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In this study, chitosan (CTS) was crosslinked with both epichlorohydrin (ECH) and triphosphate (TPP), by
covalent and ionic crosslinking reactions, respectively. The resulting adsorbent (CTS–ECH–TPP) was
characterized by SEM, CHN, EDS, FT-IR and TGA analyses, and tested for metal adsorption. The adsorbent
was used in batch experiments to evaluate the adsorption of Cu(II) and Cd(II) ions in single and binary
metal solutions. In single metal solutions the maximum adsorption capacities for Cu(II) and Cd(II) ions,
obtained by Langmuir model, were 130.72 and 83.75 mg g�1, respectively. Adsorption isotherms for
binary solutions showed that the presence of Cu(II) decreased Cd(II) adsorption due to a significant
competition effect, that is, the adsorbent was selective towards Cu(II) rather than Cd(II).

Crown Copyright � 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Heavy metal contamination of the various water resources is of
great concern given the toxic effect on humans as well as the biota
present in the environment. The major sources of heavy metal
pollutants are several industrial activities including mining, metal
plating, oil refining, electronic device manufacturing, printing, and
the production of chemicals, dyes and paints, pulp and paper,
textiles, petrochemicals, leather, fertilizers and pesticides (Li and
Bai, 2005; Srivastava et al., 2009).

The main techniques that have been widely used to remove
toxic metals from industrial effluents are chemical precipitation,
complexation, ion exchange, evaporation, electrodeposition,
liquid–liquid extraction, membrane separation, advanced oxida-
tion processes, electrolysis, reverse osmosis and biological treat-
ment. However, these methods may be ineffective or expensive,
especially when the heavy metal ions are present in the wastewa-
ter at low concentrations (Ngah et al., 2002; Justi et al., 2005; Chen
et al., 2009; Popuri et al., 2009; Zhou et al., 2009a).

Adsorption is one of the most economical, effective and widely
used methods for the removal of toxic metals from aqueous
environments. The great advantage of this method over others is
the low generation of residues, easy metal recovery and the possi-
bility for the reuse of the adsorbent. Studies have been carried out
to develop more effective and selective adsorbent materials, which
are abundant in nature and require minimal processing in order to
011 Published by Elsevier Ltd. All r

x: +55 48 3721 6850.
).
the decrease cost (Ng et al., 2003; Benassi et al., 2006; Vasconcelos
et al., 2007).

The application of biopolymers as adsorbents is an emerging
technique and is of interest in studies on the removal of metal ions
from aqueous solutions. Special attention has been given to the
biopolymer chitosan (CTS), which is usually obtained by alkaline
deacetylation of chitin, a natural polysaccharide found in the
exoskeletons of crustaceans such as shrimps, crabs, prawns and
lobsters, which are waste products of the seafood processing
industries (Arica et al., 2004; Ngah et al., 2004; Varma et al.,
2004; Pedro et al., 2009).

CTS is widely regarded as a promising polymeric material of
great scientific interest, due to its excellent properties, such as
abundance, non-toxicity, hydrophilicity, biocompatibility, biode-
gradability, adsorption properties, antibacterial properties and
wide application potential (Wu et al., 2001; Chiou and Li, 2003;
Zhou et al., 2009b). The major limitation of CTS, however, is its
solubility in most dilute mineral and organic acid solutions.
Attempts have been made to improve its chemical stability under
acidic conditions by chemical modification using crosslinking
agents such as glutaraldehyde (GLA), epichlorohydrin (ECH), ethyl-
ene glycol diglycidyl ether (EGDE), genipin and triphosphate (TPP),
leading to the formation of a three dimensional network. The
chemical crosslinking reaction was found to be able to prevent
the dissolution of CTS when metal sorption is performed in acidic
solutions, as well as increase its capacity for the adsorption of me-
tal ions (Li and Bai, 2005; Guibal, 2004; Ngah and Fatinathan, 2008;
Vasconcelos et al., 2008; Muzzarelli, 2009).

Most of the studies concerning chitosan-metal bonding are
conducted using single metal solutions. However, the presence of
ights reserved.
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only one toxic metal ion is a rare situation both in natural water
bodies and in wastewaters. In natural systems, numerous metal
ions are often present and they compete for available adsorbent
sites. It should also be noted that the presence of other metal ions
can lead to synergism, antagonism or non-interaction. Thus, it is
important to study the affinity of modified chitosan toward the
adsorption of specific metal ions to investigate their removal from
multi-component solutions (Vasconcelos et al., 2009).

The main objective of this study was to prepare chitosan cross-
linked with epichlorohydrin via a covalent crosslinking reaction as
well as triphosphate by ionic crosslinking reaction, to characterize
the adsorbent by SEM, CHN, EDS, FT-IR and TGA analyses and
investigate the adsorption of Cu(II) and Cd(II) ions in single and
binary metal systems.
2. Experimental

2.1. Instrumentation

The scanning electron microscopy (SEM) and energy dispersive
X-ray spectroscopy (EDS) were performed using a JEOL JSM-
6390LV instrument. CHN elemental analysis was performed with
a Carlo Erba CHNS-O-E1110 analyzer. Infrared (FT-IR) spectra were
obtained with KBr pellets in the range of 2000–450 cm�1, using a
Perkin Elmer 2000 FT-IR spectrometer. Thermogravimetric analysis
(TGA) was carried out using a Shimadzu TGA 50, with a heating
rate of 10 �C min�1, under nitrogen flow at a rate of 50 mL min�1.
The pH of the solutions was adjusted using a Corning pH/ion
analyzer model 350. A Marconi MA 832 mini-shaker thermostatic
bath was used in the adsorption and desorption experiments.
The concentrations of Cu(II) and Cd(II) ions were determined by
flame atomic absorption spectroscopy (FAAS) using a Varian Spec-
trAA 50 spectrometer equipped with an air–acetylene flame atom-
izer and a Hitachi hollow cathode lamp specific for each metal ion.
The lamp was operated under the conditions recommended by the
manufacture. Also, conventional values for the wavelength, slit
width and burner height were applied. The aspiration rate was
6 mL min�1. Quantitative analysis of a sample of freshwater was
performed by inductively coupled plasma mass spectrometry
(ICP-MS) using a Perkin Elmer SCIEX Elan 6000 spectrometer.

2.2. Materials and reagents

Chitosan was purchased from Purifarma (Brazil) with a degree of
deacetylation of 90% and average molecular weight of 122.74 kDa.
Epichlorohydrin was obtained from Synth (Brazil). Pentasodium tri-
phosphate was purchased from Fluka (Switzerland). The working
standard solutions of Cu(II) and Cd(II) ions were prepared using
appropriate dilutions of stock solutions (1000 mg L�1), which were
obtained from dilutions of Fluka� (Sigma–Aldrich – Germany) am-
poules (CuCl2 and CdCl2 in water, respectively). The following buf-
fer solutions were used at a concentration of 0.1 mol L�1 to adjust
the pH: chloroacetic/sodium chloroacetate (pH 2 and 3), acetic
acid/sodium acetate (pH 4–6) and tris(hydroxymethyl)aminometh-
ane adjusted with diluted HCl solution (pH 7–9). All solutions were
prepared with distilled water. All reagents were of analytic grade
and used without further purification.

2.3. Preparation of crosslinked chitosan

Chitosan was dissolved in 1% (v/v) acetic acid solution to pro-
duce a viscous solution with 1% (w/v) chitosan. A volume of
10 mL of 12.5 mol L�1 ECH was added to the chitosan solution
and maintained at 60 �C for 2 h. The ECH/CTS molar ratio used
was 1.0/2.0. Subsequently, 50 mL of 0.1 mol L�1 NaOH was added
and the system was boiled for 3 h. Finally, 100 mL of 5% (w/v)
TPP solution was added dropwise to the epichlorohydrin cross-
linked chitosan solution under constant stirring. The product
obtained was filtered, washed several times with distilled water
and then dried in a vacuum.

2.4. Adsorption and desorption experiments

All experiments to investigate the adsorption (single and binary
systems) of Cu(II) and Cd(II) ions onto the CTS–ECH–TPP adsorbent
and the removal of metal ions added to a sample of water, as well
as the subsequent desorption of the metals and reuse of the adsor-
bent, were carried out in batch tests, using a mini-shaker thermo-
static bath at 25 �C and under constant stirring at 200 rpm.

The amount of metal ion adsorbed was calculated according to
the following equation:

q ¼ ðC0 � CeÞV
m

ð1Þ

where q is the amount of metal ions adsorbed by the CTS–ECH–TPP
(mg g�1), C0 and Ce are the metal concentrations in the solution ini-
tially and after adsorption (mg L�1), respectively, V is the volume of
the solution (L) and m is the mass of adsorbent used (g).

2.4.1. Effect of pH
Samples (50.0 mg) of the CTS–ECH–TPP adsorbent were placed

in a series of flasks containing 50.0 mL of a solution of each metal
ion at an initial concentration of 50 mg L�1, buffered within a pH
range of 2–9. The buffer solutions were used to adjust the pH
and as auxiliary complexing agents to prevent the precipitation
of Cu(II) and Cd(II) ions. After 24 h, the final pH value was mea-
sured and aliquots of the solutions were removed and then diluted
in volumetric flasks. The remaining concentrations of Cu(II) and
Cd(II) ions were determined by FAAS at wavelengths of 324.8
and 228.8 nm, respectively.

2.4.2. Adsorption equilibrium isotherm (single and binary metal
systems)

For the single metal ion adsorption experiments, 50.0 mg of
CTS–ECH–TPP were placed in closed flasks containing 50.0 mL of
Cu(II) or Cd(II) ion solutions, in various concentrations (10–
400 mg L�1) and buffered at optimum pH, while for the binary
metal system, one metal concentration was varied from 20 to
400 mg L�1 and the concentration of the other metal was kept
constant (10 or 100 mg L�1). After 48 h, aliquots of the supernatant
were removed and diluted in order to determine the remaining
concentrations of metal ions by FAAS.

2.4.3. Removal of Cu(II) and Cd(II) ions added to a sample of lagoon
water

Water samples were collected from a single point of Peri Lagoon
(a freshwater body used as a source of potable water supply) lo-
cated in Florianópolis, SC, Brazil and stored in polyethylene flasks.
The samples were filtered through Schleicher and Schuell 0.45 lm
membrane filters in order to remove particulate material and Cu(II)
and Cd(II) ions were then added, resulting in a concentration of
10 mg L�1. Aliquots of 50.0 mL of water containing the metal ions
were placed in contact with different amounts of adsorbent
(25.0–200.0 mg) for a period of 48 h. After this period, aliquots
were removed and then diluted in volumetric flasks. The remaining
concentrations of metal ions were determined by FAAS.

2.4.4. Desorption and reuse studies
For the desorption studies, 20.0 mg of CTS–ECH–TPP were

added to 50.0 mL of 25 mg L�1 Cu(II) or Cd(II) ion solutions,
buffered at optimum pH and kept under stirring for 48 h. The
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Fig. 1. Structure (a) and SEM micrograph (b) of CTS–ECH–TPP.
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M2+-CTS–ECH–TPP complex was collected by filtration using
0.45 lm membrane filters and washed several times with distilled
water to remove any unabsorbed metal ions. The amount of Cu(II)
and Cd(II) ions adsorbed per gram of CTS–ECH–TPP was deter-
mined from the metal ion concentration remaining in each solu-
tion. The adsorbent samples containing each metal ion were
placed in contact with 50.0 mL of HNO3 (pH 1.0) and EDTA (pH
4.5) solutions, at different concentrations and maintained under
stirring for 3 h. The amount of metal ions desorbed was then deter-
mined by FAAS. The adsorbent was finally collected from the solu-
tion by filtration, washed with distilled water, and then reused in
the next cycle of adsorption/desorption. The adsorption/desorption
experiments were conducted for five cycles.

The percentage of desorption was calculated from the following
expression:

Desorption ð%Þ ¼ amount of metal ions desorbed
amount of metal ions adsorbed

� 100 ð2Þ
3. Results and discussion

3.1. Characterization of CTS–ECH–TPP

Fig. 1a shows the structure of modified chitosan, initially using
the crosslinking agent epichlorohydrin, followed by the introduc-
tion of phosphate groups from the ionic interaction between the
NHþ3 groups of chitosan and the negatively charged groups of the
triphosphate.

The CTS–ECH–TPP particle size was 100–150 lm, obtained
using appropriate sieves, and the particles did not show a well-de-
fined shape in the SEM analysis (Fig. 1b).

The C, H and N values for the CTS composition were 39.43%,
8.41% and 7.30%, respectively, and for the CTS–ECH–TPP adsorbent
they were 29.00%, 7.44% and 4.78%, respectively. The semi-quanti-
tative results obtained from the EDS revealed an atomic percentage
of phosphorus in the new adsorbent of 4.46%. It was observed that
there was a decrease in the percentage of C, H and N atoms and the
presence of P atoms after the chitosan modification.

The FT-IR spectra for the CTS, TPP and CTS–ECH–TPP samples
are shown in Fig. 2. The CTS–ECH–TPP spectrum (Fig. 2c) showed
a new peak at 1554 cm�1, which can be attributed to the ionic
interaction between the positively charged amino groups of the
crosslinked chitosan and the negatively charged groups of the
triphosphate (Lee et al., 2001; Moura et al., 2009). In addition,
peaks at 1647, 1385 and 1081 cm�1 representing C@O stretching,
CAH deformation and CAO stretching, respectively, were present
in the chitosan spectrum (Fig. 2a) and peaks at 1225, 891 and
516 cm�1, corresponding P@O stretching and deformation, were
present in the TPP spectrum (Fig. 2b).

The TGA thermograms for the CTS, TPP and CTS–ECH–TPP sam-
ples are shown in Fig. 3. The thermogravimetric profiles reveal that
the mass loss occurs in two stages. The first stage at around 64–
110 �C, with a mass loss of 2–10%, is related mainly to the loss of
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water physically adsorbed on the surface of the materials. The sec-
ond stage showed that the degradation temperature for CTS was
332.2 �C with a mass loss of 49.7%, while the degradation of
CTS–ECH–TPP was observed at 231.6 �C with a mass loss of 37.8%.

The degradation temperature for CTS–ECH–TPP is lower than
that of the unmodified chitosan, which indicates that the adsor-
bent is less thermally stable than chitosan. The decrease in CTS–
ECH–TPP stability, when compared to the original polymer, can
be attributed to the ionic interaction between the NHþ3 groups of
chitosan and the negatively charged groups of the triphosphate,
as well as the reduction in intramolecular and intermolecular
interactions involving the hydrogen bonds present in the pure
chitosan, since the molecules of epichlorohydrin and triphosphate
occupy a considerable space between the polymer chains.

The characterization results confirmed that the formation of the
adsorbent (CTS–ECH–TPP) occurred successfully.
3.2. Effect of pH

The pH of the aqueous solution is an important parameter in
adsorption processes. In this study, the effect of pH on the adsorp-
tion of Cu(II) and Cd(II) ions onto CTS–ECH–TPP was studied in the
pH range of 2–9.
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Fig. 4 shows the effect of pH on the adsorption of Cu(II) and
Cd(II) ions by CTS–ECH–TPP. It was observed that the amount of
Cu(II) ions adsorbed increases with solution pH up to almost pH
6.0 and then decreases with increasing pH. A similar pattern was
observed for Cd(II) ions, but the maximum amount adsorbed was
reached at pH 7.0.

At acid pH, the adsorbent surface will be completely covered
with hydronium ions which compete strongly with metal ions
for adsorption sites. With an increase in pH, the concentration of
H3O+ ions decreases, facilitating the adsorption of metal ions by
the adsorbent (Gupta and Bhattacharyya, 2006). At basic pH, there
is a disruption of electrostatic interactions and hydrogen bonds
between the phosphate groups of the triphosphate and the amino
groups of the chitosan. The triphosphate complexed with the metal
ions then moves to the solution and the amount of adsorption
decreases.

3.3. Adsorption equilibrium isotherm (single and binary metal
systems)

Fig. 5(a and b) shows the adsorption equilibrium isotherms
obtained for the adsorption of Cu(II) and Cd(II) ions by CTS–ECH–
TPP in single and binary metal systems. In this figure the relation-
ship between the amount of metal ion adsorbed on the adsorbent
surface and the metal ion concentration of the aqueous phase at
equilibrium can be observed. This relationship showed that the
amount adsorbed increased with the equilibrium concentration
of the metal ion in solution, progressively reaching saturation of
the adsorbent.

3.3.1. Langmuir isotherm
The Langmuir model assumes that the adsorbent surface has

sites of identical energy and that each adsorbate molecule is
located at a single site; hence, it predicts the formation of a mono-
layer of the adsorbate on the adsorbent surface (McKay, 1996). This
equation (Eq. (3)) is preferentially used in studies on adsorption in
solution, where qe and Ce are the amount adsorbed and the adsor-
bate concentration in solution, respectively, both at equilibrium, KL

is the Langmuir constant and qm is the maximum adsorption
capacity of the monolayer formed on the adsorbent

qe ¼
KLCeqm

1þ KLCe
ð3Þ
The linear form of the Langmuir isotherm, represented by Eq.
(4), is employed to determine the qm and KL values from the angu-
lar and linear coefficients obtained by plotting Ce/qe as a function of
Ce, which are given in Table 1

Ce

qe
¼ 1

KLqm
þ Ce

qm
ð4Þ

The Langmuir constant (KL) is used to calculate RL, a dimension-
less separation factor given by Eq. (5)

RL ¼
1

1þ KLC0
ð5Þ

where C0 is the initial metal concentration (mg L�1). The RL values
indicate whether the adsorption is unfavorable (RL > 1), linear
(RL = 1), favorable (0 < RL < 1), or irreversible (RL = 0) (Ngah et al.,
2002; Futalan et al., 2011). The RL values calculated are given in
Table 1.

3.3.2. Freundlich isotherm
The Freundlich isotherm is an empirical equation and is one of

the most widely used isotherms for the description of multi-site
adsorption. Mathematically, it is expressed by

qe ¼ KFC1=n
e ð6Þ



Table 1
Adsorption isotherm parameters for adsorption of Cu(II) and Cd(II) ions onto CTS–
ECH–TPP in single and binary metal systems.

Metal ions Cu(II) Cu(II) + 10 mg L�1

Cd(II)
Cu(II) + 100 mg L�1

Cd(II)

Langmuir
qm (mg g�1) 130.72 118.62
101.23
KL (L mg�1) 8.44 � 10�2 1.45 � 10�2 1.46 � 10�2

RL 0.372–
0.029

0.775–0.147 0.773–0.146

R2 0.998 0.993 0.998
%D 13.10 8.12 10.56

Freundlich
KF (mg g�1) 20.76 3.40
2.55
n 2.64 1.57 1.52
R2 0.986 0.970 0.969
%D 16.16 13.63 15.42
Metal ions Cd(II) Cd(II) + 10 mg L�1

Cu(II)
Cd(II) + 100 mg L�1

Cu(II)

Langmuir
qm (mg g�1) 83.75 70.72
39.49
KL (L mg�1) 3.91 � 10�2 6.26 � 10�2 6.86 � 10�2

RL 0.561–
0.060

0.444–0.038 0.422–0.035

R2 0.997 0.999 0.999
%D 15.29 6.21 10.83

Freundlich
KF (mg g�1) 1.21 2.72
4.34
n 1.14 1.35 1.96
R2 0.978 0.933 0.929
%D 33.70 54.68 52.40

Table 2
Maximum adsorption capacity of various chitosan samples modified for adsorption of
Cu(II) and Cd(II) ions reported in the literature.

Adsorbent qm (mg g�1) References

Cu(II) Cd(II)

Chitosan microspheres 80.71 – Ngah et al. (2002)
Chitosan crosslinked with EGDE 45.94 – Ngah et al. (2002)
Chitosan crosslinked with GLA 59.67 – Ngah et al. (2002)
Chitosan crosslinked with ECH 62.47 – Ngah et al. (2002)
Chitosan modified with Reactive

Blue 2 dye
57.0 – Vasconcelos et al.

(2007)
Chitosan modified with H2fmbme

complexing agent
113.6 – Vasconcelos et al.

(2008)
Chitosan–tripolyphosphate chelating

resin
200 – Lee et al. (2001)

Chitosan–alginate – 6.6 Gotoh et al.
(2004)

Chitosan modified with sulphoxine
chelant agent

– 32.9 Vitali et al. (2008)

Chitosan modified with Reactive
Orange 16 dye

107.3 90.3 Vasconcelos et al.
(2009)

Chitosan modified with BPMAMFF
complexing agent

109 38.5 Justi et al. (2005)

Chitosan crosslinked with ECH–TPP 130.72 83.75 Present study
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Eq. (6) can also be expressed in the linearized logarithmic form
as:

log qe ¼ log KF þ
1
n

log Ce ð7Þ

where KF and n are the Freundlich isotherm constants indicating the
adsorption capacity and adsorption intensity, respectively (Ngah
et al., 2004; Febrianto et al., 2009). The results calculated for the
Freundlich isotherm constants are given in Table 1.

The most appropriate isotherm model to interpret the adsorp-
tion of metal ions by CTS–ECH–TPP was selected based on the
highest values for the average absolute percentage deviation (%D)
and correlation coefficient (R2) obtained.

The %D values were calculated as follows:

%D ¼ 1
N

XN

i¼1

qe; exp � qe;calc

qe; exp

�����
�����

 !
� 100 ð8Þ

where qe,exp and qe,calc are the experimental and calculated amounts
adsorbed, respectively, and N is the number of experimental points.

The results for the adsorption isotherm parameters related to
the adsorption of Cu(II) and Cd(II) ions onto CTS–ECH–TPP in single
and binary metal systems are given in Table 1.

On analyzing the values of %D and R2 obtained using the Lang-
muir and Freundlich isotherm models, it can be observed that the
Langmuir equation provided the best fit for the experimental data.
Thus, this isotherm model was used to interpret the adsorption of
metal ions by the CTS–ECH–TPP adsorbent.

The maximum adsorption capacities (qm) for Cu(II) and Cd(II)
ion adsorption onto other modified chitosan adsorbents, prepara-
tion under different conditions, reported in the literature, are com-
pared in Table 2. It can be seen that the qm value varies
considerably for different adsorbents and that, by comparison,
the CTS–ECH–TPP system exhibits a good capacity to adsorb Cu(II)
and Cd(II) ions from aqueous solutions.

The RL values at concentrations of 20–400 mg L�1 are in the
range of 0 < RL < 1, which indicates that the adsorption of Cu(II)
and Cd(II) ions onto CTS–ECH–TPP in single and binary metal
systems is favorable.

According to the results presented in Table 1 and Fig. 5a, it can
be observed that on increasing the concentration of Cd(II) ions the
amount of Cu(II) ions adsorbed from the Cu(II)/Cd(II) binary solu-
tions was lower in relation to the single metal solution. With the
addition of 10 mg L�1 Cd(II) ions there was a 9.2% reduction in
the amount of Cu(II) ions adsorbed, while with the addition of
100 mg L�1 Cd(II) ions there was a 22.8% decrease in the amount
of Cu(II) ions adsorbed.

In Fig. 5b, it can be noted that on increasing the concentration of
Cu(II) ions in the binary solutions the amount of Cd(II) ions ad-
sorbed decreased. In the binary solution with 10 mg L�1 Cu(II) ions
added there was a reduction of 14.9% and with 100 mg L�1 Cu(II)
ions there was a reduction of 52.7% in the amount of Cd(II) ions
adsorbed, in relation to the single metal solution.

These results revealed that the presence of Cu(II) ions had a
stronger influence on the adsorption of Cd(II) than the presence
of Cd(II) ions on the adsorption of Cu(II). Through the values for
the maximum adsorption capacity (qm) obtained in the experi-
ments with binary systems Cu(II) + 100 mg L�1 Cd(II) and Cd(II) +
100 mg L�1 Cu(II) it was observed that the adsorption of Cu(II) ions
was around 2.6 times higher than that of Cd(II) ions. This indicates
that the affinity of the adsorbent for adsorption of the metal ions
followed the order of Cu(II)� Cd(II). These results are in agree-
ment with those of the single metal solutions, which showed high-
er adsorption of Cu(II) ions when compared to Cd(II) ions.

According to the theory of hard and soft acids and bases (HSAB)
defined by Pearson, the oxygen atoms of the triphosphate groups
added to the chitosan can be classified as hard bases. These atoms
coordinate preferentially with metal ions classified as hard acids.
In this regard, Cu(II) is classified as an intermediate acid, while
the Cd(II) ion is a soft acid due to its high polarizability and large
atomic radius (Martell and Hancock, 1996). This explains why
the adsorbent had a lower affinity for Cd(II). Furthermore, a
comparison of the properties of the metals studied, such as ionic
radius (0.73 Å Cu2+ < 0.95 Å Cd2+), hydrated ionic radius (4.19 Å
Cu2+ < 4.26 Å Cd2+) and electronegativity (1.90 Cu2+ > 1.69 Cd2+),



Table 3
Concentration of elements present in the sample of freshwater
collected from Peri Lagoon determined by ICP-MS.

Element Concentration (lg L�1)

Na 2395
Mg 816
K 645
Si 615
Sr 62.4
Ba 22.2
Zn 10.4
Cu UDL
Cd UDL

UDL = Under Detection Limit (18 ng L�1 for Cu and 2 ng L�1 for
Cd).
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Fig. 6. Removal of Cu(II) and Cd(II) ions added to a freshwater sample through
adsorption onto CTS–ECH–TPP. (a) Single metal solutions and (b) binary metal
solutions. Volume = 50.0 mL; [Cu2+ or Cd2+] added = 10 mg L�1; adsorbent
mass = 25.0–200.0 mg; contact time 48 h; temperature = 25 �C; stirring = 200 rpm.

Table 4
Percentages of Cu(II) and Cd(II) ion desorption from M2+-CTS–ECH–TPP complex.

Eluent Concentration (mol L�1) Desorption (%)

Cu(II) Cd(II)

HNO3 0.1 87.9 88.5
HNO3 1 88.7 89.9
EDTA 0.1 87.6 88.2
EDTA 0.01 84.9 88.0
EDTA 0.001 64.0 86.5
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explains the affinity of the adsorbent for Cu(II) being higher than
for Cd(II). According to Vasconcelos et al. (2009), this high adsorp-
tion of Cu(II) ions is a consequence of its paramagnetic nature, high
electronegativity, coordination geometry and Jahn–Teller distor-
tion which occurs when the Cu(II) is bound to the CTS–ECH–TPP.
3.4. Removal of Cu(II) and Cd(II) ions added to the lagoon water
sample

After performing the adsorption studies, the adsorbent was
tested in the removal of Cu(II) and Cd(II) ions added to a sample
of freshwater collected from Peri Lagoon located in Florianópolis,
SC, Brazil. The initial pH of the sample was 7.2. Qualitative analysis
of the sample performed by ICP-MS revealed the presence of the
elements Na, Mg, K, Si, Sr, Ba and Zn and the absence of detectable
amounts of Cu(II) and Cd(II) ions using this method (Table 3).

The values for the percentage removal of Cu(II) and Cd(II) ions
as a function of the mass of CTS–ECH–TPP are shown in Fig. 6,
where Fig. 6a shows the removal of metal ions from single metal
solutions and Fig. 6b from binary metal solutions.

In Fig. 6a it can be noted that of the metal ions studied, across
the whole range of adsorbent masses used, the Cu(II) ion had the
highest removal values. It was found that 200 mg of CTS–ECH–
TPP was able to remove approximately 100% of the Cu(II) and
75% of the Cd(II) added to the freshwater sample, indicating a
greater affinity of the adsorbent for Cu(II) ions.

In Fig. 6b there is a sharp decrease in the removal of Cd(II) ions,
as also observed on the competitive adsorption isotherm. Further-
more, across the whole range of adsorbent masses used, the order
of the affinity of CTS–ECH–TPP for the metal ions was the same as
that obtained from the competitive adsorption isotherm, i.e.,
Cu(II)� Cd(II).
3.5. Desorption and reuse studies

Desorption studies are important to investigate the possibility
for the recovery of metals adsorbed on the adsorbent surface, as
well as for the regeneration of the adsorbent for subsequent reuse.

In this study, HNO3 and EDTA solutions, at different concentra-
tions, were used as eluents. To protonate the acid sites of the
adsorbent and elute the metal to the solution HNO3 was used,
while EDTA has a sufficiently high complexation constant for Cu(II)
and Cd(II) to allow the almost complete removal of the adsorbed
ions.

The values for the percentage of Cu(II) and Cd(II) ions desorbed
for each eluent are listed in Table 4. The highest desorption values
for Cu(II) and Cd(II) ions (88.7% and 89.9%, respectively) were
obtained using a 1 mol L�1 HNO3 solution. The 0.1 mol L�1 HNO3

and EDTA solutions also provided good desorption results (around
88%).

After optimization of the eluent and its corresponding concen-
tration, the adsorption/desorption cycles were repeated five times
as shown in Fig. 7. In this figure it can be observed that there was a
decrease of 14.6% in the amount of Cu(II) ions adsorbed from the
first to second cycle, but from this cycle onward the amount ad-
sorbed remained practically constant. In the case of Cd(II) ions it
was found that the amount adsorbed was little changed after five
cycles. Therefore, the CTS–ECH–TPP adsorbent could be reused
for the adsorption of Cu(II) and Cd(II) ions from aqueous solutions.
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Fig. 7. Adsorption and desorption cycles: adsorption – volume = 50.0 mL; [Cu2+ or
Cd2+] = 25 mg L�1; pH 6.0 for Cu(II) and 7.0 for Cd(II); adsorbent mass = 20.0 mg;
contact time 48 h; temperature = 25 �C; stirring = 200 rpm. Desorption – vol-
ume = 50.0 mL of 1 mol L�1 HNO3; contact time 3 h; temperature = 25 �C;
stirring = 200 rpm.
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4. Conclusions

Techniques such as SEM, CHN, EDS, FT-IR and TGA, used for the
characterization of CTS–ECH–TPP, confirmed that the formation of
the adsorbent occurred successfully. The equilibrium adsorption
data for Cu(II) and Cd(II) in single solutions revealed higher maxi-
mum adsorption capacity for Cu(II) when compared with Cd(II). In
binary solutions, the presence of Cu(II) had a stronger influence on
cadmium adsorption than the presence of Cd(II) on copper adsorp-
tion. The adsorbent showed stronger interaction with Cu(II) than
Cd(II), suggesting that this material can be used in separation
and pre-concentration processes and in the treatment of industrial
effluents containing Cu(II) and/or Cd(II) ions.
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