a final derivative of 1 kcal/Å. This

optimization made a large improvement in the structure by

eliminating unfavorable van der Waals contacts and improv-

ing electrostatic interactions ((beginning total potential

energy = 950,146,451,676 kcal/mol, final =� 35,552 kcal/

mol). Then 5000 steps (1 fs) of molecular dynamics were

performed at 298 jK with the velocity-scaled NVTensemble

while the backbone atoms were restrained to the original

coordinates as above. The 5000 steps improved the optimi-

zation by giving the molecule enough thermal energy to get

out of local minima. However, they are far too few to make an

adequate sample of conformational space and no attempt was

made to derive thermodynamic properties from this simula-

tion. The model was then re-optimized using the same force

constant for the tether of the backbone atoms. This procedure

successfully eliminated adverse van der Waals contacts and

improved electrostatic interactions (final total potential ener-

gy =� 36,975 kcal/mol). Additional optimization cycles

would yield only modest improvements in the structure.

The major result was that only the subunit arrangement

g2a1h3a1h3 satisfied the three criteria described in the

Introduction. Therefore, this model was used to define

proximity of relevant residues in neighboring subunits. In

each case, a residue known to be important, for example

GABAAa1 His102, was selected and then all residues within

spheres of radius 5 or 10 Å were identified.

Although a study of binding of either GABA or a

benzodiazepine is beyond the scope of this study, the

program Binding Site Analysis (Accelrys) was applied to

the model to see if there were cavities at the a/g or a/h
subunit interfaces of sufficient size to contain these mole-

cules. The default parameters for cutoff of surface invagi-

nations were used. This program constructs a cubic lattice

with a grid spacing of 1 Å and tries to find unoccupied

lattice points that are contiguous and that define a space

with a total volume greater than an specified cutoff; in this

case 100 Å3.

3. Results

The models in Fig. 3A and B make it clear that only the

subunit arrangement in Fig. 3A (g2a1h3a1h3, viewed

from the extracellular side in a clockwise direction) sat-

isfied the three criteria described in the Introduction. We

will discuss how well the models in Fig. 3 satisfy these

criteria.

3.1. a1 His102 binds at the c2 subunit interface in proximity

to c2 residues Thr142, Phe77, and Met130

Fig. 3A shows that a1 His102 (yellow space filling

residue) is at the interface with the g2 subunit as predicted.

In addition in Fig. 3D, the following residues in g2 are

within 5 Å of His102: Phe77 (gray space filling residue in g2

at the benzodiazepine site that was identified by Wingrove

et al. [24]) and Thr146 (brown space filling residue at the

benzodiazepine site identified by Mihic et al. [23]. This

residue was numbered Thr142 in that paper). It is important

that g2 Met130 (blue space filling residue) is proximate to a1

His102 because it is the a1 residue involved in binding of

flunitrazepam [8,20]. The sequence alignment (Fig. 2)

shows that GABAA a1 His102 corresponds to AChBP

Tyr89, an important residue in the center of ‘‘loop A’’ at

the binding site for acetylcholine [25]. The following addi-

tional residues in g2 are within 10 Å of a1 His102: Tyr58–

Ser61, Ser142, Arg144, Asp192–Trp196, and Leu198.

In Fig. 3D, all six of the residues that were implicated by

Smith and Olsen [8], Amin et al. [21], Wingrove et al. [24],

and Mihic et al. [23] in binding benzodiazepines using site-

directed mutagenesis were at the a1/g2 subunit interface. In

addition, all were within approximately 5 Å of a1 residue

His102.

3.2. a1 residues 80–100 bind near c2 residues 91–104

This criterion is only satisfied by the model in Fig. 3A.

Even though the segment a1 80–100 (purple) is long and

spans the width of the a1 subunit, g2 residues 91–104

(orange) are clustered at a single interface of g2. Since the
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long segment 80–100 is too large to use to define a sphere

of interest, residues were visually identified to be at the a1/

g2 interface. The following pairs of residues in a1 and g2

are within 5 Å of each other: a1Arg95/g2Asn101, a1Thr96/

g2Met130, a1Asp98/g2Asn99, and a1Thr125/g2Arg144.

3.3. a1 residues 58–67 bind near the b3 subunit interface

The segment 58–67 (black) spans the GABAAa1 sub-

unit and has residues near a h3 subunit in both models. In

Fig. 3A, residues a1 Asp63 and Phe65 were identified near

the a1/h3 interface. They were within 5 Å of h3 Tyr99,

Leu101, Lys102 and Lys103.

The program Binding Site Analysis (Accelrys) revealed

cavities (shown as clusters of pink crosses in Fig. 3C andD) at

the a/g (763 Å3) and a/h (445 Å3) subunit interfaces. These

cavities are of sufficient size and are in positions appropriate

to contain benzodiazepines and GABA, respectively.

4. Discussion

It is remarkable how well the crystal structure of AChBP

served as a template for the three GABAA subunits. For

example, GABAAa1 His102 A in Fig. 3A is right at the

interface with a g2 subunit as predicted [8,20]. Moreover,

His102 maps exactly to AChBP Tyr89, an important residue

in the center of ‘‘loop A’’ at the binding site for acetylcho-

line [25].

In that the sequence identity of the GABAA receptors

with the AChBP is only 15–18% [25], the appropriateness

of the latter structure for the ligand-binding domain of

GABAA receptors must be considered [26]. One point in

favor of using the AChBP as a template for the superfamily

of LGICs is how well the essential features of nAChRs, for

example the loops that define ligand binding, could be

located in AChBP [25]. A second point is that the sequence

homology is especially high for residues conserved through-

out the LGIC superfamily, in particular the two cysteine

residues that anchor the ‘‘cis-loop’’ [25]. A third point is that

the three models of nAChR prepared by threading onto

AChBP reproduced in detail the experimentally determined

alignments of residues, including intersubunit alignments

[28]. Finally, the crystal structure of AChBP was recently

shown to fit well within the electron density of the Torpedo

AChR [27].

A study by Baumann et al. [30] addressed the question

of inter-subunit arrangement of GABAA receptors by

expressing tandem subunit dimers. We support their con-

clusion that all GABAA receptors are pentamers, as

opposed to tetramers. However, they suggested a compli-

cated model in which one subunit dimer could rearrange to

form a g2h3a1h3a1 pentamer, the opposite of the con-

clusion based on our model. They are presently trying the

difficult task of expressing a subunit trimer to resolve this

issue [30].

In summary, the model in Fig. 3A provides a unique

assignment of the inter-subunit association in GABAA:

clockwise from the extracellular side, g2a1h3a1h3. This

result resolves the ambiguity posed by Klausberger et al.

[19]. In addition, Fig. 3D reveals a close spatial proximity of

g2 subunit residues Thr142, Phe77, and Met130 with a1

subunit residues H102, Tyr160, and Tyr210. It is possible

that these six residues may define a pharmacophore for

benzodiazepine binding.
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