
Physics Letters B 544 (2002) 231–238
www.elsevier.com/locate/npe

On the cosmological relevance of the tachyon
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Abstract

We analyse of the effective action of the tachyon field on a D-brane, of both bosonic as well as superstring theory. We find that
the non-standard kinetic term of the tachyon field requires a correction to the Born–Infeld type Lagrangian. The cosmological
significance of the resulting dynamics is explored. We also examine if the rolling tachyon can provide an effective cosmological
constant and contrast its behaviour with quintessence.
 2002 Elsevier Science B.V.

1. Introduction

The perturbative spectrum of open (super-)string
around a (non-supersymmetric) D-brane contains a
scalar which is tachyonic. The dynamics of this
tachyon field has many unusual features. Sen conjec-
tured [1] that the potential of this field has a min-
imum and when the tachyon condenses to its min-
imum, all open string excitations become infinitely
heavy and hence inaccessible to the low energy ob-
server. Of course, for such a thing to happen, the La-
grangian describing the tachyon dynamics ought to be
of an unconventional form. In particular, the effective
open string coupling is inversely proportional to the
value of the tachyon potential [2]. Since the potential
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vanishes at the minimum, the open string theory there
is infinitely strongly coupled.

More recently, Sen [3] has pointed out that the time
evolution of the tachyon field may have cosmologi-
cal significance. Several authors have initiated an ex-
ploration of this idea [4–9]. (For other works on the
cosmological relevance of the tachyon, see [10,11].)
Thanks to unconventional form of the tachyon action,
cosmology with tachyon matter can lead to results dif-
ferent from those obtained with a normal scalar field.
For example, inflation driven by the tachyon differs
from that driven by a conventional inflaton. It is also
possible that tachyon matter could be a candidate for
cold dark matter [3] as, at the minimum of its poten-
tial, it becomes a pressureless gas. Padmanabhan has
recently emphasized [9] that it is always possible to
construct a potential that leads to a given inflation-
ary scenario. Therefore, it is all the more important to
study cosmological consequences of potentials arising
out of a fundamental theory such as string theory. With
this motivation, we study inflation driven by the rolling
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of the tachyonic scalar on a (non-supersymmetric) D3-
brane.

At this stage we should point out the limitations of
the scope of our study. We assume, following Ref. [5],
that the open string tachyon couples minimally to the
graviton, but to no other closed string mode. This is
rather a drastic assumption since there is no reason to
ignore the coupling to, say, the dilaton. Moreover it is
not known how to stabilize some of the other closed
string moduli, such as the volume of compactification,
the dynamics of which might affect that of the tachyon.
We will, however, take the pragmatic point of view
that some as yet unknown mechanism freezes these
unwanted moduli and leaves us with an effective
theory of the tachyon minimally coupled to Einstein–
Hilbert gravity in four dimensions, as proposed by
Gibbons [5].

The plan of the Letter is as follows. In the next sec-
tion, we review the relevant aspects of tachyon dy-
namics following Refs. [5,6]. In Section 3, based on
a comparison between the Born–Infeld action [2,12]
and the tachyon effective action [13–15] obtained in
the so-called background independent string field the-
ory (B-SFT) [16], we propose a correction to the BI ac-
tion used in the recent works [3–9]. The consequences
of the extra term are worked out in Sections 4 and 5
for bosonic and superstring respectively. We find that
the tachyon does not give enough inflation. Section 6
is an analysis of the slow roll conditions in these mod-
els. Perhaps not unexpectedly, these conditions are not
met. In the concluding section, we examine whether
the rolling tachyon could be an alternative to cosmo-
logical constant or quintessence.

2. Dynamics of tachyon matter

The effective field theory on a (non-supersymme-
tric) D-brane is described by the Born–Infeld La-
grangian

LBI = −V (T )
{− det

[
gµν + 2π	2

s

(
Fµν + ∂µY

i∂νY
i

(1)+ f (T )∂µT ∂νT
)]}1/2

,

where, 1/2π	2
s is the string tension, g the induced

metric, F the gauge field strength and Y i are scalar
fields describing the transverse motion of the brane.
Moreover, T is the tachyonic mode on the Dm-brane,

V (T ) the potential of T and f (T ) is a function of the
tachyon. The particular dependence on the potential
is a characteristic of D-brane physics [2] compatible
with the conjectures of Sen [1]. The tachyon potential
thus plays the role of the (inverse) effective coupling
of this theory. That the derivatives of the tachyon
field appears under the square-root was pointed out
in [12] based on the T-duality symmetry of string
theory. The arguments in [12] allow for a function
f (T ) accompanying these derivative terms. We shall
see this term is non-trivial as the kinetic term of the
effective action following from string field theory does
not have a canonical form.

Let us couple this system to gravity [5] and neglect
all fields other than the tachyon. Since our objective
is to study the cosmological significance of tachyon
dynamics, we shall assume a Friedmann–Robertson–
Walker metric

(2)ds2 = −dt2 + a2(t)

(
dr2

1 − kr2 + r2 dΩ2
m−1

)
,

as well as a spatially homogeneous and isotropic
tachyon field T which depends only on time. Let
us specialize to the case m = 3 from now on. The
dynamics of this system is given by the Lagrangian

(3)

√− detg
(

1
2κ2R(g)− V (T )

√
1 − 2π	2

s f (T )(Ṫ )
2
)
,

where, the relation

(4)
√

8π
mPl

= κ = (2π)2gs	s√
2v

expresses the inverse reduced Planck mass κ in terms
of the string tension and string coupling gs . In (4),
v is a dimensionless parameter corresponding to the
volume of the 22- or 6-dimensional space transverse
to the 3-brane. It depends on how the four-dimensional
spacetime is realized from the 26- or 10-dimensional
one.

The Lagrangian (3), with f (T ) = 1, has recently
been analyzed in Refs. [5,6]. The inclusion of f (T )

leads to some modifications. The Hamiltonian or
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energy density of T is1

(5)H = a3(t)V (T )√
1 − 2π	2

s f (T )Ṫ
2

= a3(t)ρ(T )

and its equation of motion is

(6)ρ̇ = −3H(p+ ρ),

where, H = ȧ/a is the Hubble parameter and p =
−V (T )

√
1 − 2π	2

s f (T )Ṫ
2 is the pressure of the

tachyonic fluid. The explicit expressions of p and ρ

may be substituted to obtain the second order evolu-
tion equation of T .

The gravitational equations, on the other hand, are

(7)H 2 = κ2

3
ρ = κ2

3
V (T )√

1 − 2π	2
s f (T )Ṫ

2
,

(8)

Ḣ = −κ2

2
(ρ + p)

= −κ2

2
V (T )f (T )√

1 − 2π	2
s f (T )Ṫ

2
2π	2

s Ṫ
2.

Eq. (7) may be rewritten as
√

2π	2
s f (T ) Ṫ =√

(1 − κ4V 2(T )/9H 4).

3. Inflation from tachyon on a bosonic D-brane

The effective action of the tachyon field T (x)

determined in the framework of bosonic B-SFT is [13,
14]

(9)SB = τ3

∫
d4x

(
	2
s e

−T ∂µT ∂
µT + (T + 1)e−T

)
,

where the normalization factor

(10)τ3 = 1
(2π	2

s )
22πgs

= π3g3
s

8v2 m4
Pl

is the tension of the D3-brane [19]. In our conven-
tion, the tachyon field T (x) is dimensionless. Hence
V (T )= τ3(T + 1) exp(−T ) has mass dimension four.
It is parametrized by the dimensionless quantities v

and gs .

1 We set k = 0 for simplicity.

Upto two derivative terms, the action (9) is exact,
in the sense that it incorporates the effect of all
open string modes. The potential has a maximum
corresponding to the D-brane at T = 0 and a minimum
at T = ∞. (It is also unbounded for negative values
of T , but that is a pathology of the bosonic theory.)
Notice the e−T factor due to which the kinetic term
has a non-standard form. Hence the distance between
the maximum and minimum (in field space) is finite.

It is of course possible to do a field redefinition to
bring the kinetic term to the canonical form ∂µφ∂

µφ.
The transformation is φ = 2e−T/2, in terms of which
the Lagrangian in

(11)Lφ = τ3

(
	2
s ∂µφ∂

µφ − 1
4
φ2

(
ln

φ2

4
− 1

))
.

We will come back to the description of the dynamics
in terms of the field φ later on in this section.

There are an infinite number of corrections to the
action (9). In particular, the Born–Infeld action (1)
gives a good description of slowly varying fields, i.e.,
those for which the second and higher derivatives of
the field can be ignored. Let us now treat the action (9)
as an expansion of an action of the form (1)

(12)

SBI = τ3

∫
d4x (1 + T )e−T

(
1 + π	2

s f (T )∂µT ∂
µT

)
.

From a comparison of Eqs. (9) and (12), in a region
where both are good descriptions, it follows that
f (T ) = 1/(π(1 + T )). Put in another way, this factor
is the necessary field redefinition to relate the tachyon
fields in the Born–Infeld and B-SFT descriptions.

Once again, it is possible to do a field redefinition
to soak up the factor of f (T ), but this does not map
the entire field space T (x) ∈ (−∞,∞) to that of the
redefined tachyon T̃ (x) = √

1 + T (x). Interestingly,
it does, however, map the domain −1 � T (x)� ∞,
which is precisely the region accessed by all the clas-
sical solutions, viz., the D-branes. Another amusing
aspect of this field redefinition is that the potential in
terms of T̃ (x) has a Gaussian factor, reminiscent of
the superstring case. It should, however, be noted that
the late time evolution of the tachyon field in either of
these two cases does not seem to match the asymptotic
behaviour analyzed by Sen [8]. Of course, a field rede-
finition could reproduce the correct asymptotics, but it
would, necessarily, have to involve derivatives of the
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Fig. 1. The kinetic term f (T )Ṫ 2 (solid lines) and e-foldings (dashed
lines) vs time t for bosonic string. Numbers labelling the graphs
correspond to values of κ2τ3. In each case, the point at which the
inflation ends has been marked.

tachyon field. Since we are mainly interested in the
early time evolution where the time derivatives of the
tachyon turn out to be small, the aforementioned deriv-
ative terms do not play a significant role. Furthermore,
a field redefinition of the tachyon would not change the
dynamics of the scale factor of the universe. Hence we
may conclude that the results we obtain are not very
sensitive to the large time behaviour.

One can now solve the equations of motion (7)
and (8) numerically to determine the evolution of the
tachyon and the Hubble parameter. Following [3], we
choose the initial conditions such that the tachyon is
infinitesimally displaced to the right of the maximum
of the potential2 and has zero velocity. The results
depend on the tension τ3 of the D3-brane, and are
displayed in Fig. 1. In the same figure, we also plot
the number of e-foldings

(13)Ne(t) = ln
a(tf )

a(ti)
=

tf∫
ti

dt H (t)

2 For the numerical computation, we set the string tension
1/2π	2

s = 1. (The tension of the 3-brane τ3 is therefore 1/2πgs .)
The actual seed used for the initial value of the tachyon is T ∼ 0.1,
which is compatible with the requirement in [23].

as a function of time. It is clear from the plot that the
effective kinetic term 2π	2

s f (T )Ṫ
2 initially remains

very close to zero, during which the expansion takes
place. Subsequently, the tachyon rolls very fast and
the kinetic energy saturates to the maximum value
of 2π	2

s f (T )Ṫ
2 = 1. The exit from the inflationary

phase occurs very soon during the fast roll at the point
2π	2

s f (T )Ṫ
2 = 2/3.

Finally, we would like to mention that in terms of
the field φ = 2e−T/2, which has a canonical kinetic
term (11), one obtains f (φ) = 2/V (φ). It is easy to
check that one gets the same amount of e-folding from
the evolution of φ. This is but a reaffirmation of the
fact that field redefinitions cannot change the physical
consequences of the dynamics.

4. Inflation from tachyon on a non-BPS D-brane

The analysis of the previous section can easily be
extended to the case of the superstring. Recall, that the
effective action of the tachyon field T (x) on a non-
BPS D3-brane3 computed in supersymmetric B-SFT
is [15]

(14)

SF = τ3

∫
d4x

(
	2
s ln 2e−T 2/4∂µT ∂µT + e−T 2/4),

where, τ3, the tension of the brane is the overall
normalization factor [21]. As in the bosonic case, this
action is exact upto two derivatives. Using arguments
identical to those in the previous section, we can write
down the Born–Infeld form of the action

(15)SBI = τ3

∫
d4x e−T 2/4

√
1 − 2	2

s ln 2(Ṫ )2.

In other words, f (T )= (ln 2)/π .
As in the previous section, we now solve the equa-

tions of motion numerically to obtain the evolution of
the tachyon and the Hubble parameter. Once again, the
initial conditions are chosen such that the tachyon field
starts with a small positive value and zero velocity.
The results are displayed in Fig. 2. The qualitative fea-
tures are similar to those in the bosonic case, although

3 One can also study the complex tachyon on a non-
supersymmetric brane–antibrane pair [20]. The qualitative features
of this system, however, are expected to be the same as those of
a non-BPS brane.
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Fig. 2. The kinetic term f (T )Ṫ 2 (solid lines) and e-foldings (dashed
lines) vs time t for the superstring. The parameters refer to κ2τ3.

for similar values of the brane tension τ3, the tachyon
of the superstring has small velocity for a somewhat
longer time, which results in a few more e-foldings.

5. Remarks on tachyon driven inflation

In order to generate enough inflation, it is necessary
for the inflaton field to roll slowly enough. This
is characterized by two dimensionless parameters ε

and η. For the conventional inflaton with canonically
normalized kinetic energy term, these are given by
[22]

(16)ε = m2
Pl

2

(
V ′

V

)2
, η =m2

Pl

(
V ′′

V

)
.

The conditions for slow roll inflation are ε 
 1 and
|η| 
 1. These formulas are not directly applicable to
case of the tachyon, which has a non-standard action
(12) or (15). Using the field redefinition discussed in
Section 3, it is easy to show that

ε = m2
Pl

4π	2
s f (T )V (T )

(
V ′(T )
V (T )

)2
,

η = −ε + m2
Pl

2π	2
s f (T )V (T )

(17)×
(
V ′′(T )
V (T )

− f ′(T )V ′(T )
2f (T )V (T )

)
,

Fig. 3. Slow roll parameters ε (solid lines) and η (dashed lines) as
a function of tachyon for the bosonic theory. Numbers labelling the
graphs correspond to values of κ2τ3.

are the appropriate parameters.
There is, nevertheless, a difference with conven-

tional inflaton, especially if we are in the weak string
coupling limit (small to moderate values of κ2τ3). For
the potential dictated by either the bosonic string or
the superstring theory, the consequent inflation is not
of slow roll type [17]. For example, while the slow roll
parameter ε is small at the top of the potential, η is not.
In fact, as Fig. 3 demonstrates for the bosonic theory,4
η is significantly larger than unity for the entire length
of the evolution governed by tachyon dynamics. Thus,
while the inflation satisfies one slow roll criterion (at
least, initially), it fails to satisfy the other. The universe
fails to inflate enough as a consequence of this.

Now this may not be all bad news, for the situation
here is similar to the fast roll inflation [23]. It has
been argued that such a fast roll inflation could have
preceded the conventional slow roll inflation and
could, in fact, have set the stage for the latter by
suitably adjusting the initial conditions for slow roll. In
this sense, it is satisfying to see that the inflation driven
by the tachyon does not give rise to sufficient number

4 It is easy to see that while ε for the superstring tachyon starts
arbitrarily close to zero, η, once again, is always large if one is in
the weak coupling limit.
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Fig. 4. The inverse Hubble parameter, in the bosonic theory, as
a function of time. Numbers labelling the graphs correspond to
values of κ2τ3.

of e-foldings, a job which will be relegated to the
slow roll inflation that follows. After we exit the early
epoch of tachyon driven fast roll inflation, the scale
factor grows according to a power law (see Fig. 4).
However, if a new scalar field takes over at this epoch
and leads to slow roll inflation then the scale factor will
continue to grow exponentially. Such details, though
interesting, are beyond the scope of this work. Suffice
is to note that there are enough candidates for the
scalar among the open string (transverse scalars on
the brane) and closed string moduli. Let us note in
passing that in slow roll inflation, the ratio of tensor to
scalar amplitudes is proportional to ε and observations
demand it to be of the order of 10−2 or smaller. Since
in our case ε is of the order of 10−1, this ratio is larger
than the observed value.5 However, if the tachyon
driven fast roll inflation is followed by a slow roll
inflation then it is conceivable that it may readjust
this ratio to the desired value. One can also imagine
modification of the present scenario of inflation on a
single brane by considering a stack of multiple branes
as considered in [6,11].

It is worth emphasizing another feature of inflation
driven by the tachyon field. The tachyon potential
is not flat. Indeed, the leading term in the effective

5 L. Kofman, private communication.

tachyon potentials (9) and (14) from string theory is
quadratic at the maximum (as befits a tachyon). The
kinetic term of the tachyon field, on the other hand,
is non-trivial. This leads to all the difference in their
dynamics.

6. Quintessence vs rolling tachyon

Recent observations indicate that there is probably
an infinitesimally small positive vacuum energy den-
sity in the universe. This could be due to a cosmo-
logical constant. An alternative to this idea is that of
quintessence, a conventional scalar field χ with a po-
tential V (χ), such that χ is still rolling towards its
minimum (see [24] and references therein). Gener-
ically the minimum of the potential is taken to be
at χ = ∞. In this section, we examine whether the
rolling tachyon could be an answer to this problem.

The equation of state for quintessence is p = ωχρ

with

(18)−1 <ωχ <−1
3
.

The evolution of a scalar field in a homogeneous
and isotropic universe described by the FRW metric
(2) (with k = 0 for simplicity) is given by (6). This,
along with the equation of state, determine the energy
density ρ in terms of the scale factor a(t). Eq. (7) can
now be solved to get

(19)

ρ = ρ0

(
a0

a

)3(1+ω)

, a(t)= a0

(
t

t0

)2/(3(1+ω))

.

It is clear from the power law behaviour of the
scale factor that the Hubble parameter H is inversely
proportional to time, indicating a curvature singularity
at t = 0. This is because the curvature tensors are
proportional to H and Ḣ . As time evolves, curvature
goes to zero and spacetime becomes flat.

The equations of motion for the tachyon field, when
expressed in terms of the energy density and pressure,
are identical to that of an ordinary scalar field. Its
equation of state, however, is fundamentally different
[3]. The parameter ω is not a constant but instead is
a time-dependent function. More specifically,

(20)ω(T )= 2π	2
s f (T )Ṫ

2 − 1,
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as follows from the expressions of ρ and p in
Section 2. With the initial conditions we have chosen
in Sections 3 and 4, namely T (0)= 0+ and Ṫ (0)= 0,
ω starts with the value −1. It is easy to see that
the energy density at this stage is independent of the
scale factor a(t). Substituting this into the Einstein’s
equation (7) we find that the scale factor grows
exponentially,

(21)ρ = ρ0, a(t)= a0e
t/t0,

with ρ0 = τ3 and arbitrary constants a0 and t0. This
means that in the early epoch the scale factor grows
exponentially giving a constant Hubble parameter H .
Thus unlike the quintessence scalar field, tachyon
dynamics does not lead to a curvature singularity as
t → 0.

As the system evolves, ω(T ) moves away from
−1. We see from the Figs. 1 and 2 that initially
2π	2

s f (T )Ṫ
2 
 1 for some time. This in turn means

that ω � −1 (but ω �= −1), is virtually a constant
during this epoch. The system evolves according to
Eq. (19), i.e., the scale factor grows according to a
power law with a large exponent. Close to the end of
the inflationary era, f (T )Ṫ 2 grows rapidly, leading to
an increase in the value of ω, which eventually settles
down to ω = 0.

In summary, we see that the early time development
of the tachyon is quite different from that of the
conventional quintessence scalar field. In particular,
there is no curvature singularity as t → 0; instead there
is a constant scale factor and a flat metric. With the
rolling of the tachyon, initial exponential growth of
the scale factor switches over to a power law growth
(see Fig. 4). Eventually, as the rolling tachyon picks
up speed, growth of a(t) as a function of t slows down
and settles at t2/3 indicating a transition to a tachyon
(and other) matter dominated era. It will be interesting
to investigate tachyon driven quintessence models in
detail. We hope to come back to it in future.

Note added

Since an earlier version of our Letter, a number
of authors have studied various aspects related to
tachyon driven inflation. Most notably Ref. [17], (see
also [18]), argued on general grounds that inflation
driven by tachyon cannot produce enough expansion.

When we re-examined our results, it was found that
incompatible conventions (2π	2

s = 1 and κ = 1) were
inadvertently used. We correct this unfortunate error
in the present version. The conclusions are modified
in the light of the new result.
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