
i Theoretical

ELSEVIEd Theoretical Computer Science 212 (1999) 233-246

Computer Science

An algebraic view of the Biihm-out technique’

Adolf0 Piperno *

Dipartimento di Scienze dell’lnformazione, Universitri di Roma “La Sapienza”, Via Maria 113,
00198 Roma, Italy

Abstract

Using an algebraic representation of closed /I-normal forms in I-calculus, the Biihm’s theorem
is rephrased as an equality predicate between elements of a term algebra. The presented algebraic
interpretation gives new insight into the B&m-out technique and allows for original applications
of the method. @ 1999-Elsevier Science B.V. All rights reserved

Keywords: Lambda-calculus; Biihm trees; Combinatory Equations; Separability

1. Introduction

The Biihm-out technique is perhaps one of the most applied results in i-calculus,

since it is used in studies about several different aspects of the system. In effect, while

stated as a syntactical property of closed normal forms [3], the Biihm’s theorem finds

its relevance in its main semantical consequence: two different terms having normal

form are not identifiable in a nontrivial model of the A-calculus.

The method used in the proof of the B&m’s theorem, named B&m-out by Baren-

dregt in his book [l], roughly consists in extracting subterms (or substitution instances

of them) from normal forms. It can be considered as a tool for analyzing the infor-

mation content of a A-term. This has in its turn applications in the analysis of both

syntactical and semantical aspects of ,l-calculus: as examples, consider the solvabilty
problem for systems of combinatory equations and the problem of comparing the be-

haviour of applicative programs, respectively. Indeed, when a combinator is searched

for some purposes, it is often found using some variant of the B&m-out technique.

Different presentations of the B&n-out technique appear in the literature [1, 10-121,

each of which focuses on particular aspects of the method. Moreover, B&m’s theorem

has been extended in various directions [9,7, 131.

’ This work has been partially supported by grants from ESPRIT-BRA 7232 “Gentzen”.
* E-mail: piperno@dsi.uniromal .it.

0304-3975/99/$ - see front matter @ 1999-Elsevier Science B.V. All rights reserved
PII: SO304-3975(98)00142-X

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81110228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

234 A. Pipernol Theoretical Computer Science 212 (1999) 233-246

In this paper, an algebraic interpretation of the Biihm-out technique will be given.

To introduce and motivate it, let us first recall the B&n’s theorem:

Let A4, N be two closed /I-normal forms, and U, u any two different objects. There

exists a A-term A (a discriminator for A4 and N) such that AA4 =p u, AN =b v

iff M and N are not q-convertible

Taking U, v to be (any pair of terms l-defining) the Booleans true and false, one

can view the discriminator A as the A-definition of the (partial, namely defined for M

and N only) predicate “to be equal to M”.

On the other hand, assume that there exists a term V (a veritable equality predicate

between normal forms) such that

VMN =
uifM=,N,

v otherwise.

Then clearly A = VA4 discriminates between M and any other term, hence it is a

discriminator for M and N.

Some questions naturally arise here: up to what extent can the discriminator be

considered to J-define an equality predicate between normal forms? More precisely,

given a finite set .Af of /?-normal forms, does there always exist a term V satisfying

(1) over JY? Moreover, are there infinite sets of normal forms for which V can be

defined?

This paper answers affirmatively all these questions, giving a representation of the

Bijhm’s theorem as the process of identifying an equality predicate for sets of normal

forms. To this aim, an algebraic representation of normal forms is used, first introduced

in [6], which mimics the construction of Biihrn trees. The presented method also allows

to extract subterms from normal forms in a “clean” way. In effect, the Biihm-out

technique allows for extracting substitution instances of subterms, since during the

extraction process some variables might be replaced by terms (see [1, Section 10.3.11).

In this paper it will be proved that it is possible to extract subterms from normal forms

(in fact for infinite Biihm trees having a bound on the number of sons, too) without

performing any substitution over them, provided that the system is equipped with the

q-rule.

This work is inspired by similar results obtained (for a restricted class of normal

forms, namely for proper combinators) by Corrado B&m [5] and presented, in nuce,
during the evening lecture of the LICS conference in Paris, 1994.

The paper is organized as follows. In the Section 2 the I-calculus will be extended

with algebraic features and some useful results will be proved for the extended cal-

culi. In Section 3, the algebraic representation of closed normal forms will be intro-

duced and the main technical result of the paper will be proved, namely the definabil-

ity of a translation from normal forms to their algebraic counterpart. The B&m-out

lemma and the Biihrn’s theorem will be reinterpreted in Section 4 as straightforward

consequences of the definability theorem. Technical details of proofs are deferred to

Section 5.

A. Piperno I Theoretical Computer Science 212 (1999) 233-246 235

2. Extended l-calculi

The reader will be assumed to be familiar with the basic notions and properties

of I-calculus (see [l]). In particular, conventional notations will be used for /?- and

q-reduction and equality, while the symbol _= will be used for syntactical identity.

As usual, we shall consider the set ,4 of terms of the A-calculus to be described by

the following BNF, where x ranges over a denumerable set of variables:

L ::= x 1 (AXL) 1 (L&2). (2)

Let Z be a set of function symbols from a given signature. A(Z) denotes the set

of extended lambda terms with symbols from the signature C. To be precise A(Z)

can be defined by adding the following clause to the clauses (2) for the formation

of lambda terms: if t 1,. . . , tn E A(Z) and f E C is an n-ary fimction symbol, then

f(h,..., t,,) E A(E). Note that Ter(Z) C A(Z) where Ter(C) is the set of terms over

the signature C.

A A-interpretation of C is a function 4 : C --t A. Any such I-interpretation C#J induces

a map (.)4 : A(Z) + A in the obvious way, namely

for any variable X, x4 = x,

(kx.M)~ = J_x.M@,

(IMN)~ = M4N@ 3

mfl,..., M,)++ = f%$..M~ II'

Definition 1. Let d = {ui = biJi E J} be a set of equations between extended 1>-terms

aj,bj E A(C).

A A-interpretation I$ satisfies (or solves) & if CZ~ =b bf, for each equation ai = b;
in 6’. If there exists a A-interpretation 4 which satisfies 8, then d can be solved inside

A-calculus and d is a solution for 8.

Definition 2. A A-interpretation 4 : C + A of a signature C is adequate for Ter(Z) iff

there exists a term ItL,4 E A(E) such that Ztz,@ T4 =p T, for any T E Ter(C).

Definition 3. (i) Let 8 be a set of equations in an extended il-calculus n(Z). 8 is

canonical if the function symbols in Z can be partitioned into two disjoint subsets

C = Co U Cl so that, letting Cs = {cl,. . . , c,.} and Ci = {fi, . . . , fk}, each equation

t = t’ of 6 has the form

fi(cj(x~,...,X~,),Y~,...,Y,)=bij, (3)

where f i E Cl, Cj E CO, b, E A(C) is a term depending on i and j, n, m > 0 and the

variables xi,. . . ,x~, yi,. . . , y, are all distinct.

(ii) The elements of CO are called data constructors and those of Zi programs.

236 A. Pipernol Theoretical Computer Science 212 (1999) 233-246

Example 4 (Useful dutu structures). Using superscripts to indicate arities of function

symbols, let

CN = {zero(‘), succ(‘)},

C,,j,,(,) = {#(‘I, char,(‘), . . . , char,(‘)},

Cboo[= {tt(‘) fs”‘}. 7

Clearly, each element of Ter(ZN) can be interpreted as a natural number, each element

of Ter(Cst,ingc,j) can be interpreted as a string over a r-character alphabet (with #

corresponding to the empty string), while each element of Ter(&,,r) can be interpreted

as a Boolean.

NOW let C = CN U Cstring(r) U {length(‘)}. The definition of the function which

associates to any above considered string its length can be expressed by the following

canonical system of equations:

6 = {length(#) = zero} U {Zength(ChUri(y)) = succ(Zength(y)) 1 1 <i<r}.

The following example shows that binary functions can be defined by means of

canonical systems of equations, provided that auxiliary function symbols are considered:

let z = CbOo[u {And(2) , And,(‘)}; the following system is a canonical one and it clearly

expresses the definition of the Boolean function AND.

&’ =
And(tt, y) = AndI (y), AndI (tt) = tt,

’ AndCfJ; y) =fs, And10 =ff

2.1. More on canonical systems

The following examples are needed to express the Biihm’s theorem as the equality

predicate over elements of a term algebra and the Bohm-out lemma.

The equality predicate for elements of Ter(C) : Let C = {$I), . . . , c?‘} and C’ =

c u &oolu {@2’, I!@“+‘) , . . . , Eq@+‘), And). The equality predicate between elements

of Ter(C) can be expressed by m:ans of the following system of equations (1 Gi, j < r):

Eq(cdx1,. . ., &n,),Y) = &&(Y,xl,*‘~,&,),

= A~d(...(A~d(‘q(xl,Yl),‘q(x2,~2))),...,’q(~~~,Y~j))

I

ff ifi#j,

tt ifi=jandmi=mj=O,

otherwise (here mi = mj).

The subterm extraction for elements of Ter(Z) : Let C = {cl,. . . , c,} and C’ =

C U Csfripq(k) U {Xtr(2), X0-(:), . . . , Xtrs2), error(O)}. The subterm extraction for elements

A. Pipernol Theoretical Computer Science 212 (1999) 233-246 231

of Ter(C) can be expressed by means of the following system of equations, where a

string describes the path identifying the subterm to be extracted:

Jw#, Y) = Y,

Xtr(ChUrj(X), Y) = xtrj(Y,Jr),

error
xfrj(S(yl 3. . .y Ym; 1,X> =

if j > F&,

Xtr(x, Yj) otherwise.

2.2. Solution of canonical systems

Any canonical system has a solution inside A-calculus.

Theorem 5. Let A(C) be an extended A-calculus; then every canonical set of equa-

tions d has a solution d, : C 4 A inside I-calculus. Furthermore, 4 can be chosen in

a wuy that the restriction +I& depends only on Co and not on 8, namely there is a
jixed representation of the constructors.

Proof. The proof of this theorem, which appeared in [2,8], is reported in Section 5.

Observe that the proposed solution is a term in normal form. 0

Corollary 6. There exist two p-normal forms Eq, and Xtrx which solve the systems
of equations deJining the equality predicate and the subterm extraction function, re-

spectively. Clearly, these terms depend on Z and on the representation of CO.

Proof. Directly from Theorem 5. I-J

Lemma 7. Let C = {cl , . . . ,c,.}. The I-interpretation #z : C --f A such that, for

1 dj<r,

d.dCj) = bl . ..x.,e.eUjxl . ..x.,, (4)

where mj is the arity of cj and U; z AXI . . mxr.xj, is adequate for Ter(C).

Proof. Follows directly from the proof of Theorem 5. Consider the canonical system

defining the identity function over Ter(C):

E = {Id(cj(xl ,...,x,,)) = cj(Zd(xl),...,Zd(x,)) I lbjGr1

and replace the constructors appearing in the right-hand sides of the equations with

fresh free variables VI,. _ . , v,, turning the algebraic notation into the usual 1 notation

for application. The system thus becomes

8’ = {Zd’(4dcj)(xl ,...,Xmj))=Vj(Zd(Xl))...(Zd(X,j)) (l<jGr).

238 A. Piperno I Theoretical Computer Science 212 (1999) 233-246

Such a system can be solved following the pattern of the proof of Theorem 5. The

solution is therefore a pair (ti, ti) where ti = (ti,~, . . . t~,~). It comes out that

B

B

B

(t1, Cl j((h . ..x.,e.eUjxl . ..xmj)xxl . ..xm.>

(ie.eU,‘xl . ..&.)Wl

4jXl . . .X,/l

take now tlj = Lx1 . . .Xmjt.uj(Xltt). . . (x,tt)

v~(xltltl)...(x,jtltl~ = vj((tl,tl)xl)...((tl,tl)x,,).

The solution of the system 6’ is therefore a i term (a normal form, indeed) in which

the variables ~1 , . . . , Vj occur free. The lemma follows taking such a term, substituting

in it every variable ui with

AXI . . .X*,.Cj(Xl, . . . ,Xm,),

and B-reducing to the normal form, 0

3. Algebraic representation of closed normal forms

Let NF” c A be the set of closed normal forms. The following algebraic representa-

tion of closed normal forms has been first proposed in [6] and then reprised in [4].

Definition 8. (i) Define C, = {py 1 m b 0, n > 0,O < i Gn}, where py’” is an m-ary

function symbol.

(ii) Define the interpretation map & : C, --) A as follows:

&(pm’“) = icy E ;lJq . . . ymxl . . .X,.x&llXl . . .x,). . .&Xl . . .xn).

(iii) Define the representation map f : NF” + Ter(&) as follows:

f(l.q . . .X,.xjMl . . .M,) = py(f(J.xl . . .&A41 >, . . .) f(A.xl . . *x?z.Mm)).

Theorem 9. For any A4 E NF’,

Proof. It is an easy induction on the depth of the B&m tree of M. 0

Example 10. Let A4 E ilcyz.xz(la.y(Ab.x)a)(~c.c), whose B&m tree (BT(A4)) is

shown in Fig. 1 (left). The representation of A4 in Ter(Z;,) can be obtained as follows:

l Consider the tree whose structure is the same as BT(M) and labels are pairs of

integers (n,i), where (see Fig. 1 (center))

o n is the total amount of I’s from the root to the corresponding node of BT(M);

A. Piperno I Theoretical Computer Science 212 (1999) 233-246 239

k?YZ.X

/n

(3.1)

/n

3,3
Pl

z Aa.y Ic.c /n

/\

(3,3) (42) (4,4) pT3 pY p40’

Ab.x a (591)
A

(494) OS A
PI

0.4
P4

Fig. 1. A closed normal form and its algebraic counterpart.

o the head variable of the label of the corresponding node in B?“(M) is bound by

the ith A starting from the root of BT(A4).

l For any node in the obtained tree, substitute the label (n,i) with pm’, where m is

the amount of immediate subtrees of the tree rooted in the considered node (see

Fig. 1 (right)).

It comes out that the representation of M in Ter(C,) is

p;“py(p;,4pypy)py E f(M)

and it is easy to verify that

24 05 04 04 ’ (f(M))6 s 7c;'3ny(n2' Tc,' 7c4')X4' -M.

A canonical system clearly consists of a finite number of equations. In the following

definitions, a finite amount of constructors of normal forms is isolated, together with

the subset of normal forms they are able to represent.

Definition 11. For any ,u, v E N, define Z{ C C,:

Cr = {py 10 < i<n<v} U {pp” 10 < idn<v}.

Definition 12. Let A4 E NF” and C! C C,.

(i) We say that M is representable in Cc iff there exists M’ E NF” such that

M’ ‘1 M A f (M') E Ter(CE).

(ii) Define Rep(C{) to be the set of closed normal forms representable in C!:

Rep(C!) = (A4 E NF” j 34’ E NF’.M’ 2 M A f(W) E Ter(Ct)}.

Given any finite set of normal forms, there exists a suitable set of constructors which

represents at least all of them.

Fact 13. For any J& = {MI,. . . ,M,} c NF’, there exist p, v such that

A%’ 2 Rep(Clf).

240 A. Piperno I Theoretical Computer Science 212 (1999) 233-246

Proof. All the elements of JZ%’ can be q-expanded in a way that any node of their

Biihrn trees is either a leaf or has a constant amount of branches p. Call J&” the

resulting set of normal forms. The parameter v can be computed out of A’, taking the

maximum n used in the py”’ s needed for representing the elements of J’. 0

The representation map can be I-defined into an extended A-calculus.

Theorem 14 (Definability theorem). For any Zt C C, there exists F{ E n(Z{) such

that

(i) for any A4 E Rep(Zt),

F$+I --k+ f(M’) E Ter(Ct),

with M’ LM;

(ii) for any A4,N E Rep(Ct),

M=,N =+ F+M,F;N- B f(0

with P 2 M,N.

Proof. This proof is of a very technical nature, hence it is deferred to the Section 5.

I7

4. An agebraic vew of the Biihm-out technique

Let M be a closed normal form. A subterm N of A4 is identified by a path y in

the Bohm tree of M. Now let f(M) (see Definition 8) be the representation of M in

Ter(Zt), where p, v are chosen according to Fact 13. The path y identifies in f(M) a

term whose interpretation is

N’ = AtI . . . tk&

where tl , . . . , tk are the free variables of N, which are bound along y in M.

N’ can be extracted out of M as follows (thus, to obtain N, just apply N’ to

t1 ,...,tk):

N’ =os (Ztp+! (Xtr,$3ring (F~(M))oz~))‘z .

Indeed:

F&(M) p-reduces to an element of Ter(Zf);

(F{(M))‘z!: E /i is obtained interpreting the symbols in Et (which appear in F:(M))
as in (4);

String E JI is the interpretation of the string identifying the extraction path as it

comes out from (4) again;

A. Piperno I Theoretical Computer Science 212 (1999) 233-246 241

l Xtr,$%ring (Fe(M))‘zf E A is the result of the application of the I-interpretation

of the extraction function, defined in Section 2.1. This is a A-term, precisely the one

obtained from the algebraic representation of N’ interpreting the constructors as in

(4). Such an interpretation, as proved in Theorem 5 allows for the definition of the

extraction function.

’ It&#J, (Xtr$3tring (F#4))mz:) E Ter(Z{) is therefore the algebraic representa-

tion of N’, so that N’ is finally obtained by means of the interpretation map &.

Observe that

is not an extended i-term, but a pure one. More precisely, given any A4 E Rep(Z!)

and any A-term S interpreting a path in M, Xit4S /?-reduces to the term

N’ = At, . . . tk&

where N is the subterm of M identified by the path coded in S, and tl, . . . , tk are the

free variables of N.

Similarly, the B&m’s theorem can be expressed as the equality predicate between

normal forms in the following way:

so that E is such that, given any M,N E Fiep(C{), EMN returns u if M =,, N and u

otherwise. Observe that Rep(C{) might be an infinite set of terms. Therefore, all the

questions raised in Section 1 have been affirmatively answered.

5. Technical details

5.1. Theorem 5

Let A(Z) be an extended I-calculus; then every canonical set of equations d has

a solution 4 : C -+ A inside A-calculus. Furthermore, 4 can be chosen in a way

that the restriction 4lCs depends only on Co and not on &, namely there is a fixed

representation of the constructors.

Proof. Let Co = {ci,cz,. . . ,cr}.

For 1 <j<r, we define 19 = @I& : Co + A as in (4):

?9(Cj) = J.Xi . . .x,e.eUj’xl . . .;c,, (5)

where m is the arity of cj and U; G LX, . . .Xr.Xj.

It remains to define [= ~#lZi : Cl -+ A, namely the representation of programs.

Without loss of generality, we can assume that d is complete (i.e., it contains an

equation for any pair (i, j)), otherwise add more equations to make it complete.

242 A. PipernoITheoretical Computer Science 212 (1999) 233-246

Let Ct = {ft,...,fk}. Consider k x r lambda terms tii, 1 <i<k, 1 <j<r to be

defined later. Recall the definition of Church n-tuple:

(Ml,... $I,,) = kxikf, . . .M,,.

For 1 <i<k, let ti E (ti,l, . . . , ti,r) and define

Thus, [(fi) is a Church k + I-tuple of Church r-tuples of terms. The lambda terms fij

are chosen in the only natural way which makes < a solution of the canonical system

of equations 6’. More precisely, consider the equation

fi(Cj(Xl,...,X,),Yl,...,Yn) = hJ

belonging to & (bid E n(Z)). After applying 4 = [0 19 the equation becomes

(ti, tl,. . . , tk)(CfXl . . .X,)yl . . . Yn = b$.

By definition of Church tuple, this simplifies to

+, . . .X,titl . . . tkyl . . . Yn = b$..

Recalling the definition of ~7 we have

+,... m, X t’ = tiUjrXl...X, = tijXl...Xm.

Hence, the equation becomes

tijxl . . .x,,,tl . . . tkyl . . . y,, = b,dj.

We can now solve this equation for tij by replacing on both sides all the occurrences

of t1,..., tk by fresh variables ~1,. . . , uk and abstracting with respect to all variables

present in the left-hand side. More precisely, define

tij E tit . . .x~UI . . . vkyl . . . y,.(bfJ)‘y

where II/ : Cl + A is defined by

$(fi> = (vi,vl,..+,~k)~ (6)

Note that, for any V E /i(C), Vc = V*[t&h]lGhGk.

With this definition

B
tijXl . ..X.tl -.etkyl ...Yn - (b~)%hl, hk

= bi?” = bib.
‘J ‘J

and all the equations will be satisfied. 0

A. Piperno I Theoretical Computer Science 212 (1999) 233-246 243

5.2. Theorem 14 (Dejinability theorem)

For any C! C C, there exists Ft E A(Z!) such that

(i) for any M E Rep(Ct),

FtM 2 f(M’) E Ter(C{),

with M’
4

--+M;

(ii) for any M,N E Rep(Cf),

M=,N j FtM,FtN- p f(P)?

with P
v

- M,N.

Proof. Let M E ilx, . . .x,.XjM, . ..M., where either m = p or m = 0 and n<v. We set

Ft 3 ;Ix.xAl . . .AvflB1 . . . B,C, . . . Cp+“,

where A,,. . . , A”+, , Bl , . . . , B,, C,, . . . , C,,+” will be specified later. We have

P
FtM - A .M’ I , . ..M.A,+, . ..A.+,B, . ..B.C, . ..&.

where for 1 <k <m,

M; =M~[A,/x,,...,An/xnl.

We set, for 1 didp+v,

Ci = (Cl”, . . . , C!i’) E /kc I$) . ..Cf)

and, for 1 <j<v,

Aj = Iz, . . .Z2p+“+l~2p+“+lUjYZl . . .ZZp+v+l,

while

2p+vi2

A -;lz v+l - 1 . . . z2/L+v+1 .z2p+v+1-,

where * is any term. We then have

AjM,' . . .MAA,+, . . .A,+,B, . . BpC, . . . Cp+

where UJ E Au, . . . Uy.Uj,

-Y

B -I CJJ;M; . . . M;A,+, . . . A,+,B, . . . B,C, . . . Cp+ if m = p,

C,+,U;A,+, . . . A,+,B, . . . B,C, . . . Cti+ if m = 0,

B

4

C!“)M; .

&+“)A

. . M’ A m n+l... A,+,B, . . .B,C, . . . C& if m = p,

J
,,+, . . .A,+,B, . . . B,C, . . . Cp+” if m = 0.

(7)

244 A. Piperno I Theoretical Computer Science 212 (1999) 233-246

Now, we set, for 1 <j<v, 1 <i~v+~,

C!‘) = G(D!‘) E<‘))
J J’J ’

where

2jlfV

We observe that, for 1 < i < v+ 1,l <j d p, putting

Bj E I_J$I:ti,

and with K E Uf, 0 E Ui, we have

2/l+v

2 K,

B
Furthermore. recall that (a,b)K -

B
a and (a, b)O - b. Thus, we have, contin-

uing (7) and using A?‘, 21 B, 2 as shorthands for A4{ . . . MA, A,,+,

Cl . . . q+v, respectively,
_ -_-

AjM’ABC

A V+l> B1 . . . B, and

-i

_ _-_

B
(~~~+“‘,E,!“+“))(A~+,,+I n (U$,f;$)O)M’ABC (m = 0,

v--n 2/L),

i

- -_-
(Dy), Ej”))ktf/~BC (m = P),

P
+ (Dj (n+p) E’“fp”‘)~t,@C 3 j (m = 0 A v-nap),

_ ___
tDj (n’p),Ej”CP))OM/ABC (m = 0 A v-n < p),

(m = p)

(m =OAv-nap),

(m=OAv--n <p),

A. Piperno I Theoretical Computer Science 212 (1999) 233-246 245

Notice that the first subcase in which case (m = 0) is split is treated as the case

(m = p). Indeed, if (m = ,u) the head variable has arity p, while if m = 0 and v-n b ,u

the head variable can be q-expanded p times without exceeding v.

So we can say that Dy) (or Djn+“)) comes into the functional position when the

head variable has actually arity p, while Ej”+“) comes into the functional position when

the head variable has arity 0. It follows that we can finally set, for 1 d k < v, 1 <j < k,

D!k’ E Jw
J 1 . . .wse+2”-k+,.P~k(w,,a+l . *. W3p+Zv--k+lv. . . ,wpw/~+l . . . W3fi+2v-k+l)

and, for ,~+l <k<,u+v, 1 <j<k,

E!k) E Aw W-P
J 1 .~*W3~+2~--k+l.Pj

Continuing (8), we finally obtain

AjM,' . . . MAA,+, . . . Av+lBl . . . B,Cl . . . Cp+y

{

py(M$@, . . . , M,@c) (m = P),
P

- p~+‘“(A”+,~b?, . . . , A,+,r?Bc) (m = 0 A v-n >p),

p,“‘” (m = 0 A v-n < p).

But

py(M$i@, . . . , M,@c) = py(F{hl . . .x,&II,. . . ,F:l_x~ . . .x,.M,)

and

p~+‘“(A,,+,AB~, . . . ,A,+$%)

= p~+‘l(F;l.q . . .x,+~,x,+~, . . . ,Ft”l.q . . .x,+,.xn+,),

(9)

so that (9) shows exactly what is needed to prove both (i) and (ii) by induction on

the depth of the BGhm tree of M. 0

Acknowledgements

I am grateful to Corrado B&m for helpful discussions about the topics of this paper,

and to the referees for their suggestions.

References

[l] H. Barendregt, The Lambda Calculus; Its Syntax and Semantics (revised edition). North-Holland,

Amsterdam, 1984.
[2] A. Berarducci, C. BSbm, A self-interpreter of lambda calculus having a normal form, in: E. BBrger, G.

Jager, H. Kleine Biining, S. Martini, M.M. Richter (Eds.), Proceedings Computer Science Logic, San

Miniato, 1992, Lecture Notes in Computer Science, vol. 702, pp. 85-99.

[3] C. BBhm, Alcune proprieta delle forme b-n-normali nel I-2_rc-calcolo, Pubblicazioni dell’Istituto per le

Applicazioni de1 Calcolo 696 (Roma, 1968), 19.

246 A. Piperno I Theoretical Computer Science 212 (1999) 233-246

[4] C. B&n, Functional Programming and Combinatory Algebras, in: M.P. Chytil, L. Januga, V. Koubek

(Eds.), Proc. Mathematical Foundations of Computer Science, (Carlsbad, 1988), Lecture Notes in

Computer Science, vol. 324, pp. 14-26.

[5] C. B&n, Fixed point equations inside the algebra of normal forms, Fundamenta Informaticae, to appear.

[6] C. B&n, M. Dezani-Ciancaglini, Combinatorial problems,combinator equations and normal forms, in:

J. Loeckx (Ed.), Proceedings Automata, Languages and Programming 2th. Colloquium, (Saarbriicken,

1974), Lecture Notes in Computer Science, vol. 14, pp. 185199.

[7] C. B&m, M. Dezani-Ciancaglini, P. Peretti, S. Ronchi della Rocca, A discrimination algorithm inside

&?-calculus, Theoret. Comput. Sci. 8 (1979) 271-291.

[S] C. B&n, A. Pipemo, S. Guerrini, A-definition of function(al)s by normal norms, in: D. Sannella (Ed.),

Proc. European Symp. on Programming, Edinburgh, 1994, Lecture Notes in Computer Science, vol.

788, pp. 135-149.

[9] M. Coppo, M. Dezani-Ciancaglini, S. Ronchi della Rocca, (Semi)-separability of finite sets of terms

in Scott’s D, models of the I-calculus, in: G. Ausiello, C. Biihm (Eds.), Proceedings Automata,

Languages and Programming 5th. Colloquium, Udine, 1978, Lecture Notes in Computer Science, vol.

62, pp. 142-164.

[lo] G. Huet, An analysis of Bohm’s theorem, Theoret. Comput. Sci. 121 (1993) 145-167.

[1 l] J.L. Krivine, Lambda-Calcul: Types et Modeles, Masson, 1990.

[12] G.F. Mascari, M. Pedicini, Head linear reduction and pure proof net extraction, Theoret. Comput. Sci.

135 (1994) 111-137.

[13] A. Pipemo, E. Tronci, Regular systems of equations in the i-calculus, Intemat. J. Found. Comput. Sci.

l(3) (1994) 325-339.

