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A b s t r a c t - - L e t  A and E be n × n matrices and B = A + E .  Denote the Drazin inverse of A by A D. 
We present bounds for IISDIh IIBD BII, lIB D - ADII/IIADII, and IIBD B -- ADAII/IIAD AII under the  
weakest condition core rank B -- core rank A. The hard problem due to Campbell  and Meyer in [1] 
is completely solved. (~) 2000 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - I n d e x ,  Drazin inverse, Group inverse, Per turbat ion bound, Core rank. 

1. I N T R O D U C T I O N  

A necessary and sufficient condition for the continuity of the Drazin inverse (to be defined in the 
next section) was established by Campbell  and Meyer in 1975 [1]. They stated the main result: 
suppose tha t  Aj, j = 1, 2 , . . . ,  and A are n × n matrices such tha t  A j  ~ A .  Then A D -~ A D 

(where A D is the Drazin inverse of Aj) if and only if there is a positive integer J0 such tha t  

core r ankAj  = core r ankA for j > j0 (where core r ankA = r ankA k, k = Ind(A), the index of A 

defined as the smallest integer k > 0 such tha t  rank A k = rank Ak+l). 

In the same paper,  they also indicated two difficulties in establishing norm est imates for the 
Drazin inverse. First, the Drazin inverse has a weaker type of "cancellation law" and is somewhat  
harder to work with algebraically than Moore-Penrose inverse. Also complicating things is the 
fact tha t  the Jordan form is not a continuous function from C '~xn - ~  C n x n  and the Drazin inverse 
can be thought  of in terms of the Jordan canonical form. Due to these reasons, they thought  
tha t  it would be difficult to establish norm estimates for the Drazin inverse similar to those for 
the Moore-Penrose inverse, as was done by Stewart [2]. 
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In Campbell's 1977 paper [3], he proved the main result: if a matrix X comes to satisfying the 
definition of the Drazin inverse of A,  A D, then [iX - ADI] is small. Norm estimates are given 
which make precise what is close. 

In [4], Rong gave an explicit upper bound for lIB D - AD[[/[IAD[[ under certain circumstances 
with the second-order term of [[E[[. 

In this paper, we shall give another explicit bound for lIB D - ADI[/[[ADI] in terms of A,  A D, 

and E ( l ) ( =  B t - A l for any arbitrary positive integer /), provided E is sufficiently small and 
core rankA = core rankB,  i.e., rankBJ = rankA k, where j = Ind(B) and k = Ind(A). Also, we 
present bounds for [IBD[I, [[BDB[[, and [[BOB -ADAI I / I [ADA[] .  We extend the conclusions by 
several authors. Wei and Wang [5] obtained the simple perturbation bound under the assumptions 
o f E  = A A D E  = E A A  D, as well as E = A A D E  or E = E A A  D by Wei [6], respectively. One best 
lower bound for lIB D - ADI[/]IAD][ is presented provided E = A A D E  = E A A  D. These results 
are analogous to those for the Moore-Penrose inverse as was done by Stewart [2], i.e., we have 
completely solved the hard problem due to Campbell and Meyer in 1975. 

2. P R E L I M I N A R I E S  

Throughout this paper, the following definitions and notations will be used. C n stands for the 
n-dimensional complex space and C ~xn stands for the set of all n x n complex matrices. TO(A) 
and j~(A) denote the range and the null space of A, respectively. Rank A denotes the rank of A. 
We will write [[.[[ for the spectral norm. 

Let A E C nx~ with Ind(A) = k and if X E C '~xn such that  

A k + I x  = A k, X A X  = X ,  A X  = X A ,  (2.1) 

then X is called the Drazin inverse of A, and is denoted by X = A D. In particular, when 
Ind(A) = 1, the matrix X that  satisfies (2.1) is called the group inverse, and is denoted by 
X = A #. 

It is well known that  (by the Jordan form) if A E C nxn  with Ind(A) = k, then for any 1 _> k, 

A o = (AZ)#A l - l ,  and Ind(A z) = 1, A D A  = ( A l ) # A  * = PTZ(AI) , jV ' (A , ) ,  the oblique projector along 
JV'(A l) onto TC(AZ). 

The perturbation bound for the group inverse can be found in the literature [6, Theorem 4.2]. 
The main result is as follows. 

LEMMA 2.1. Let  B = A + E E C nxn such that  Ind(A) = Ind(B) = 1 and rankA = rankB.  I f  

IIA#llllEI[ < 1/(1 + IIA#A[[)(_< 1/2), then 

1 -IlA#lr IIEII (2.2) 
IIB#[I < IIA#ll [1 -IlA#11 IIEII (1 + IIA#AII)] 2 

and 

1-I IA~I[  
[IB~Bll -< IIA#A[I i =  IIA#II 

The following lemmas are needed in what follows. 

LEMMA 2.2. (See [i].) If S, T are subspaces of C n 
complementary space P of T, the intersection S Q P 

LEMMA 2.3. (See [8].) For any  oblique projec tor  P E 

LEMMA 2.4. (See [9].) Suppose  that [[FI[ < 1. Then  

For the details of Drazin inverse, see the excellent 
by Campbell and Meyer [9]. 

IIEI[ (1 -[[A#AI[) (2.3) 
IIEll (1 ~ IIA#All) ' 

and dim(S) > dim(T) > 0, then for any  
is nontrivial. 

c'~x'L i t  holds IIPll = l [ I -V l l  where P # O. 

I + F is nonsingular and 

1 (2.4) I I ( / -  F)-l l l  < 1 -llFI-----~" 
books by Ben-Israel and Greville [10] and 
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3. S P E C I A L  C A S E  

In this section, we will prove Banach-type theorem and perturbation bounds for the Drazin 
inverse in some special cases. 

First, we give a necessary and sufficient condition such that  B D has the simple form (3.1), as 
shown in the following theorem. 

THEOREM 3.1. Let B = A + E with Ind(A) = k and Ind(B) = j .  Let l = max{Ind(A), Ind(B)} 
and E(1) = B l - A z. I f  [[EADI[ < 1, then 

B D = (I  + ADE)  -1 A D = A D (I  + EAO)  -1 (3.1) 

if and only if  

core r ankB  = core rankA and AADE(1) = E(l)  = E(1)AA v.  (3.2) 

PROOF. 

( ~ ) .  Suppose that  equation (3.2) holds. It is obvious that  

, , :  + = [, + : [, ÷ 

In view of core r ankB = core rankA, we obtain directly T~(B l) = 7~(A l) and Af(B z) = 
Af(At), i.e., A A  D = B B  D. By direct verification [5], we have B D - A D = - B D E A  D = 

- A D E B  D. Noticing that  the assumption [[EADI] < 1 implies the nonsingularity of I + 
A P E  and I + E A  D. Thus, 

B D =  ( I + A D E )  - 1 A  D = A  o ( I + E A D )  - ' .  

( ~ ) .  Suppose that  equation (3.1) holds. We can deduce that  T~(B D) = T~(A D) and Af (B  D) = 
.hf(AD), which reduces to rankA k = r ankB j and A A  D = B B  D, i.e., core r ankB = 

core rank A. By direct computation, we obtain 

AADE(1) = A A  D (B z - A t) = B t - A l = E(1) = E(1)AA D, 

which complete the proof. | 

REMARK. In the above theorem, Ind(B) may be not equal to Ind(A) although core r a n k B  = 
core rankA. The condition HEAD[[ < 1 is only to ensure that  I + A D E  and I + E A  D are 
nonsingular. It can be replaced by other conditions, such as the following theorem. 

THEOREM 3.2. Let B = A + E  with Ind(A) = k. Suppose A A D E  = E = E A A  D. Then I + A D E  

is invertible if  and only if  

? ' ¢ ( B ' ) = ~ ( A  i) and JV ' (B~)=JV' (Ai ) ,  i = 1 , 2 , . . . , k .  (3.3) 

I f  (3.3) holds, then Ind(B) = Ind(A) = k and 

B D =  ( I + A D E )  - ' A  D = A  D ( I + E A D )  -1 

Fhrthermore, 

(3.4) 

(3.5) AADE(k )  = E(k)  = E ( k ) A A  D. 

PROOF. 

(~=). Suppose that equation (3.3) holds. It is evident that rank B k = rank A k. Since 
T4(A k) ~ J ~ f ( A  k) = C n, then T4(B k) (~Af(B k) = C ~. This implies Ind(B) = k and 
A A  D = B B  D, so core rank B = core rank A. Following an exact way of the proof 
of [7, Theorem 3.1], we can show that  I + A P E  is invertible. 

( 3 ) .  Suppose that  I + A P E  is invertible. It follows from [5, Theorem 3.1] that  T~(B ~) = 
T~(A i) and Af(B ~) -- Af(A~), i = 1, 2 , . . . ,  k. If condition (3.3) holds, then equalities (3.4) 
and (3.5) are obtained by the same argument of proving Theorem 3.1, where I = Ind(B)  = 
Ind(A) -- k. | 

Combining Theorem 3.1 and Theorem 3.2, we have the following corollary. 



80 Y. WEI AND H. Wu 

COROLLARY 3.3. (See [7].) Le t  B = A + E wi th  Ind(A) = 1. Then  

B # = ( I + A # E )  - 1 A  # = A  # ( I + E A # )  - ' ,  (3.6) 

i f  and on ly  i f  
rankB = rankA and A A # E  = E = E A A  #.  (3.7) 

Next ,  we give a Banach- type  per turbat ion  theorem for the Drazin inverse by  apply ing  Theo- 

rem 3.1. 

THEOREM 3.4. Let  B = A + E wi th  Ind(A) = k, Ind(B) = j .  Le t  I = max{Ind(A), Ind(B)} and 
E( l )  = B z - A z. A s s u m e  that  condition (3.2) holds. I f  HEAD[] < 1, then 

IIA~ll IIA~II 
_< IIB~'ll _< (3.8) 

1 + IIEADII 1 -IIEADII 

and 
IIEADII _< II B ~ - A ° I I <  IIEA~[I 

I C D ( A )  (1 + IIADll IIEII) IIADII - 1 - -  I I E A D I I  ' 

where ~ D ( A )  = IIA°IIIIAll is defined as the condition n u m b e r  o f  A D. 

PROOF. It follows directly from Theorem 3.1 that  

IIA~'II < IIB~'ll < 
1 + I[EADII - - 

Notice that  B v - A D = - B D E A  D, then 

IIA~'II 
1 -IIEADII" 

(3.9) 

(3.10) 

II B~ - A~'II < IIB~II IIEA~II < IIA~II IIEA°ll (3.11) 
- - ~ = i lE--Z~l ' 

which leads to the right inequality of (3.9). On the other hand, from A A  v = B B  D, we have 

E A  D = B (A  D - B D) = (A + E)  (A  D - B D )  . 

Hence, 

i.e~ 
IIBD - ADII > 

I IA~II - 
and we complete the proof. 

COROLLARY 3.5. 
[[EAD[[ < 1, then 

II B~ - ADII >_ IIEA~II 
IIAII + I IEII '  

IIEA~II _> IIEA~II 
lCD(A)  + IIADII IIEII X:D(A) (1 + IIADII I IEI I ) '  

I 

(See [5].) Le t  B = A + E wi th  Ind(A) = k. Suppose  A A D E  = E = E A A  D. I f  

IIEA~II < I IBD-A~I I  < IIEA~'II (3.12) 
ICD(A) (1 + I IEADI I )  - IIADII - 1 - I IEAD l l "  

PROOF. The upper bound was proved in [5]. We need only to show the lower bound of (3.12). 
Note that  

E A  D = B (A  D - B m) = ( I  + B A  D ) A (A  D - B D ) .  (3.13) 

Taking the norms on both sides of (3.13), we obtain 

IIEADI] <_ (1 + ][EADI[) ]]AI[ IIA D - BDI[. 
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Hence, 

lIB D - ADII > IIEADI[ 
IIADII - (1 + IIEADll)~D(A)" 

Before ending this section, we give an example  to show tha t  the lower bound  of (3.12) is a 

sharp  one. 

EXAMPLE. Let  

A = 
i 00 ] 1 0 E =  0 0 

0 0 ' 0 0 " 

0 0 0 0 

T h e n  it holds Ind(A)  = Ind (A + E)  = 2 and E = A A D E  = E A A  D. 

A D = 
i 0 0 0 1 0 0 

0 0 0 
0 0 0 

(A  + E )  ~ = 

l 

l + e  

0 1 0 . 
0 0 0 
0 0 0 

I t  is observed t h a t  IIEAD[[ = e < 1 and lIB D - ADII/IIAD H = e/(1 + e) = IIEADII/(1 + 
IIEADII)t:D(A). 

4. G E N E R A L  C A S E  

Let A,  E E C n×n, B = A + E with Ind(A)  = k and Ind (B)  = j .  For any a rb i t r a ry  posi t ive 

integer p, define E ( p )  = B p - A p. In this section, we shall consider the  p rob lem of bounding  
HBD[[, HBDB[[, [[B D - ADII/[[AD]], and [[BOB - ADA[[/HADA[[ in t e rms  of ][E[[, [[E(/)[[, and 

[[E(l - 1)[[ under  the  weakest  condit ion core rank B = core rank  A. 

THEOREM 4.1. L e t  l = m a x { I n d ( A ) , I n d ( B ) } ,  core r a n k A  = core r a n k B .  I f  II(AD)~I]I]E(I)H < 

1/(1 + [[ADAH)(<_ 1/2),  then 

IIBDll ~ (AD) l (IIA -I[I + lIE(Z- 1)11) 
1 -  ( A D /  liE(011 

[1 - ( A D /  IIE(Z)II ( 1 +  HADAII)] 2 
(4.1) 

and 

1 - ( A D /  HE(1)[[ (1 - [ [ A D A ] [ )  
Ijs BII < IJA Afl (4.2) 

1 - ( A D /  lIE(l)][ (1 + [IADA[[) " 

PROOF. Since I = max{Ind(A) ,  Ind(B)} ,  it is evident  t ha t  Ind (A z) = I n d ( B  l) = 1 and ( A Z ) # A  l = 
A D A ,  ( B l ) # B  l = B O B .  From the fact B D = ( B l ) # B  I-1 = (B l )# [A  t-1 + E ( l  - 1)] and 

L e m m a  2.1, we obta in  immedia te ly  the  upper  bounds  (4.1) and (4.2) for IIBDH and ]IBDBI[, 

respectively.  1 

We are now in a posi t ion to bound  lIB D - ADII/IIADII and I t B D B  - ADAI I / l lADAI I .  
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THEOREM 4.2. Let l = max{Ind(A),Ind(B)} and core rankB = core rankA. If  II(AD)tlIIIE(I)I I 
< 1/(1 + IIADAI[) (<_ 1/2), then 

lIB D - AD]I < (AD) t IIEII (liAr-ill + l iE(/-  1)11) (1 -II(AD)tll liE(011) 
IIADII [1 - (AD) t HE(I)II (1 + IIADAII)] 2 

(AD)t 21[AIIIIE(Z)II(IIAt-III÷IIE(I-1)[I)(1- (AD)' IIE(1)ll)2 (4.3) 

[1 - (AD) t IIE(/)II (1 + [IADAII)] 4 

(AD)t IIE<t)II IIADAII [~ - (AD) t lIE<ON (1 -IIADAID] 

1 - (AD) t IIE(I)I[ (1+ IIADAII) 

and 

PROOF. 

I[BDB--ADA][ < (AO) t IIE(l)ll(1- (AD) t IIE(/)II) 

IIADAII - [1- (AD) t IIe(/)ll(1 + IIADAII)] 2 

_~ (AD) t [IE(/)H[1-  (AD) t IIE(I)II(1-IIADA]I)] 
1 - (An) t I[E(/)[[ ( 1+  IIADAI[) 

By a direct computation, we have 

(4.4) 

B D - A D = - B D E A  D + B D ( I -  AA  D) - ( I -  BDB)  A D 

= - B D E A  D + (BD) 2B ( I - -  AA  D) - ( I -  BDB)  A (AD) 2 

= - B D E A  D + B D (Bt) # (A t + E(1)) ( I -  AA  D) - ( I -  B D B ) A  t (At) # A D 

= - B D E A  D + B D (Bt) # E ( 1 ) ( I -  AA  D) + ( I -  BOB)  E ( l ) ( A l )  # A "  

(4.5) 

and 
B D B  - ADA = BDB (I - AA D) - (! - B B  D) AA  D 

= ( B l ) #  E ( I ) ( I _ A A D ) + ( I _ B B D ) E ( I ) ( A I ) #  " (4.6) 

Taking norms on both sides of (4.5) and (4.6) and using Lemma 2.1 and 2.3, we arrive at (4.3) 
and (4.4). | 

REMARK. Note that  HE(l)H --< /-~i=0X"~I-1 CiHAUi"E"l-izl, , ii i, , where C[ is the binomial coefficient. Then, 
if II Eli is sufficiently small, the condition I[ (AD) l II liE(l) II < 1/(1 + IIADAII) in Theorem 4.1 and 4.2 
can be satisfied. 

On the other hand, if core rank B ~ core rank A, we shall find a lower bound for lIB D II which 
tends to infinity as E approaches zero. 

THEOREM 4.3. Let B = A + E with Ind(A) = k and Ind(B) = j.  Let l = max{Ind(A), Ind(B)}. 
I f  core rank B > core rank A, then 

1 }I/l 
II(A + E)D[I >_ (4.7) 

and 
[IBDB- ADAH > 1. (4.8) 
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PROOF. Note  t h a t  core r a n k B  > core r a n k A  is equivalent  to r a n k B J  > r a n k A  k. Because  

~ ( A  k) ~ ) A f ( A  k) = C n, t hen  by  L e m m a  2.2, there  exis ts  a nonzero  vec tor  x such t h a t  x e 

T4(BJ) N JY'(Ak). W i t h o u t  loss of general i ty ,  we assume t h a t  Ilxll = 1. T h e  proof  of (4~7) is 

ana logous  to  t h a t  of [7, T h e o r e m  4.6]. 

A t  t he  same t ime,  we have 

1 = x H B D B x  = X H ( B D B  - A D A )  x 

_< Ilxll [I(BDB - A D A )  xll <-II B D B  - AOAII 

and arr ive  at  equa t ion  (4.8). | 

REMARK. W h e n  core r a n k B  ~ core r a n k A  and  IIEII is sufficiently small ,  i t  is easy  to see 

core r ank  B > core r ank  A. 

As a corol la ry  of T h e o r e m  4.3, we have the  following wel l -known resul t  a b o u t  t he  con t inu i ty  

of Draz in  inverse. 

COROLLARY 4.4.  (See [1].) The  necessary and sufficient condition o f  

l im B D = A D 
B--~ A 

is that  core r ank  B = core r ank  A as B approaches A. 

5. C O N C L U D I N G  R E M A R K S  

In th is  paper ,  we have discussed more  t ho rough ly  the  no rm es t ima tes  for IIBDII, IIBDBII, 

lIB D - ADII/IIADII, and  IIBDB - ADAII/IIADAII, i.e., we have answered the  ha rd  ques t ion  of 

C a m p b e l l  and  Meyer  in [1]. 
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