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Abstract 

Using an algebraic representation of closed /I-normal forms in I-calculus, the Biihm’s theorem 
is rephrased as an equality predicate between elements of a term algebra. The presented algebraic 
interpretation gives new insight into the B&m-out technique and allows for original applications 
of the method. @ 1999-Elsevier Science B.V. All rights reserved 
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1. Introduction 

The Biihm-out technique is perhaps one of the most applied results in i-calculus, 

since it is used in studies about several different aspects of the system. In effect, while 

stated as a syntactical property of closed normal forms [3], the Biihm’s theorem finds 

its relevance in its main semantical consequence: two different terms having normal 

form are not identifiable in a nontrivial model of the A-calculus. 

The method used in the proof of the B&m’s theorem, named B&m-out by Baren- 

dregt in his book [l], roughly consists in extracting subterms (or substitution instances 

of them) from normal forms. It can be considered as a tool for analyzing the infor- 

mation content of a A-term. This has in its turn applications in the analysis of both 

syntactical and semantical aspects of ,l-calculus: as examples, consider the solvabilty 
problem for systems of combinatory equations and the problem of comparing the be- 

haviour of applicative programs, respectively. Indeed, when a combinator is searched 

for some purposes, it is often found using some variant of the B&m-out technique. 

Different presentations of the B&n-out technique appear in the literature [ 1, 10-121, 

each of which focuses on particular aspects of the method. Moreover, B&m’s theorem 

has been extended in various directions [9,7, 131. 
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In this paper, an algebraic interpretation of the Biihm-out technique will be given. 

To introduce and motivate it, let us first recall the B&n’s theorem: 

Let A4, N be two closed /I-normal forms, and U, u any two different objects. There 

exists a A-term A (a discriminator for A4 and N) such that AA4 =p u, AN =b v 

iff M and N are not q-convertible 

Taking U, v to be (any pair of terms l-defining) the Booleans true and false, one 

can view the discriminator A as the A-definition of the (partial, namely defined for M 

and N only) predicate “to be equal to M”. 

On the other hand, assume that there exists a term V (a veritable equality predicate 

between normal forms) such that 

VMN = 
uifM=,N, 

v otherwise. 

Then clearly A = VA4 discriminates between M and any other term, hence it is a 

discriminator for M and N. 

Some questions naturally arise here: up to what extent can the discriminator be 

considered to J-define an equality predicate between normal forms? More precisely, 

given a finite set .Af of /?-normal forms, does there always exist a term V satisfying 

(1) over JY? Moreover, are there infinite sets of normal forms for which V can be 

defined? 

This paper answers affirmatively all these questions, giving a representation of the 

Bijhm’s theorem as the process of identifying an equality predicate for sets of normal 

forms. To this aim, an algebraic representation of normal forms is used, first introduced 

in [6], which mimics the construction of Biihrn trees. The presented method also allows 

to extract subterms from normal forms in a “clean” way. In effect, the Biihm-out 

technique allows for extracting substitution instances of subterms, since during the 

extraction process some variables might be replaced by terms (see [ 1, Section 10.3.11). 

In this paper it will be proved that it is possible to extract subterms from normal forms 

(in fact for infinite Biihm trees having a bound on the number of sons, too) without 

performing any substitution over them, provided that the system is equipped with the 

q-rule. 

This work is inspired by similar results obtained (for a restricted class of normal 

forms, namely for proper combinators) by Corrado B&m [5] and presented, in nuce, 
during the evening lecture of the LICS conference in Paris, 1994. 

The paper is organized as follows. In the Section 2 the I-calculus will be extended 

with algebraic features and some useful results will be proved for the extended cal- 

culi. In Section 3, the algebraic representation of closed normal forms will be intro- 

duced and the main technical result of the paper will be proved, namely the definabil- 

ity of a translation from normal forms to their algebraic counterpart. The B&m-out 

lemma and the Biihrn’s theorem will be reinterpreted in Section 4 as straightforward 

consequences of the definability theorem. Technical details of proofs are deferred to 

Section 5. 
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2. Extended l-calculi 

The reader will be assumed to be familiar with the basic notions and properties 

of I-calculus (see [l]). In particular, conventional notations will be used for /?- and 

q-reduction and equality, while the symbol _= will be used for syntactical identity. 

As usual, we shall consider the set ,4 of terms of the A-calculus to be described by 

the following BNF, where x ranges over a denumerable set of variables: 

L ::= x 1 (AXL) 1 (L&2). (2) 

Let Z be a set of function symbols from a given signature. A(Z) denotes the set 

of extended lambda terms with symbols from the signature C. To be precise A(Z) 

can be defined by adding the following clause to the clauses (2) for the formation 

of lambda terms: if t 1,. . . , tn E A(Z) and f E C is an n-ary fimction symbol, then 

f(h,..., t,,) E A(E). Note that Ter(Z) C A(Z) where Ter(C) is the set of terms over 

the signature C. 

A A-interpretation of C is a function 4 : C --t A. Any such I-interpretation C#J induces 

a map (.)4 : A(Z) + A in the obvious way, namely 

for any variable X, x4 = x, 

(kx.M)~ = J_x.M@, 

(IMN)~ = M4N@ 3 

mfl,..., M,)++ = f%$..M~ II' 

Definition 1. Let d = {ui = biJi E J} be a set of equations between extended 1>-terms 

aj,bj E A(C). 

A A-interpretation I$ satisfies (or solves) & if CZ~ =b bf, for each equation ai = b; 
in 6’. If there exists a A-interpretation 4 which satisfies 8, then d can be solved inside 

A-calculus and d is a solution for 8. 

Definition 2. A A-interpretation 4 : C + A of a signature C is adequate for Ter(Z) iff 

there exists a term ItL,4 E A(E) such that Ztz,@ T4 =p T, for any T E Ter(C). 

Definition 3. (i) Let 8 be a set of equations in an extended il-calculus n(Z). 8 is 

canonical if the function symbols in Z can be partitioned into two disjoint subsets 

C = Co U Cl so that, letting Cs = {cl,. . . , c,.} and Ci = {fi, . . . , fk}, each equation 

t = t’ of 6 has the form 

fi(cj(x~,...,X~,),Y~,...,Y,)=bij, (3) 

where f i E Cl, Cj E CO, b, E A(C) is a term depending on i and j, n, m > 0 and the 

variables xi,. . . ,x~, yi,. . . , y, are all distinct. 

(ii) The elements of CO are called data constructors and those of Zi programs. 
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Example 4 (Useful dutu structures). Using superscripts to indicate arities of function 

symbols, let 

CN = {zero(‘), succ(‘)}, 

C,,j,,(,) = {#(‘I, char,(‘), . . . , char,(‘)}, 

Cboo[ = {tt(‘) fs”‘}. 7 

Clearly, each element of Ter(ZN) can be interpreted as a natural number, each element 

of Ter(Cst,ingc,j) can be interpreted as a string over a r-character alphabet (with # 

corresponding to the empty string), while each element of Ter(&,,r) can be interpreted 

as a Boolean. 

NOW let C = CN U Cstring(r) U {length(‘)}. The definition of the function which 

associates to any above considered string its length can be expressed by the following 

canonical system of equations: 

6 = {length(#) = zero} U {Zength(ChUri(y)) = succ(Zength(y)) 1 1 <i<r}. 

The following example shows that binary functions can be defined by means of 

canonical systems of equations, provided that auxiliary function symbols are considered: 

let z = CbOo[ u {And(2) , And,(‘)}; the following system is a canonical one and it clearly 

expresses the definition of the Boolean function AND. 

&’ = 
And( tt, y) = AndI (y), AndI (tt) = tt, 

’ AndCfJ; y) =fs, And10 =ff 

2.1. More on canonical systems 

The following examples are needed to express the Biihm’s theorem as the equality 

predicate over elements of a term algebra and the Bohm-out lemma. 

The equality predicate for elements of Ter(C) : Let C = {$I), . . . , c?‘} and C’ = 

c u &oolu {@2’, I!@“+‘) , . . . , Eq@+‘), And). The equality predicate between elements 

of Ter(C) can be expressed by m:ans of the following system of equations (1 Gi, j < r): 

Eq(cdx1,. . ., &n,),Y) = &&(Y,xl,*‘~,&,), 

= A~d(...(A~d(‘q(xl,Yl),‘q(x2,~2))),...,’q(~~~,Y~j)) 

I 

ff ifi#j, 

tt ifi=jandmi=mj=O, 

otherwise (here mi = mj). 

The subterm extraction for elements of Ter(Z) : Let C = {cl,. . . , c,} and C’ = 

C U Csfripq(k) U {Xtr(2), X0-(:), . . . , Xtrs2), error(O)}. The subterm extraction for elements 
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of Ter(C) can be expressed by means of the following system of equations, where a 

string describes the path identifying the subterm to be extracted: 

Jw#, Y) = Y, 

Xtr(ChUrj(X), Y) = xtrj(Y,Jr), 

error 
xfrj(S(yl 3. . .y Ym; 1,X> = 

if j > F&, 

Xtr(x, Yj ) otherwise. 

2.2. Solution of canonical systems 

Any canonical system has a solution inside A-calculus. 

Theorem 5. Let A(C) be an extended A-calculus; then every canonical set of equa- 

tions d has a solution d, : C 4 A inside I-calculus. Furthermore, 4 can be chosen in 

a wuy that the restriction +I& depends only on Co and not on 8, namely there is a 
jixed representation of the constructors. 

Proof. The proof of this theorem, which appeared in [2,8], is reported in Section 5. 

Observe that the proposed solution is a term in normal form. 0 

Corollary 6. There exist two p-normal forms Eq, and Xtrx which solve the systems 
of equations deJining the equality predicate and the subterm extraction function, re- 

spectively. Clearly, these terms depend on Z and on the representation of CO. 

Proof. Directly from Theorem 5. I-J 

Lemma 7. Let C = {cl , . . . ,c,.}. The I-interpretation #z : C --f A such that, for 

1 dj<r, 

d.dCj) = bl . ..x.,e.eUjxl . ..x.,, (4) 

where mj is the arity of cj and U; z AXI . . mxr.xj, is adequate for Ter(C). 

Proof. Follows directly from the proof of Theorem 5. Consider the canonical system 

defining the identity function over Ter(C): 

E = {Id(cj(xl ,...,x,,)) = cj(Zd(xl),...,Zd(x,)) I lbjGr1 

and replace the constructors appearing in the right-hand sides of the equations with 

fresh free variables VI,. _ . , v,, turning the algebraic notation into the usual 1 notation 

for application. The system thus becomes 

8’ = {Zd’(4dcj)(xl ,...,Xmj))=Vj(Zd(Xl))...(Zd(X,j)) ( l<jGr). 
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Such a system can be solved following the pattern of the proof of Theorem 5. The 

solution is therefore a pair (ti, ti) where ti = (ti,~, . . . t~,~). It comes out that 

B 

B 

B 

(t1, Cl j((h . ..x.,e.eUjxl . ..xmj)xxl . ..xm.> 

(ie.eU,‘xl . ..&.)Wl 

4jXl . . .X,/l 

take now tlj = Lx1 . . .Xmjt.uj(Xltt). . . (x,tt) 

v~(xltltl)...(x,jtltl~ = vj((tl,tl)xl)...((tl,tl)x,,). 

The solution of the system 6’ is therefore a i term (a normal form, indeed) in which 

the variables ~1 , . . . , Vj occur free. The lemma follows taking such a term, substituting 

in it every variable ui with 

AXI . . .X*,.Cj(Xl, . . . ,Xm,), 

and B-reducing to the normal form, 0 

3. Algebraic representation of closed normal forms 

Let NF” c A be the set of closed normal forms. The following algebraic representa- 

tion of closed normal forms has been first proposed in [6] and then reprised in [4]. 

Definition 8. (i) Define C, = {py 1 m b 0, n > 0,O < i Gn}, where py’” is an m-ary 

function symbol. 

(ii) Define the interpretation map & : C, --) A as follows: 

&(pm’“) = icy E ;lJq . . . ymxl . . .X,.x&llXl . . .x,). . .&Xl . . .xn). 

(iii) Define the representation map f : NF” + Ter(&) as follows: 

f(l.q . . .X,.xjMl . . .M,) = py(f(J.xl . . .&A41 >, . . . ) f(A.xl . . *x?z.Mm)). 

Theorem 9. For any A4 E NF’, 

Proof. It is an easy induction on the depth of the B&m tree of M. 0 

Example 10. Let A4 E ilcyz.xz(la.y(Ab.x)a)(~c.c), whose B&m tree (BT(A4)) is 

shown in Fig. 1 (left). The representation of A4 in Ter(Z;,) can be obtained as follows: 

l Consider the tree whose structure is the same as BT(M) and labels are pairs of 

integers (n,i), where (see Fig. 1 (center)) 

o n is the total amount of I’s from the root to the corresponding node of BT(M); 
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Fig. 1. A closed normal form and its algebraic counterpart. 

o the head variable of the label of the corresponding node in B?“(M) is bound by 

the ith A starting from the root of BT(A4). 

l For any node in the obtained tree, substitute the label (n,i) with pm’, where m is 

the amount of immediate subtrees of the tree rooted in the considered node (see 

Fig. 1 (right)). 

It comes out that the representation of M in Ter(C,) is 

p;“py(p;,4pypy)py E f(M) 

and it is easy to verify that 

24 05 04 04 ’ (f(M))6 s 7c;'3ny(n2' Tc,' 7c4' )X4' -M. 

A canonical system clearly consists of a finite number of equations. In the following 

definitions, a finite amount of constructors of normal forms is isolated, together with 

the subset of normal forms they are able to represent. 

Definition 11. For any ,u, v E N, define Z{ C C,: 

Cr = {py 10 < i<n<v} U {pp” 10 < idn<v}. 

Definition 12. Let A4 E NF” and C! C C,. 

(i) We say that M is representable in Cc iff there exists M’ E NF” such that 

M’ ‘1 M A f (M') E Ter(CE). 

(ii) Define Rep(C{) to be the set of closed normal forms representable in C!: 

Rep(C!) = (A4 E NF” j 34’ E NF’.M’ 2 M A f(W) E Ter(Ct)}. 

Given any finite set of normal forms, there exists a suitable set of constructors which 

represents at least all of them. 

Fact 13. For any J& = {MI,. . . ,M,} c NF’, there exist p, v such that 

A%’ 2 Rep(Clf). 
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Proof. All the elements of JZ%’ can be q-expanded in a way that any node of their 

Biihrn trees is either a leaf or has a constant amount of branches p. Call J&” the 

resulting set of normal forms. The parameter v can be computed out of A’, taking the 

maximum n used in the py”’ s needed for representing the elements of J’. 0 

The representation map can be I-defined into an extended A-calculus. 

Theorem 14 (Definability theorem). For any Zt C C, there exists F{ E n(Z{) such 

that 

(i) for any A4 E Rep(Zt), 

F$+I --k+ f(M’) E Ter(Ct), 

with M’ LM; 

(ii) for any A4,N E Rep(Ct), 

M=,N =+ F+M,F;N- B f(0 

with P 2 M,N. 

Proof. This proof is of a very technical nature, hence it is deferred to the Section 5. 

I7 

4. An agebraic vew of the Biihm-out technique 

Let M be a closed normal form. A subterm N of A4 is identified by a path y in 

the Bohm tree of M. Now let f(M) ( see Definition 8) be the representation of M in 

Ter(Zt), where p, v are chosen according to Fact 13. The path y identifies in f(M) a 

term whose interpretation is 

N’ = AtI . . . tk& 

where tl , . . . , tk are the free variables of N, which are bound along y in M. 

N’ can be extracted out of M as follows (thus, to obtain N, just apply N’ to 

t1 ,...,tk): 

N’ =os (Ztp+! (Xtr,$3ring (F~(M))oz~))‘z . 

Indeed: 

F&(M) p-reduces to an element of Ter(Zf); 

(F{(M))‘z!: E /i is obtained interpreting the symbols in Et (which appear in F:(M)) 
as in (4); 

String E JI is the interpretation of the string identifying the extraction path as it 

comes out from (4) again; 
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l Xtr,$%ring (Fe(M))‘zf E A is the result of the application of the I-interpretation 

of the extraction function, defined in Section 2.1. This is a A-term, precisely the one 

obtained from the algebraic representation of N’ interpreting the constructors as in 

(4). Such an interpretation, as proved in Theorem 5 allows for the definition of the 

extraction function. 

’ It&#J, (Xtr$3tring (F#4))mz:) E Ter(Z{) is therefore the algebraic representa- 

tion of N’, so that N’ is finally obtained by means of the interpretation map &. 

Observe that 

is not an extended i-term, but a pure one. More precisely, given any A4 E Rep(Z!) 

and any A-term S interpreting a path in M, Xit4S /?-reduces to the term 

N’ = At, . . . tk& 

where N is the subterm of M identified by the path coded in S, and tl, . . . , tk are the 

free variables of N. 

Similarly, the B&m’s theorem can be expressed as the equality predicate between 

normal forms in the following way: 

so that E is such that, given any M,N E Fiep(C{), EMN returns u if M =,, N and u 

otherwise. Observe that Rep(C{) might be an infinite set of terms. Therefore, all the 

questions raised in Section 1 have been affirmatively answered. 

5. Technical details 

5.1. Theorem 5 

Let A(Z) be an extended I-calculus; then every canonical set of equations d has 

a solution 4 : C -+ A inside A-calculus. Furthermore, 4 can be chosen in a way 

that the restriction 4lCs depends only on Co and not on &, namely there is a fixed 

representation of the constructors. 

Proof. Let Co = {ci,cz,. . . ,cr}. 

For 1 <j<r, we define 19 = @I& : Co + A as in (4): 

?9(Cj) = J.Xi . . .x,e.eUj’xl . . .;c,, (5) 

where m is the arity of cj and U; G LX, . . .Xr.Xj. 

It remains to define [ = ~#lZi : Cl -+ A, namely the representation of programs. 

Without loss of generality, we can assume that d is complete (i.e., it contains an 

equation for any pair (i, j)), otherwise add more equations to make it complete. 
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Let Ct = {ft,...,fk}. Consider k x r lambda terms tii, 1 <i<k, 1 <j<r to be 

defined later. Recall the definition of Church n-tuple: 

(Ml,... $I,,) = kxikf, . . .M,,. 

For 1 <i<k, let ti E (ti,l, . . . , ti,r) and define 

Thus, [(fi) is a Church k + I-tuple of Church r-tuples of terms. The lambda terms fij 

are chosen in the only natural way which makes < a solution of the canonical system 

of equations 6’. More precisely, consider the equation 

fi(Cj(Xl,...,X,),Yl,...,Yn) = hJ 

belonging to & (bid E n(Z)). After applying 4 = [ 0 19 the equation becomes 

(ti, tl,. . . , tk)(CfXl . . .X,)yl . . . Yn = b$. 

By definition of Church tuple, this simplifies to 

+, . . .X,titl . . . tkyl . . . Yn = b$.. 

Recalling the definition of ~7 we have 

+,... m, X t’ = tiUjrXl...X, = tijXl...Xm. 

Hence, the equation becomes 

tijxl . . .x,,,tl . . . tkyl . . . y,, = b,dj. 

We can now solve this equation for tij by replacing on both sides all the occurrences 

of t1,..., tk by fresh variables ~1,. . . , uk and abstracting with respect to all variables 

present in the left-hand side. More precisely, define 

tij E tit . . .x~UI . . . vkyl . . . y,.(bfJ)‘y 

where II/ : Cl + A is defined by 

$(fi> = (vi,vl,..+,~k)~ (6) 

Note that, for any V E /i(C), Vc = V*[t&h]lGhGk. 

With this definition 

B 
tijXl . ..X.tl -.etkyl ...Yn - (b~)%hl, $h$k 

= bi?” = bib. 
‘J ‘J 

and all the equations will be satisfied. 0 
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5.2. Theorem 14 (Dejinability theorem) 

For any C! C C, there exists Ft E A(Z!) such that 

(i) for any M E Rep(Ct), 

FtM 2 f(M’) E Ter(C{), 

with M’ 
4 

--+M; 

(ii) for any M,N E Rep(Cf), 

M=,N j FtM,FtN- p f(P)? 

with P 
v 

- M,N. 

Proof. Let M E ilx, . . .x,.XjM, . ..M., where either m = p or m = 0 and n<v. We set 

Ft 3 ;Ix.xAl . . .AvflB1 . . . B,C, . . . Cp+“, 

where A,,. . . , A”+, , Bl , . . . , B,, C,, . . . , C,,+” will be specified later. We have 

P 
FtM - A .M’ I , . ..M.A,+, . ..A.+,B, . ..B.C, . ..&. 

where for 1 <k <m, 

M; =M~[A,/x,,...,An/xnl. 

We set, for 1 didp+v, 

Ci = (Cl”, . . . , C!i’) E /kc I$) . ..Cf) 

and, for 1 <j<v, 

Aj = Iz, . . .Z2p+“+l~2p+“+lUjYZl . . .ZZp+v+l, 

while 

2p+vi2 

A -;lz v+l - 1 . . . z2/L+v+1 .z2p+v+1-, 

where * is any term. We then have 

AjM,' . . .MAA,+, . . .A,+,B, . . BpC, . . . Cp+ 

where UJ E Au, . . . Uy.Uj, 

-Y 

B -I CJJ;M; . . . M;A,+, . . . A,+,B, . . . B,C, . . . Cp+ if m = p, 

C,+,U;A,+, . . . A,+,B, . . . B,C, . . . Cti+ if m = 0, 

B 

4 

C!“)M; . 

&+“)A 

. . M’ A m n+l... A,+,B, . . .B,C, . . . C& if m = p, 

J 
,,+, . . .A,+,B, . . . B,C, . . . Cp+” if m = 0. 

(7) 
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Now, we set, for 1 <j<v, 1 <i~v+~, 

C!‘) = G(D!‘) E<‘)) 
J J’J ’ 

where 

2jlfV 

We observe that, for 1 < i < v+ 1,l <j d p, putting 

Bj E I_J$I:ti, 

and with K E Uf, 0 E Ui, we have 

2/l+v 

2 K, 

B 
Furthermore. recall that (a,b)K - 

B 
a and (a, b)O - b. Thus, we have, contin- 

uing (7) and using A?‘, 21 B, 2 as shorthands for A4{ . . . MA, A,,+, 

Cl . . . q+v, respectively, 
_ -_- 

AjM’ABC 

A V+l> B1 . . . B, and 

-i 

_ _-_ 

B 
(~~~+“‘,E,!“+“))(A~+,,+I n (U$,f;$)O)M’ABC (m = 0, 

v--n 2/L), 

i 

- -_- 
(Dy), Ej”))ktf/~BC (m = P), 

P 
+ (Dj (n+p) E’“fp”‘)~t,@C 3 j (m = 0 A v-nap), 

_ ___ 
tDj (n’p),Ej”CP))OM/ABC (m = 0 A v-n < p), 

(m = p) 

(m =OAv-nap), 

(m=OAv--n <p), 
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Notice that the first subcase in which case (m = 0) is split is treated as the case 

(m = p). Indeed, if (m = ,u) the head variable has arity p, while if m = 0 and v-n b ,u 

the head variable can be q-expanded p times without exceeding v. 

So we can say that Dy) (or Djn+“)) comes into the functional position when the 

head variable has actually arity p, while Ej”+“) comes into the functional position when 

the head variable has arity 0. It follows that we can finally set, for 1 d k < v, 1 <j < k, 

D!k’ E Jw 
J 1 . . .wse+2”-k+,.P~k(w,,a+l . *. W3p+Zv--k+lv. . . ,wpw/~+l . . . W3fi+2v-k+l ) 

and, for ,~+l <k<,u+v, 1 <j<k, 

E!k) E Aw W-P 
J 1 .~*W3~+2~--k+l.Pj 

Continuing (8), we finally obtain 

AjM,' . . . MAA,+, . . . Av+lBl . . . B,Cl . . . Cp+y 

{ 

py(M$@, . . . , M,@c) (m = P), 
P 

- p~+‘“(A”+,~b?, . . . , A,+,r?Bc) (m = 0 A v-n >p), 

p,“‘” (m = 0 A v-n < p). 

But 

py(M$i@, . . . , M,@c) = py(F{hl . . .x,&II,. . . ,F:l_x~ . . .x,.M,) 

and 

p~+‘“(A,,+,AB~, . . . ,A,+$%) 

= p~+‘l(F;l.q . . .x,+~,x,+~, . . . ,Ft”l.q . . .x,+,.xn+,), 

(9) 

so that (9) shows exactly what is needed to prove both (i) and (ii) by induction on 

the depth of the BGhm tree of M. 0 
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