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Abstract—Let A and E be n xn matrices and B = A+ E. Denote the Drazin inverse of A by AP,
We present bounds for ||BP||, |BPB||, ||BP? — AP||/||AP||, and |BP B — AP A]|/||AP A|| under the
weakest condition core rank B = core rank A. The hard problem due to Campbell and Meyer in [1]
is completely solved. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords—Index, Drazin inverse, Group inverse, Perturbation bound, Core rank.

1. INTRODUCTION

A necessary and sufficient condition for the continuity of the Drazin inverse (to be defined in the
next section) was established by Campbell and Meyer in 1975 [1]. They stated the main result:
suppose that A;, j = 1,2,..., and A are n x n matrices such that A; — A. Then Af — AP
(where Af is the Drazin inverse of A;) if and only if there is a positive integer jo such that
core rank A; = core rank A for j > jo (where core rank A = rank A*, k = Ind(A), the index of A
defined as the smallest integer k > 0 such that rank A* = rank A*+1).

In the same paper, they also indicated two difficulties in establishing norm estimates for the
Drazin inverse. First, the Drazin inverse has a weaker type of “cancellation law” and is somewhat
harder to work with algebraically than Moore-Penrose inverse. Also complicating things is the
fact that the Jordan form is not a continuous function from C"*" — C"*™ and the Drazin inverse
can be thought of in terms of the Jordan canonical form. Due to these reasons, they thought
that it would be difficult to establish norm estimates for the Drazin inverse similar to those for
the Moore-Penrose inverse, as was done by Stewart [2].
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In Campbell’s 1977 paper (3], he proved the main result: if a matrix X comes to satisfying the
definition of the Drazin inverse of A, AP, then || X — AP|| is small. Norm estimates are given
which make precise what is close.

In [4], Rong gave an explicit upper bound for ||BP — AP||/||AP|| under certain circumstances
with the second-order term of || E||.

In this paper, we shall give another explicit bound for |B? — AP||/||AP| in terms of A, AP,
and E(l)(= B' — A! for any arbitrary positive integer [), provided E is sufficiently small and
core rank A = core rank B, i.e., rank B/ = rank A, where j = Ind(B) and k = Ind(A). Also, we
present bounds for |BP||, |BPB||, and | BPB — AP A||/||AP A||. We extend the conclusions by
several authors. Wei and Wang [5] obtained the simple perturbation bound under the assumptions
of E = AAPE = EAAP, as well as E = AAPE or E = EAAP by Wei [6], respectively. One best
lower bound for |BP? — AP|/||AP| is presented provided E = AAPE = EAAP. These results
are analogous to those for the Moore-Penrose inverse as was done by Stewart [2], i.e., we have
completely solved the hard problem due to Campbell and Meyer in 1975.

2. PRELIMINARIES

Throughout this paper, the following definitions and notations will be used. C" stands for the
n-dimensional complex space and C™*™ stands for the set of all n x n complex matrices. R(A)
and N(A) denote the range and the null space of A, respectively. Rank A denotes the rank of A.
We will write |.|| for the spectral norm.

Let A € C™*" with Ind(A) = k and if X € C™*" such that

ARl = AF . XAX =X, AX = XA, (2.1)

then X is called the Drazin inverse of A, and is denoted by X = AP. In particular, when
Ind(A) = 1, the matrix X that satisfies (2.1) is called the group inverse, and is denoted by
X = A#,

It is well known that (by the Jordan form) if A € C"*™ with Ind(A) = k, then for any ! > k,
AD = (AY* 411 and Ind(A}) = 1, APA = (AhH* Al = Pr(at)n(at), the oblique projector along
N(AY) onto R(AY).

The perturbation bound for the group inverse can be found in the literature [6, Theorem 4.2].
The main result is as follows.

LEMMA 2.1. Let B = A+ E € C™*™ such that Ind(A) = Ind(B) = 1 and rank A = rank B. If
A1) < 1/(1 + | A*A[l)(< 1/2), then

18] < | a#] ———— AT IEL (22)
L= [A#] 1B 0+ |4 A])]
and
|B*B]| < ||a* 4] 1-||A#]| 2] (1 —||A*All) 23)

1 ||A#([|E]l (1 + |A#A]) -
The following lemmas are needed in what follows.

LEMMA 2.2. (See [1].) If S,T are subspaces of C" and dim(S) > dim(T") > 0, then for any
complementary space P of T, the intersection S M P is nontrivial.

LEMMA 2.3. (See [8].) For any oblique projector P € C™*™, it holds || P|| = ||I — P|| where P # 0.
LEMMA 2.4. (See [9].) Suppose that |F|| < 1. Then I + F is nonsingular and

1
I-F) Y < ——rH.
For the details of Drazin inverse, see the excellent books by Ben-Israel and Greville [10] and
by Campbell and Meyer [9].

(2.4)
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3. SPECIAL CASE

In this section, we will prove Banach-type theorem and perturbation bounds for the Drazin
inverse in some special cases.

First, we give a necessary and sufficient condition such that B has the simple form (3.1), as
shown in the following theorem.

THEOREM 3.1. Let B = A+ E with Ind(A) = k and Ind(B) = j. Let | = max{Ind(A),Ind(B)}
and E(l) = B' — Al. If |[EAP| < 1, then

BP = (I+APE)™

AP = AP (I + EAP)™! (3.1)
if and only if
core rank B = corerank A  and  AAPE(l) = E(l) = E(1)AAP. (3.2)

PROOF.
(«<). Suppose that equation (3.2) holds. It is obvious that
B' = Al + AAPE(l) = A [I + (A E(l)] ~ [I + E(l) (A’)#] Al
In view of core rank B = core rank A, we obtain directly R(B!) = R(A!) and N(B!) =
N(AY), ie., AAP = BBP. By direct verification [5], we have B — AP = ~BPEAP =
—APEBP. Noticing that the assumption ||EAP|| < 1 implies the nonsingularity of I +
APE and I + EAP. Thus,
BP = (I+APE)™ AP = AP (1+ EAP)™".

(=). Suppose that equation (3.1) holds. We can deduce that R(B?) = R(AP) and N(BP) =
N(AP), which reduces to rank A¥ = rank B’ and AAP? = BBP, ie., corerankB =
core rank A. By direct computation, we obtain

AAPE(l) = AAP (B' - A') = B - A' = E(l) = E(1)AAP,
which complete the proof. 1
REMARK. In the above theorem, Ind(B) may be not equal to Ind(A) although core rank B =

core rank A. The condition ||[EAP|| < 1 is only to ensure that I + APE and I + EAP are
nonsingular. It can be replaced by other conditions, such as the following theorem.

THEOREM 3.2. Let B = A+ FE withInd(A) = k. Suppose AAPE = E = EAAP. Then I+ APE
is invertible if and only if

R(B)=R(A") and N (B)=N(4), i=12,...,k (3.3)
If (3.3) holds, then Ind(B) = Ind(A) = k and
BP = (I+ APE) " AP = AP (1 + EAP)™}, (3.4)
Furthermore,
AAPE(k) = E(k) = E(k)AAP. (3.5)
PROOF.

(«). Suppose that equation (3.3) holds. It is evident that rank B¥ = rank A*. Since
R(AYY PN (AF) = C", then R(B*) @N(B*) = C*. This implies Ind(B) = k and
AAP = BBP, so core rank B = core rank A. Following an exact way of the proof
of (7, Theorem 3.1], we can show that I + AP E is invertible.

(=). Suppose that I + APE is invertible. It follows from [5, Theorem 3.1] that R(B*) =
R(AY) and N(B?) = N(4%), i = 1,2,..., k. If condition (3.3) holds, then equalities (3.4)
and (3.5) are obtained by the same argument of proving Theorem 3.1, where | = Ind(B) =
Ind(A4) = k. 1

Combining Theorem 3.1 and Theorem 3.2, we have the following corollary.



80 ' Y. WEI AND H. Wy
COROLLARY 3.3. (See [7].) Let B = A+ E with Ind(A) = 1. Then
B* = (I + A*E) ™' A* = A* (I + EA*) ™", (3.6)

if and only if
rank B =rankA and AA*E =E = EAA*. (3.7)

Next, we give a Banach-type perturbation theorem for the Drazin inverse by applying Theo-

rem 3.1.

THEOREM 3.4. Let B = A+ F withInd(A) = k, Ind(B) = j. Let | = max{Ind(4),Ind(B)} and
E(l) = B' — A'. Assume that condition (3.2) holds. If |[EAP|| < 1, then

42| D 147
T+ 15477 < P71 < 1= zamy 5
and
|B4%|__|BP- 47 _ B o9
Kp(A)(1+APIIEW) = AP~ 1-||[EAP|’
where Kp(A) = |AP||||A|l is defined as the condition number of AP.
Proor. It follows directly from Theorem 3.1 that
14| D 47|
T3 18a7] < 1871 < 7=pamy (3.10)
Notice that B? — AP = _BPEAPD | then
AP ||EAP
157 - 2] <15 24 < LLEAT], 311

which leads to the right inequality of (3.9). On the other hand, from AAP = BB, we have

EAP =B (AP - BP) = (A+E) (AP - BP).

Hence, “ D”
D D EA
187 - 4% 2 marrer
ie,
|B> -4 [maP| _ |ma?|
AP = Kp(A4) +[|AP|IIE| = Kp(4) (1 + |AP| &)’
and we complete the proof. (]

COROLLARY 3.5. (See [5].) Let B = A+ E with Ind(A) = k. Suppose AAPE = E = EAAD. If
|EAP|| <1, then

[B4%] _[B2-47| _ |iEa®|

Kp(A) (1 +[|EAP|) = AP~ 1-[[EAP|

(3.12)

ProOF. The upper bound was proved in [5]. We need only to show the lower bound of (3.12).
Note that
EAP = B(AP - BP) = (1 + EAP) A(AP - BP). (3.13)

Taking the norms on both sides of (3.13), we obtain

1EAP| < (1 +|[2AP]) 14) | 4° - BP].
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Hence,

1B® - AP [[EA%]
(4P = L+ [BAPT)Kp(4)

Before ending this section, we give an example to show that the lower bound of (3.12) is a
sharp one.

EXAMPLE. Let

1 0 0 0 e 0 0 O

01 00 6 0 0 O

A= 000 1|’ E= 0 0 0 0

0 0 00O 0 0 0 0

Then it holds Ind(A) = Ind(A + E) = 2 and E = AAPE = EAAD.
L 0 0 O
oo

ap— |0 , (A+EP=| 0 100
00 00 0 00 0
0 0 0O 0 00 0

It is observed that ||[EAP|| = ¢ < 1 and ||BP — AP||/|AP| = ¢/(1 +€) = |EAP|/(1 +
|EAPIKD ().

4. GENERAL CASE

Let A, E € C"*", B = A+ E with Ind(A) = k and Ind(B) = j. For any arbitrary positive
integer p, define E{p) = BP — AP. In this section, we shall consider the problem of bounding
|BP|l, | BPBJ, | BP — AP|//|AP]l, and ||BPB — AP A||/|| AP A|l in terms of [ E], |EQ)]| and
||E(l = 1)|} under the weakest condition core rank B = core rank A.

THEOREM 4.1. Let | = max{Ind(A),Ind(B)}, core rank A = core rank B. If [(AP)|[|E()]| <
1/(1+ | AP A)(< 1/2), then

1| @a®)||1Ew)
[ - ||y | nEwi @ + 42 ap)]

1871 < || aP)'|| 14| + 1Ea - 1) (1)

and
1- |42y 1EWI (1 - |42 4])
1- [Py [ 1Bl + 1aPA)

1BPB| < [|a” 4] (4.2)

PROOF. Since ! = max{Ind(A), Ind(B)}, it is evident that Ind(A!) = Ind(B!) = 1 and (A")#A' =
APA, (BY#B! = BPB. From the fact B? = (BY*B!"! = (BY#[A'"! + E(l - 1)] and
Lemma 2.1, we obtain immediately the upper bounds (4.1) and (4.2) for ||B?|| and ||BPB]|,
respectively. [ |

We are now in a position to bound ||[BP — AP||/||AP|| and ||BP B — AP A||/||AP A]|.
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THEOREM 4.2. Let | = max{Ind(A),Ind(B)} and core rank B = core rank A. If ||(AD)!|||| E(D)|
<1/(1+[|APAJ) (< 1/2), then

82— a2 _ 4™ [uEiqla +1ee - i) @ - @ 1EoN
AP <

[1-||cany || nE@n @ +naeanp]

|2y vamean (a2 + 12 - v (1 - @42 [ieon)’

: (4.3)
[1- |2y || 1E@I (1 + 142 4))]
ey e ana) - |@eyieon o - j424p]
1- |2y 1B @ + 142 A))
and
1875 - 424 _ [[(42) 121 (1 - |42 12n)
(454 [1-]|caey 1B @ +1an ap)”
(4.4)
ey e - @2) M I1BOI (- [[424)]
1- [y 1B a + 142 4))
PROOF. By a direct computation, we have
BP — AP = _BPEAP + BP (I - AAP) - (I-BPB) AP
~BPEAP + (BP)?B (I - AAP) - (I - BPB) A(4AP)’
= —BPEAP + BP (BY)* (4! + E(l)) (I - AAP) - (I - BPB) A' (4)* (49)
— —BPEAP 4 BP (BY* E(l) (I - AAP) + (I — BPB) E(l) (4)* AP
and
BPB - APA=BPB (I - AAP) — (I - BBP) A4P
(4.6)

= (BY)* E(l) (I - AAP) + (1 - BBP) E() (4)*

Taking norms on both sides of (4.5) and (4.6) and using Lemma 2.1 and 2.3, we arrive at (4.3)
and (4.4). ]
REMARK. Note that |E(})]| < YL2h CHIA|#|E||'~%, where C} is the binomial coefficient. Then,
if || E|| is sufficiently small, the condition ||(AP)!|||E(})|| < 1/(1+||AP A||) in Theorem 4.1 and 4.2
can be satisfied.

On the other hand, if core rank B # core rank 4, we shall find a lower bound for ||[BP|| which
tends to infinity as E approaches zero.

THEOREM 4.3. Let B = A+ E with Ind(A) = k and Ind(B) = j. Let | = max{Ind(A4),Ind(B)}.
If core rank B > core rank A, then

11
I+ E)7) 2 { B0 } (4.7

and
|BPB - AP A| > 1. (4.8)



The Drazin Inverse and Oblique Projection 83

PROOF. Note that core rank B > core rank A is equivalent to rank BY > rank A*. Because
R(A*) N (AF) = C", then by Lemma 2.2, there exists a nonzero vector z such that z €
R(BY) N N(A*). Without loss of generality, we assume that |z|| = 1. The proof of (4.7) is
analogous to that of (7, Theorem 4.6].

At the same time, we have

1=2"BPBz =z (BPB - APA)z
<|lz|l ||(BPB - APA) z|| < ||BPB - AP 4]

and arrive at equation (4.8). ]

REMARK. When core rank B # core rank A and || E| is sufficiently small, it is easy to see
core rank B > core rank A.

As a corollary of Theorem 4.3, we have the following well-known result about the continuity
of Drazin inverse.

COROLLARY 4.4. (See [1].) The necessary and sufficient condition of
lim BP = AP
B—A

is that core rank B = core rank A as B approaches A.

5. CONCLUDING REMARKS

In this paper, we have discussed more thoroughly the norm estimates for ||BP||, |BPB||,
IBP — AP||/||AP|, and ||BPB — AP A||/||AP 4||, i.e., we have answered the hard question of
Campbell and Meyer in [1].
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