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S M A L L  P R O G R A M M I N G  EXERCISES  13 

M. REM 
Department of Mathematics and Computing Science, Eindhoven University of Technology, 
5600 MB Eindhoven, Netherlands 

Many computing problems may be formulated as computations on graphs. The 
graph, usually a directed one, then represents the essential structure of the problem. 

This time we have again two graph problems, both of which have been composed 
by R. H. Mak. In our representation of graphs the vertices are identified by distinct 
natural numbers. In the first exercise these numbers play an essential role: for each 
vertex we have to determine which of its ancestors has the least number. 

A directed graph is called equidistant if for each pair (j, k) of vertices all paths 
from j to k have the same number of arcs. Obviously, equidistance implies acyclicity. 
We are requested to check whether a given graph is equidistant. In order to simplify 
this exercise somewhat, it is given that all vertices are reachable,from vertex 0. Both 
problems allow solutions that are linear in the number of vertices and arcs. 

Exercise 32: Least ancestors 

Given is a directed graph G. Let 

R(k) = {Jl G has a path from vertex k to vertex j}. 

Notice that k~R(k ) .  Vertex k is called an ancestor of vertex j if j e R ( k ) .  
Graph G is represented by its successor sets, as explained in Small Programming 
Exercises 5. 

We have to solve S in 

[[N, M: int; { N ~  > 1A M~>O} 
b(j: O<<-j<~ N),  e(i: 0<~ i < M ) :  array of int; 
{suc(G, b, e)} 
[[a(j: 0<~j< N):  array of int; 

S 
{(Aj: 0~<j < N: a(j) = ( M I N  k: 0 ~  < k < N Aj ~ R(k): k))} 

]1 
]1 

Exercise 33: Checking the equidistance of  a digraph 

With R as defined above, the functional specification reads 
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I[N, M: int; { N ~  > 1A M~>0} 

b(j: O<~j<~ N), e(i: 0<~ i < M ) :  array of int; 
{suc(G, b, e) ^ (Aj: O ~ j <  N:  j c  R(O))} 
I[eq: bool; 

S 

{eq =- ( G equidistant)} 

]1 

]1 

Solution o f  Exercise 30 (the flag o f  Alphanumerica) 

The reader is advised to consult the problem description in Small Programming 
Exercises 12. The functional specification of the iterative version IS  is 

][N: int; {N~>0} 

I[c: cursor; {c.x -- 0 ^ c.y = 0} 
f l ( i , j :  0<~ i < 2  N A 0~<j< N):  array of (blank, star); 

IS  
{fl(i , j:  0 << - i < 2 N ^ O<~j < N )  contains the flag of Alphanumerica} 

]1 
]1 

We introduce variables m and n and maintain the following invariant: 

c . x = O ^ O ~ c . y < ~ N  
A m = 2  N-c'y A n = 2 c'y 

A (f l ( i , j :  0<~ i < 2  N AO<-j< c.y) contains the top c.y rows of  the flag of 

Alphanumerica).  

If m = 1 we have c.y = N and the postcondition is satisfied. For m # 1 the next 

row to be printed is, according to the specification of the flag, a sequence of n 

groups, each containing m/2  blanks followed by m / 2  stars. 

Thus, we find 

IS: [[m, n: int; m,n := 2 ~ N, 1 
; d o m ~ l  

-'> I[i: int; i,m := O, m /2  
; d o i # n  

--> [[j: int; 
j : = 0 ;  do j #  m - > b l ; j : = j + l  od 

;j:= 0; do j #  m ->s t ; j :=j+ 1 od 

]l 
i : = i + l  

od 

]1 
;nl; n : = 2 *  n 
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od 
]l 

The functional specification of the recursive version RS is 

I[N: int; {N~>0} 

Ilk: int; {k= K A O<~ K <~ N}  
c: cursor; {C.X=X A C.y= YAO<~X<~2 N - 2  K AO<~ Y < ~ N - K }  

f l ( i , j :  0 << - i < 2  N A 0~<j< N):  array of (blank, star); 
RS  

{fl(i,j: X<~ i < X + 2  K ^ Y<<.j< Y + K )  

contains the flag of Alphanumedca} 

]l 
]l 

The recursive nature of RS requires the functional specification to be strengthened. 
We extend the specification with the requirement that RS leaves the remainder of 
fl unchanged, for whose formulation we introduce F as the initial value of ft. We 
also add conditions on the final values of k and c. Our extended specification is 

I[N: int; {N>tO} 
[[k: int; {k = K A O<~ K <~ N}  

c: cursor; { c . x = X  A c.y= YA0<~X~<2 N - 2  K A0~< Y<~ N - K }  

fl(i,j: 0<~ i < 2  N A 0<~j< N):  array of (blank, star); 
{(Ai, j :O<~i<2 N AO<~j<N: f l ( i , j ) = F ( i , j ) ) }  
RS  
{ k = K  ^ c . x = X + 2  K ^ c.y= Y 
A (Ai, j :  0<~ i < X  v X + 2  K ~< i < 2  N 

v0~<j<  Yv Y + K < ~ j < N : f l ( i , j ) = F ( i , j ) )  

A(fl(i , j:  X < ~ i < X + 2  K A Y<<-j< Y + K )  
contains the flag of Alphanumedca)} 

]l 
]1 

Program RS is to print a flag of k rows. If k = 0 it is a skip. If k I> 1 program RS 
prints row 0 (consisting of 2 k-1 blanks followed by the same number of stars) and 
two flags of k - 1  rows each: 

RS: i f  k = 0 --> skip 

D k > - l - > k : = k - 1  

; [[M: int; M := 2 1' k 
;l[J: int; 

j:= 0; do j  # M ~ b l ; j  :=j+ 1 od 
; j :=  0; do j #  M-->st; j :=j+ 1 od 

]1 
; back(2 * M )  
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]1 
; down; RS;  RS;  up 
; k:= k + l  

fi 

It is a nice solution, but it does require backspacing and forward and reverse line feed. 
In both countries the flag rotated by 90 ° is easier to print. We skip their functional 

specifications and give possible solutions only. In ISA the rotated flag may be 
produced by printing the natural numbers up to 2 k in binary notation, the blank 
replacing 0 and the star replacing 1: 

IS': I[M, i :=2  t k, 0 
; d o / a M  

-> [[j, n: int;j ,  n := i, 0 
; do n ~ k--> i f j  rood 2 = 0--> bl 

D j rood 2 = 1 --> st  

fi 
; j, n : = j d i v 2 ,  n + l  

od 

]1 
; nl; i:= i+1  
od 

]1 
In RSA the difference is even more striking. The recursive printing of the rotated 

flag does not require backspacing or line feed. Next to k, we assume the existence 
of another global variable, this one of type string of (blank, star). If  s is such a 
string, expression l(s) yields the length of s, command pr(s)  prints s, and (blank: s) 
denotes the result of concatenating a blank at the front of s. 

The effect of RS'  is that a rotated Alphanumerican flag is printed that consists 
of 2 k-/<s) rows and k - l ( s )  columns with each row extended by string s, resulting 
in a printed area of k columns. If string s is initially empty RS'  prints, consequently, 
a rotated flag of 2 k rows. 

RS': if l (s)  = k--> pr(s);  nl 
D l(s)<k-->[[t:  string of (blank, star); t:= s 

; s := (blank: t); RS'  
; s := (star: t); RS'  

]1 
fi 

Solution o f  Exercise 31 (balanced segments) 

We have to solve S in 
[ [N:  int; {N>~O} 

X ( i :  0 ~ i < N ) :  array of int; 
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][r: int; 

S 
{ r = ( M A X  p, q: O<~p<~q<- N ^ (Ni: p<~i < q: X ( i )<O)  

= (Ni: p <~ i < q: X ( i ) >  0): q - p ) }  

]1 
]1 

Let, for O<-j<~N, E( j )  denote the excess of negative numbers over positive 

numbers in X(i :  0<~ i < j ) :  

E ( j)  = (Ni: 0 ~< i < j :  X (i) < 0) - (Ni: 0 <~ i < j: X (j) > 0). 

Notice that E ( 0 ) = 0  and that -j<~E(j)<~j.  The postcondition 

written as 

r =  (MAXp, q: O<~p<~q<~ N ^  E ( p ) =  E(q): q - p ) .  

may then be 

We obtain our invariant by replacing in the postcondition constant N by a variable: 

PO: O~ n<~ N 

^ r =  (MAXp, q: O~<p~ < q<~ n A E(p)  = E(q) :  q - p ) .  

It may be initialized with n, r = O, O. 

An increment of n by I requires determining the least p such that E(p)  = E(n  + 1). 

The value of E ( n +  1) can be deduced from that of  E(n)  as follows: 

( E ( n ) + l  i f X ( n ) < O ,  
/ 

E ( n +  1)= ~E(n)  if  X ( n )  = O, 

[ E ( n ) - I  i f X ( n ) > O .  

We, therefore, record the value of E(n) :  

PI :  e = E ( n ) .  

The numbers in the set {E( i )10~  < i ~  < n} form an interval [a, b] of integer numbers. 
In order to facilitate the search for the least p such that E(p)  = E(n  + 1), we record 

for each m in that interval the least p such that E ( p ) =  m: 

P2: 

S: 

a = ( M I N  i: O~ i<~ n: E(i))  

A b = ( M A X  i: 0<~ i<~ n: E(i))  

A (Am: a <<- m <<- b ' f ( m )  = (MIN i: 0<~ i<~ n A E(i)  = m: i)). 

With PO ̂  P1 A P2 as our invariant, the solution becomes 

I[n, e, a, b: int; 

f ( m :  - N  < . m <<- N):  array o f  int; 
n, r, e, a, b := 0, 0, 0, 0, 0 

; f :  ( 0 ) = 0  
; d o n ~ N  

--~ i f  X(n)  < 0 ~  e := e +  1 
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od  

]1 

DX(n)  = 0-> skip 

DX(n)  > 0-> e:= e - 1  

fi 

i f  e = a - l - > a : = e ; f : ( e ) = n + l  

Da <-.~ e <..~ b -~. sk ip  

De= b + l - * b : =  e ; f :  ( e )=  n + l  

f i  

r := r m a x  ( n  + 1 -f(e)) 
n : = n + l  

The execution time of  our solution is proportional to N. 


