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a b s t r a c t

Regional and local climate extremes, and their impacts, result from the multifaceted interplay between
large-scale climate forcing, local environmental factors (physiography), and societal vulnerability. In this
paper, we review historical and projected changes in temperature and precipitation extremes in the
United States, with a focus on strengths and weaknesses of (1) commonly used definitions for extremes
such as thresholds and percentiles, (2) statistical approaches to quantifying changes in extremes, such as
extreme value theory, and (3) methods for post-processing (downscaling) global climate models (GCMs)
to investigate regional and local climate. We additionally derive regional and local estimates of changes
in temperature extremes by applying a quantile mapping approach to high-resolution gridded daily
temperature data for 6 U.S. sub-regions. Consistent with the background warming in the parent GCMs,
we project decreases in regional and local cold extremes and increases in regional and local warm ex-
tremes throughout the domain, but the downscaling approach removes bias and produces substantial
spatial variability within the relatively small sub-regions. We finish with recommendations for future
research on regional climate extremes, suggesting that focus be placed on improving understanding of
extremes in the context of large-scale circulation and evaluating the corresponding cascade of scale
interactions within GCMs.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Regional weather and climate extremes – unusual values of one
or more variables for a specific geographic region and time of year
– have substantial societal and economic impacts each year.
Temperature extremes are closely linked to impacts on human
health (Patz et al., 2005; O'Neill and Ebi, 2009; Mishra et al., 2015),
short-term energy supply and demand (Schaeffer et al., 2012),
transportation (Rowan et al., 2013), and many other sectors (Si-
vakumar, 2013). Precipitation extremes have widespread implica-
tions for agriculture (Anyamba et al., 2014) and transportation as
well as flooding and urban drainage systems (Rosenberg et al.,
2010). This paper aims to provide an overview of current issues
associated with developing regional climate projections using
global climate model (GCM) scenarios, with a focus on tempera-
ture and precipitation extremes in the United States.

Analyses that focus on changes in extremes within the ob-
servational record have identified widespread changes in the tails
of the temperature distribution that are consistent with large-
B.V. This is an open access article u
scale warming (Donat et al., 2013). Generally, changes in extremes
associated with minimum temperature have been larger than
those for maximum temperature, although recent warming (last
30 years) has been characterized by larger increases in warm
anomalies relative to cold anomalies (Robeson et al., 2014). There
have also been increases in precipitation extremes in many re-
gions, but with less spatial homogeneity than temperature chan-
ges (Donat et al., 2013). Many land areas, including most regions
within the United States, are characterized by positive trends in
precipitation frequency and/or intensity (Alexander et al., 2006;
Griffiths and Bradley, 2007; Groisman and Knight, 2007; Groisman
et al., 2012; Donat et al. 2013; Guilbert et al., 2015). A growing
body of evidence attributes large-scale changes in the frequency
and/or intensity of temperature and precipitation extremes to
radiative forcing from greenhouse gases (Christidis et al., 2011;
Min et al., 2011; Zwiers et al., 2011) and highlights the need to
quantify potential societal impacts from future changes.

In order to mitigate the impacts of changes in extremes, we
must understand how such changes are manifested at the local to
regional scale. This requires methods and approaches that are
distinct from those used for the detection and attribution of ex-
treme events. Model bias and the specific spatial scale of interest
are critical considerations in this process. As an example, the
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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comparison of point precipitation observations to output from
GCMs has promoted the notion of the “drizzle problem”, whereby
models show an altered probability distribution that has higher
precipitation frequency and lower precipitation intensity. While
not always interpreted in this way, the high frequency of pre-
cipitation in GCMs relative to station observations is not a model
shortcoming, but instead the result of the difference in spatial
scale (and also occurs in gridded observational precipitation; En-
sor and Robeson, 2008). Contemporary GCMs, such as those used
for the 5th Coupled Model Intercomparison Project (CMIP5; Taylor
et al., 2012) are a key component of regional climate change
projections, but their limited spatial resolution reduces their uti-
lity in estimating local or regional extremes without substantial
post-processing (this is especially true in regions of large relief).
Such post-processing typically includes bias correction as well as
statistical or dynamical modeling, which is often referred to as
downscaling.

The objective of this paper is to review the approaches used to
project future climate extremes at the regional-to-local scale.
While projections can be developed for a range of climatic vari-
ables, we focus on temperature and precipitation events at the
daily timescale because of their climatic importance and clear
societal impacts. The rest of the paper is organized as follows.
Section 2 reviews existing metrics used to define temperature and
precipitation extremes. Section 3 summarizes methods for devel-
oping high resolution projections of extremes given coarse output
from contemporary GCMs. Section 4 describes results from pre-
vious studies engaged in projection of regional climate extremes
for the US. In Section 5, examples of newly developed high re-
solution projections of regional temperature extremes are pre-
sented. The final section includes recommendations for future
work.
2. Defining extremes

Given a climatic time series, extremes can be defined in many
Table 1
List of indicators devised by the ETCCDI (see Section 2). Tmax and Tmin refer to daily m
Section 5.

Indicator name Abbrev. Definition

Frost days FD Number of days with Tmino0 °C
Icing days ID Number of days with Tmaxo0 °C
Summer days SU Number of days with Tmax425 °C
Tropical nights TR Number of days with Tmin420 °C
Cool nights TN10p % of days with Tminothe historic
Warm nights TN90p % of days with Tmin4the historic
Cool days TX10p % of days with Tmaxothe historic
Warm days TX90p % of days with Tmax4the historic
Maximum Tmin TNx Monthly maximum value of Tmin

Minimum Tmin TNn Monthly minimum value of Tmin

Maximum Tmax TXx Monthly maximum value of Tmax

Minimum Tmax TXn Monthly minimum value of Tmax

Diurnal range DTR Monthly mean difference betwee
Growing season length GSL Number of days between the first

(in NH) with daily mean tempera
Warm spell duration index WSDI Annual count of at least six conse
Cold spell duration index CSDI Annual count of at least six conse
Maximum 1-day precipitation RX1day Monthly maximum 1-day precipi
Maximum 5-day precipitation RX5day Monthly maximum consecutive 5
Simple daily intensity index SDII Mean precipitation amount on we
Number of heavy precipitation events R10 Annual count of days with precip
Number of very have precipitation days R20 Annual count of days with precip
Consecutive dry days CDD Maximum number of consecutive
Consecutive wet days CWD Maximum number of consecutive
Very wet days R95p Annual total precipitation derived
Extremely wet days R99p Annual total precipitation derived
Annual total precipitation PRCPTOT Annual total precipitation on all d
different ways. The simplest and most common approaches are
based on threshold exceedances, such as the number of days for
which the minimum temperature is below freezing. At a given
location, approaches based on thresholds are easy to understand,
but they make assessment of spatial patterns of changes in ex-
tremes difficult as they are not equally applicable in all climates
(Wehner et al., 2013a) and can change relatively quickly with
elevation or proximity to large water bodies. Percentile-based
approaches, where the percentiles are defined in a spatially
varying manner, such as the number of days exceeding the 95th
percentile at a given location, are more amenable to exploring
spatial variations in extremes. Several variations on threshold and
percentile-based metrics were developed under the auspices of
the World Meteorological Organization Commission for Climatol-
ogy (CCl)/World Climate Research Programme (WCRP) project on
Climate Variability and Predictability (CLIVAR) Expert Team on
Climate Change Detection and Indices (ETCCDI) as described by
Frich et al. (2002), Alexander et al. (2006) and Zhang et al. (2011).
These are commonly referred to as the ETCCDI indicators and are
summarized in Table 1.

The advantages of the ETCCDI indicators are that they are easy
to interpret and are directly related to impacts in agriculture and
other sectors. Furthermore, gridded (2.5°�3.75°) monthly and
annual time series of the indicators have been made available as
HadEX (Alexander et al., 2006) and HadEX2 (Donat et al., 2013).
This makes them ideal for analysis of trends in extremes over large
regions (e.g., Hartmann et al., 2013) and for comparison to ex-
tremes in output from GCMs (e.g., Collins et al., 2013). While some
of the ETCCDI indicators are not indicative of truly extreme events
(e.g., minimum temperatures below freezing are not extreme in
most high latitude regions; Wehner et al., 2013a; Sato and Robe-
son, 2014), changes in their values represent changes in conditions
that are likely to be accompanied by societal impacts. While the
ETCCDI indicators include a few metrics aimed at changes in
precipitation persistence, they are not well suited for character-
izing changes in drought. They can therefore be supplemented by
widely used drought indices, such as the Palmer Drought Severity
aximum and minimum temperature, respectively. Shaded indicators are used in

al 10th percentile value
al 90th percentile value
al 10th percentile value
al 90th percentile value

n daily Tmax and Tmin

6-day span with daily mean temperature above 5 °C and the first span after July 1
ture below 5 °C
cutive days with Tmax4the historical 90th percentile value
cutive days with Tminothe historical 10th percentile value
tation (mm)
-day precipitation amount (mm)
t days (mm)
itation 410 mm
itation 420 mm
days with precipitation o1 mm
days with precipitation 41 mm
from days 495th percentile
from days 499th percentile
ays.
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Index (PDSI) or Crop Moisture Index (CMI), or even changes in
seasonal temperature averages or precipitation totals, to translate
projections of extremes into terms that might be better under-
stood by stakeholders.

An alternative to the ETCCDI indicators is the use of return
periods, or alternatively, return values. As an example, to estimate
an annual return value for extreme daily precipitation, the τ-year
return value is defined as the daily precipitation total with a 1/τ
probability of occurring in any given year (Kharin et al., 2007).
Return-period and return-value approaches are better suited for
investigating changes in events that are more unusual than most
of the ETCCDI indicators (Brown et al., 2008; Wehner et al., 2013a).
Such approaches usually are based in extreme-value theory as
described in Section 3.
3. Review of methods for projecting changes in regional cli-
mate extremes

3.1. Regional climate change projections

The scale dependence of extremes coupled with the coarse
resolution of contemporary GCMs limits the applicability of using
raw GCM output to analyze changes in extremes at scales smaller
than subcontinental regions (and even at large spatial scales,
GCMs have biases that should be removed). As a result, analysis of
changes in regional and local extremes requires downscaled GCM
output. The goal of downscaling is to derive high resolution cli-
mate information that is consistent with simulations from coarse
resolution GCMs. Downscaling methods usually are defined as
either dynamical (i.e., regional climate modeling) or statistical,
although the increasingly widespread availability of regional cli-
mate model output has resulted in an increasing number of stu-
dies that apply statistical post-processing to high resolution out-
put from dynamical models (e.g., Gudmundsson et al., 2012).
Several studies have also combined statistical and dynamical
downscaling by performing weather typing and then applying
RCMs to explore regional climate associated with specific circula-
tion regimes (e.g., Reyers et al., 2013).

Dynamical downscaling is conducted by using lateral boundary
conditions from a GCM with a high-resolution dynamical model
over a regional domain or by conducting high resolution time-slice
experiments for the globe. The advantages of dynamical down-
scaling are the physical consistency of individual variables and
internal consistency among variables. The primary disadvantages
of dynamical downscaling are computational time and potential
model bias. Practitioners must also be cognizant of any limitations
associated with the data used to provide lateral boundary condi-
tions, as well as any parameterizations (Mannig et al., 2013) that
may not be applicable in other climatic regimes.

Statistical downscaling most commonly develops historical
relationships between station data (or high resolution gridded
products) and large-scale circulation variables and then applies
these relationships to output from transient GCM simulations (see
Maraun et al. (2010) and Schoof (2013) for reviews of statistical
downscaling). Methods for statistical downscaling range from
simple regression approaches to artificial neural networks and
machine-learning algorithms. Most statistical downscaling ap-
proaches include a bias-correction step, either implicitly (as is
common in regression-based approaches, which account for dif-
ferences in central tendency) or explicitly in quantile-mapping
approaches (such as bias correction and spatial disaggregation,
BCSD; Wood et al., 2004). The primary advantage of statistical
downscaling is ease of application, which allows methods to be
applied to multiple GCMs and multiple greenhouse gas emissions
pathways to investigate the uncertainty space associated with
regional climates (see Hawkins and Sutton (2009)). For statistical
downscaling, the quality of the observational data is primary
consideration, as is the stationarity of the relationship between
regional/local scale climate and large-scale circulation.

Temperature and precipitation biases in GCM simulations can
be large and are often inherited by regional models in the process
of dynamical downscaling. Before GCM or RCM output can be used
to assess climate change impacts, bias correction is necessary. As
noted above, regression-based downscaling methods implicitly
correct for bias in the mean but not necessarily for other parts of
the frequency distribution. Quantile mapping (Panofsky and Brier,
1968) has emerged as a common approach for correcting GCM
biases across the empirical cumulative distribution function (ecdf).
In this approach, quantile-specific biases are determined by com-
paring observations with either GCM or RCM output under his-
torical forcings. Under the assumption that the bias is time-in-
variant, the same quantile-specific bias correction is applied to
GCM or RCM output using different forcings, such as those asso-
ciated with elevated concentrations of greenhouse gases. When
quantile mapping is done between coarse resolution GCM data
and higher resolution station data or gridded fields, it also serves
as a statistical downscaling method (Abatzoglou and Brown, 2012).

In a downscaling context, quantile mapping can be problematic
for some phenomena that have high spatial variability at the sub-
GCM-grid scale, such as precipitation. As demonstrated by Maraun
(2013), a rain event within a GCM or RCM grid box is not likely to
impact all locations within the grid box in the same way, but a
quantile mapping approach will necessarily translate a given GCM
or RCM value to the same quantile along the ecdf of all locations
within the grid box. Maraun (2013) proposes the use of a sto-
chastic bias correction to overcome this problem. Thrasher et al.
(2012) noted that quantile mapping of maximum and minimum
temperatures can lead to unrealistic values of diurnal temperature
range (DTR), suggesting that DTR and then either maximum or
minimum temperature should be used in the bias correction.
There also is the question of how to handle quantiles in GCM si-
mulations that are smaller or larger than those that occur in the
historical data. With careful attention to these issues, however,
quantile mapping is among the most useful bias-correction ap-
proaches in the climate-science toolbox (Gudmundsson et al.,
2012; Teutschbein and Seibert, 2012).

3.2. Approaches for quantifying extremes

Several options exist for quantifying future regional climate
extremes associated with high-resolution, bias-corrected GCM or
RCM output. The most common methods for deriving projections
of future extremes are associated with either empirical (i.e., based
on changes in indicators such as those in Table 1) or functional
(i.e., based on fitting functions to the tails of the probability dis-
tribution) approaches. The first approach is straightforward: given
historical and future climate data, the indicators can be tallied and
maps of differences presented. Application of extreme value the-
ory (EVT) is more complex, so a brief overview is provided here.
Readers are directed to Coles (2001) for a more complete
treatment.

The two most common approaches to EVT are the block-max-
ima approach and the peaks-over-threshold approach. In the for-
mer, a block of time (e.g., a year) is chosen and the set of maxima
from all blocks forms the sample. Using one of the three forms of
the generalized extreme-value distribution (Gumbel, Fréchet, or
Weibull), a function is fit to the extreme values that form the
sample (e.g., Kharin et al., 2007). In the peaks-over-threshold ap-
proach, a threshold is specified and all events meeting the criteria
form the sample that is analyzed using a generalized Pareto dis-
tribution. The latter approach is particularly useful if multiple
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extremes occur within one block (Brown et al., 2008), but care
must be taken to avoid biased samples (i.e., including multiple
events that are derived from the same forcing event). Since para-
meters of these distributions have little meaning among non-
statisticians, results of extreme-value approaches are most often
presented in terms of return periods or values (Wehner, 2013a),
although EVT approaches have also been applied to some of the
ETCCDI indicators (e.g., Peterson et al., 2013). In general, EVT
methods perform well with heavy-tailed distributions, where ty-
pical interpretations of standard-deviation units or even percen-
tiles may not be appropriate. Since the notion of a return period is
based on an assumption of stationarity, additional steps are re-
quired to apply EVT in the context of climate change. Several ap-
proaches that include time dependence have been described in the
climate science literature (Kharin and Zwiers 2005; Wehner,
2013a; Cheng et al., 2014) and elsewhere (Huerta and Sansó 2007).
4. Review of findings from previous regional studies

Theoretical and observational studies have linked large-scale
changes in extreme temperature and precipitation to changes in
background warming (e.g., Sillmann et al., 2013a, 2013b). In the
case of temperature, an increase in the mean leads to an increase
in warm extremes, in the absence of a strong negative variance
response (Robeson, 2002). Increases in atmospheric moisture
content associated with warming are producing changes in the
frequency and intensity of precipitation with the theoretical ex-
pectation that extremes will change more than the mean (see
discussion in Trenberth et al. (2003), Emori and Brown (2005) and
O'Gorman and Schneider (2009)). However, natural variability
(Grotjahn et al., 2015) and regional processes also play an im-
portant role in determining changes in extremes. For example,
temperature extremes are closely linked to local hydrologic pro-
cesses and region-specific teleconnections (Diffenbaugh et al.,
2005; Ford and Quiring, 2014). Precipitation extremes are similarly
sensitive to surface-atmosphere interaction as well as changes in
atmospheric circulation that result in changes in regional moisture
advection and convergence.

Historical analyses and projections of climate extremes have
been developed for many U.S. regions, often using the output from
coordinated modeling experiments such as CMIP5 with the
ETCCDI indicators or other measures (e.g., Sillmann et al., 2013b
and Wuebbles et al., 2013 for global and U.S. perspectives, re-
spectively). Because regional studies tend to use different metrics,
GCMs, and time periods, direct comparisons are difficult. The focus
here is therefore on the relatively few studies that have evaluated
regions using consistent definitions, data, and time periods for
analysis (e.g., Donat et al., 2013; Kunkel et al., 2013b). Of particular
interest for the projection of extremes are results from the North
American Regional Climate Change Assessment Program (NARC-
CAP; Mearns et al., 2009). NARCCAP employed multiple GCM-RCM
combinations (8 total) under the SRES A2 scenario at a spatial
resolution of 50 km and has provided the most widely used dy-
namical projections of 21st century U.S. climate extremes. Where
appropriate, findings are supplemented with those from other
dynamical and statistical downscaling analyses as well as regional
studies.

In this section, we adopt the regional definitions of the recent
United States National Climate Assessment (Melillo et al., 2014),
whereby the continental United States is subdivided into six re-
gions: the Northwest (WA, OR, ID), the Southwest (CA, NV, UT, AZ,
CO, NM), the Great Plains (MT, WY, ND, SD, NE, KS, OK, TX), the
Midwest (MN, IA, MO, WI, MI, IL, IN OH), the Southeast (AR, LA,
MS, TN, KY, AL, GA, FL SC, NC, VA), and the Northeast (WV, MD, DE,
PA, MD, NY, CT, RI, MA, VT, NY, ME). In the following sections, we
provide an overview of historical trends in temperature and pre-
cipitation extremes as well as an overview of resulting projections
based on dynamical and statistical downscaling.

4.1. Historical changes in temperature extremes

Donat et al. (2013) presented trends in extremes for two peri-
ods (1901–2010 and 1951–2010) based on the HadEX2 database (a
2.5°�3.75° gridded dataset of the ETCCDI indicators; Table 1).
They report significant (at the 5% level) negative trends in cool
nights (TN10p) over nearly the entire contiguous US during both
periods of analysis. Significant negative trends in cool days
(TX10p) are also reported during both periods of analysis, but
primarily for the western US. Significant positive trends in warm
nights (TN90p) are reported for the western US for the longer
period and for most of the US, except for a region in the Great
Plains during the shorter period. Warm days (TX90p) exhibit sig-
nificant negative trends during both periods over the SE (within
the “warming hole” region, see Meehl et al. (2012)) and exhibit
significant positive trends only for a few grid points in the west
since 1950. Regional studies (e.g., Pryor et al., 2013) have also
identified decreases in metrics of summertime maximum tem-
peratures in parts of the Northern Plains and Midwest regions. In
the western US (and Great Plains for the longer period of analysis),
there is also a significant positive trend in the coldest night (TNn)
metric. The coldest day metric shows significant increases only in
the extreme northern portion of the NW region for the longer
period of analysis. A few grid points in the W and SE have positive
significant trends in the warmest night (TNx) during both periods
of analysis, while parts of the SE have negative trends in warmest
day (TXx), but only for the longer period of analysis.

The analysis of Kunkel et al. (2013b), which was used in the
recent National Climate Assessment (Melillo et al., 2014), in-
vestigated changes in U.S. extremes by considering the number of
4-day heat waves or cold waves exceeding the 5-year return value
computed from station data for 1901–2011. For regions in the
eastern United States, the series of warm events is dominated by
the 1930s. With the exception of the Southwest region, the trends
in heat and cold wave counts were not found to be significant,
although most regions have experienced an increase in heat waves
and a decrease in cold waves in recent decades. Donat et al. (2013)
also considered trends in heat and cold wave metrics (CSDI and
WSDI) over the period 1950–2010. In general agreement with
Kunkel et al. (2013b), the WSDI was found to be significantly in-
creasing at just a few grid points in the SW and the extreme NE.
The CSDI was found to be decreasing significantly over the SW,
parts of the Northern Plains, and the extreme NE.

4.2. Historical changes in extreme precipitation

In their analysis of historical trends in the gridded ETCCDI
precipitation metrics, Donat et al. (2013) report significant in-
creases in R10 over the southern plains and MW (for their short
period of analysis) and significant decreases over one or two grid
points in the SW for the long period of analysis. They also report
an overwhelmingly positive trend (except for NW) in the con-
tribution from the wettest days (R95ptot), with significant in-
creases in the northern Great Plains and Midwest regions, in ac-
cord with the findings of Groisman et al. (2012) and Pryor et al.
(2013).

Kunkel et al. (2013b) also considered, again using station-level
data, the number of 2-day extreme precipitation events exceeding
the 5-year return value for the period of 1901–2011. The trend is
positive and significant for the Midwest and Southeast. For a
shorter period (1957–2010), Kunkel (2013a) reported that changes
were also significant for the Northeast, in accord with other
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studies that have reported changes in extreme precipitation in that
region (e.g., Groisman et al., 2012; Guilbert et al., 2015). In the past
few decades, all regions have experienced greater than normal
occurrence of extreme precipitation events as defined above. The
regional averages and coarse resolution gridded products used in
these studies have the potential to mask important variations in
changes in extremes at smaller scales, especially in regions of
complex terrain. For example, Madsen and Figdor (2007), Mass
et al. (2010), and Rosenberg et al. (2010) report considerable
spatial variability in changes in precipitation extremes in the
Northwest.

4.3. Projected changes in regional temperature extremes

Kunkel at al. (2013b) presented an analysis of regional tem-
perature projections utilizing the NARCCAP dynamically down-
scaled data under the SRES A2 scenario. Projections of the change
in the annual number of 95 F (35 °C) days (2041–2070 minus
1980–2000) exhibit significant and consistent (among the mem-
bers) increases over most of the United States, with the largest
changes in extreme southern areas where 95 F (35 °C) is near the
mean Tmax during the summer months so a large number of these
very warm days already occur. For the same period, NARCCAP
models project large decreases (up to 25 days in parts of the Rocky
Mountains) in the annual number of days with Tmino10 F
(�12.2 °C), with significant differences over all regions where
such temperatures occur in the current climate. Similarly, the
number of days with Tmino32 F (0 °C) increases over the con-
tiguous USA, but with the largest changes in the western USA. As a
heat-wave metric, Kunkel et al. (2013b) adopted the annual
maximum number of consecutive days with Tmax495 F (35 °C).
NARCCAP projections also indicate significant increases in this
metric over nearly the entire United States, but with the largest
increases in the Southwest, southern Great Plains and Southeast.
Pryor et al. (2013) also used NARCCAP simulations in a study of
changes in the Midwest region and identified a marked increase in
warm extremes, including a 60% increase in the likelihood of
events meeting or exceeding the maximum temperatures ob-
served during the historic 1995 Chicago heat wave.

Diffenbaugh et al. (2005) applied an RCM to the contiguous
USA and quantified changes in the frequency of days exceeding the
historical 95th percentile Tmax value and 5th percentile Tmin value
as well as heat waves. They found increases in warm extremes
throughout the domain with the largest changes in the Southwest
region. They also found decreases in cold extremes everywhere,
but greatest in the Great Lakes and NE. Diffenbaugh and Ashfaq
(2010) identified summer drying and more anticyclonic circulation
in coming decades as the primary drivers of increases in hot ex-
tremes throughout much of the United States.

Regional statistical downscaling studies have also focused on
extremes. For example Ahmed et al. (2013) and Ning et al. (2015)
applied variations of bias correction and spatial disaggregation
(BCSD, where GCM bias is corrected at coarse resolution and then
applied to observational data that are at higher resolution than the
model's grid) to the Northeast region and investigated changes in
several ETCCDI indicators. Both studies highlighted increases in
warm extremes and decreases in cold extremes throughout the
region. Ahmed et al. (2013) found greater agreement among
models after bias correction and also noted that use of dynamical
downscaling as an intermediate step had little effect on the results.
Ning et al. (2015) also show a projected increase in the interannual
variability temperature and precipitation extremes.

4.4. Projected changes in regional precipitation extremes

NARCCAP simulations have been widely used to investigate
future precipitation extremes, with the results highlighted here
referring to mid-late 21st century conditions (unless otherwise
noted). Kunkel et al. (2013b) found increases in the number of
precipitation events greater than 1 in. (25.4 mm) over much of the
US with the greatest agreement (among NARCCAP models) in the
Rocky Mountains, northern Great Plains, upper Midwest, and
Northeast regions. Wehner (2013b) reports similar results using
NARCCAP models with EVT. Similarly, Halmstad et al. (2013) ap-
plied quantile mapping and EVT to NARCCAP output for the
Willamette River Basin in the Northwest region and found in-
creases in the 2- and 25-year return value for precipitation for
2038–2069. Pryor et al. (2013) used NARCCAP simulations and
reported increases in RX5day and total precipitation on the 10
wettest days of the year increasing by 10% for the Midwest region.
Dominguez et al. (2012) also combined NARCCAP projections and
EVT and reported increasing extremes in wintertime precipitation
in the western USA (12.6% increase in the 20-year return period
precipitation and 14.4% increase in the 50-year return period daily
precipitation), even in areas where the mean seasonal precipita-
tion is likely to decrease. Using the RegCM3 regional climate
model, Diffenbaugh et al. (2005) also projected increases in the
frequency of precipitation events exceeding the 95th percentile
reference integration (1961–1985) value, as well as changes in the
fraction of precipitation resulting from extreme events, in many
US regions.

Statistical downscaling has also been widely used to develop
projections of regional precipitation extremes. Schoof (2015) ap-
plied a statistical downscaling technique described by Wilks
(1999) to CMIP5 models and the 0.25° Climate Prediction Center
precipitation analysis and used ETCCDI indicators derived from
time series generated using a stochastic weather model to in-
vestigate possible changes in regional precipitation extremes.
Under high levels of forcing from greenhouses gases (RCP 8.5), the
maximum 1-day precipitation total (RX1day) as well as the
number of heavy (10 mm; R10) and very heavy (20 mm; R20)
events increased significantly over most of the contiguous United
States with the exception of the Southwest and parts of the ex-
treme south. Ning et al. (2015) used statistical downscaling (BCSD)
and found increases in extreme precipitation in the Northeast
region under all levels of greenhouse gas forcing (2050–2099 vs.
1950–1999), but like Schoof (2015), reported greater increases
under higher forcing. Tryhorn and DeGaetano (2011) utilized
multiple statistical downscaling approaches with EVT to derive
projections of extreme precipitation in the Northeast region,
finding consistent but regionally varying increases in extreme
precipitation for the 2041–2060 period under the SRES A2 sce-
nario. Lastly, Wang and Zhang (2008) applied EVT to downscaled
2050–99 output from a single climate model (CCCma CGCM3.1)
and found increases in extreme precipitation risk based on the 20-
year return value over much of the United States.
5. Examples of regional downscaling of temperature extremes
in the U.S.

In this section, examples of regional climate downscaling for
the analysis of extremes are developed by applying quantile
mapping to the newly available daily PRISM (Parameter–elevation
Relationships on Independent Slopes; Daly et al., 2008) data,
available from www.prism.oregonstate.edu. The daily PRISM data
are available starting in 1981 and are derived from climatologi-
cally-aided interpolation (Willmott and Robeson, 1995) of station
data. The resulting data set has more than 480,000 grid points
covering the contiguous USA at a resolution of approximately
4 km. For the purposes of this work, we analyze the grid points
within a 3°�4° box from each of the six regions of the contiguous

http://www.prism.oregonstate.edu


Fig. 1. Map of the United States showing the 3°�4° boxes used for regional-scale projections. Within each region, daily temperature output for eight CMIP5 models (using
the RCP8.5 scenario) was bias corrected and downscaled to the PRISM grid for 1981–2005 and 2071–2095. Labels indicate the regions referred to in Section 4: Northwest
(NW), Southwest (SW), Great Plains (GP), Midwest (MW), Northeast (NE) and Southeast (SE). The dark lines represent state boundaries and the light lines are county
boundaries.

Fig. 2. Demonstration of the quantile mapping approach used for bias correction (BC) for 38.9791°N, 100.4375°W during October. A distinct bias correction is applied for
each location and month. The black line represents the location- and month-specific historical cumulative distribution function (ECDF) for Tmax from the historical (PRISM)
data. The thin blue line represents the CDF from the co-located GCM grid box over the same time period. Quantile mapping corrects the GCM-derived CDF so that it matches
the observed CDF. The corrected CDF is shown by the thick blue line. Finally, quantiles derived from the future GCM simulation (thin red line) are adjusted by the same
amount as the quantiles from the historical period to derive the bias-corrected future GCM simulation (thick red line). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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United States described in Section 4 (Fig. 1). Our analysis focuses
on daily maximum and minimum temperature (Tmax, Tmin) data
from 8 CMIP5 models BCC-CSM1.1 (Xin et al., 2012), BNU-ESM (Ji
et al., 2014,), Can-ESM2 (Arora et al., 2011; von Salzen et al., 2013),
GFDL-CM3 (Donner et al., 2011) IPSL-CM5A-LR (Dufresne et al.,
2012), MPI-ESM-LR (Stevens et al., 2013), MRI-CGCM3 (Yukimoto
et al., 2012), and NorESM1-M (Bentsen et al., 2013). Each model's
output was bias-corrected using quantile-mapping of the model's
1981–2005 ecdf to that of the high-resolution PRISM grid, with the
biases estimated from 1981–2005 then being applied to the cor-
responding quantiles for 2071–2095 (e.g., Fig. 2) under the RCP8.5
pathway (see Moss et al. (2010)). Following bias correction, a
subset of the ETCCDI indicators was computed at high resolution,
with maps and summary statistics for each of the regions being
used to show projected changes.

5.1. Changes in threshold-based ETCCDI temperature indicators

The bias-corrected results for threshold-based temperature



Fig. 3. Observed and projected values of the icing days ETCCDI indicator. The annual mean of the PRISM values for 1981–2005 are shown in the first row, followed by the
multi-model mean for the same period without (2nd row) and with (3rd row) bias correction using quantile mapping, the difference of the multi-model mean of the
projected changes (2071–2095) minus those of the 1981–2005 period without (4th row) and with (5th row) bias correction using quantile mapping, and the multi-model
standard deviation of the projected changes in the final row. The regions are as shown in Fig. 1. The dark lines represent state boundaries and the light lines are county
boundaries.
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extreme indicators are presented in Fig. 3 through 6, with regional
statistics presented in Table 2. Some of the threshold-based in-
dicators, such as icing days (ID; days with Tmaxo0 °C; Fig. 3) are
relatively rare in some regions, so it's clear that not all ETCCDI
indicators are applicable to all regions. At the same time, the fine
spatial resolution of the results – particularly in regions with lar-
ger relief – clearly demonstrates the utility of the downscaling
approach for estimating extremes. In addition, the bias correction
is an essential step in developing realistic values of the indicators
for both the historical and projection periods in some regions.
Below, we highlight a few of the key results of the downscaling
and projections across the regions.

Historical statistics derived from the PRISM data for the sub-
regions indicate the largest number of icing days occurs in the NE
region, but with substantial spatial variability within the North-
west and Southwest regions where large temperature variations
exist due to topography (Fig. 3). For the downscaled projections,
all regions exhibit decreases in icing days under the RCP8.5
pathway. While there is some variability among the GCMs used,
the ensemble standard deviation is small relative to the projected
change (Fig. 3, Table 2). The largest changes occur in areas that
currently have large number of icing days, such as high elevations
of the Northwest and Southwest regions and northern portions of
the Northeast region. The downscaled results presented here in-
dicate fewer frost days across all GCMs and all grid points in each
region (Fig. 4, Table 2). Like icing days, the largest changes in frost
days correspond to regions with the largest historical counts. The
variation among GCMs is small (approximately 20%) relative to the
change in the ensemble mean for each region (Table 2).

The historical counts of tropical nights (TR; days with
Tmin420 °C) and summer days (SU; days with Tmax425 °C) are
highest in the Southeast region and in the low elevations of the
Southwest region (Fig. 5, Table 2). Projected changes in TR and SU
are positive over all grid points in all regions for all of the GCMs
considered. Many regions are projected to experience counts of TR
that are more than twice as large as the historical ones (Table 2).
Despite large regional differences in SU during the historical per-
iod, regionally-averaged changes are similar and range from 47.3
days in the Northwest region to 65.6 days in the Northeast region.
For most regions (excepting the Northwest and Northeast regions
for TR), the ensemble standard deviation is around 20% of the
ensemble mean projected change for the TR and SU metrics (Ta-
ble 2). The fine-scale spatial variability produced by the down-
scaling procedure is most pronounced in the maps of ensemble
mean differences of TR and SU for the NW and SW, where the
temperature-elevation impacts of the Cascade volcanoes and the
high Sierras are clearly evident (Fig. 6). But even regions such as
the Great Plains and Midwest, that are usually considered to be
relatively homogeneous, show within-region differences of pro-
jected changes in SU that are greater than 10 days within the
3°�4° areas.

5.2. Changes in percentile-based ETCCDI temperature indicators

While threshold-based indicators of extremes exhibit large
geographical variations (Figs. 7 and 8, Table 2), percentile-based
approaches allow quantification of change relative to the local
climate. By definition, all grid points have 10% of the historical
record higher than the 90th percentile Tmax and Tmin values
(TX90p, TN90p) and 10% lower than the 10th percentile Tmax and
Tmin values (TX10p, TN10p).

Changes in the percentile-based cold extremes are shown in



Table 2
Regionally-averaged values and changes for the threshold-based extreme tem-
perature indicators. For each indicator and region, values are provided for the
historical regional mean from 1981–2005, the historical regional mean based on an
8 model ensemble, the historical regional mean based on an eight model ensemble
with bias correction via quantile mapping, difference of the regional mean of the
8 downscaled GCMs for 2071–2095 from that of the 1981–2005 mean with and
without bias correct via quantile mapping, and the standard deviation (con-
sistency) of the projected mean change across the 8 downscaled GCMs. All units are
in days/year.

NW SW GP MW NE SE

Icing Days (ID)
Historical: PRISM 22.1 6.5 16.9 24.7 48.6 0.8
Historical: GCM Mean 26.6 3.0 11.8 25.1 48.9 0.8
Historical: GCM Mean Bias
Corrected

22.0 6.5 16.8 24.6 48.5 0.8

Change: GCM Mean �19.9 �2.7 �8.4 �17.5 �30.6 �0.7
Change: GCM Mean Bias
Corrected

�16.9 �4.7 �10.1 �15.7 �32.6 �0.5

Change: GCM STD Bias
Corrected

2.5 0.7 2.3 4.0 5.3 0.2

Frost Days (FD)
Historical: PRISM 139.9 86.6 118.0 108.1 155.9 45.1
Historical: GCM Mean 105.6 49.6 76.1 87.1 112.5 23.9
Historical: GCM Mean Bias
Corrected

139.8 86.5 117.8 107.9 155.7 45.0

Change: GCM Mean �63.0 �35.4 �41.0 �42.0 �49.0 �15.0
Change: GCM Mean Bias
Corrected

�79.9 �40.6 �47.7 �47.4 �57.8 �26.9

Change: GCM STD Bias
Corrected

17.3 7.3 9.6 8.6 9.5 5.2

Tropical Nights (TN)
Historical: PRISM 0.4 22.0 32.9 28.2 3.1 66.8
Historical: GCM Mean 0.1 13.2 60.6 58.1 17.8 105.0
Historical: GCM Mean Bias
Corrected

0.4 22.0 32.9 28.2 3.1 66.7

Change: GCM Mean 13.0 50.5 62.0 64.6 63.3 69.0
Change: GCM Mean Bias
Corrected

15.3 45.8 66.9 67.7 36.0 68.6

Change: GCM STD Bias
Corrected

8.1 9.4 12.0 12.9 13.2 11.1

Summer Days (SU)
Historical Mean 72.6 140.2 147.2 127.5 63.8 188.5
Historical: GCM Mean 42.2 114.3 129.0 115.6 50.4 161.3
Historical: GCM Mean Bias
Corrected

72.6 140.2 147.2 127.5 63.7 188.4

Change: GCM Mean 49.2 47.5 51.4 50.9 69.1 55.8
Change: GCM Mean Bias
Corrected

47.3 47.7 50.0 49.6 65.6 52.7

Change: GCM STD Bias
Corrected

9.7 10.5 9.2 10.9 12.1 11.9
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Fig. 7 and Table 3. All of the regions considered are projected to
experience substantive reductions in the number of days falling
below the 10th percentile historical Tmax and Tmin values, with
larger changes for Tmin than Tmax in each region (Fig. 7, Table 3).
For both TN10p and TX10p, the largest changes are projected for
the Northeast region, where the temperatures that were the 10th
percentile during 1981–2005 occur on less than 1% of days during
2071–2095. The smallest changes are projected for the Great
Plains, with a reduction to 2–3% of days having the historical 10th
percentile temperature values. As with the threshold-based in-
dicators, the standard deviations of the regional averages are much
smaller than the projected changes, reflecting a strong signal re-
lative to variations among the GCMs used.

Large increases are also projected for percentile-based warm
extremes (TN90p, TX90p; Fig. 7, Table 3). In all of the regions
considered, an average of at least 40% of days during the 2071–
2095 period are projected to have Tmax and Tmin values that exceed
the historical 90th percentile values. In the Southeast region, at
least 50% of the days meet the 90th percentile criteria for both
Tmax and Tmin. These changes are also accompanied by relatively
small standard deviations among the GCM used (Table 3).
6. Summary and recommendations

In this paper, we have reviewed metrics for estimating tem-
perature and precipitation extremes, as well as the methodological
approaches for developing projections of regional climate ex-
tremes. We have also reviewed the findings of studies that have
developed projections of temperature and precipitation extremes
for US regions. Using a high-resolution observational dataset
(PRISM) for a number of US sub-regions, we presented bias-cor-
rected and downscaled projections of temperature extremes for a
late-century period under strong greenhouse gas forcing (RCP 8.5).
Many regions have already experienced statistically significant
increases in extreme events, with a widespread decrease in cool
nights (TN10p) and regional changes (both warming and cooling)
in daytime temperatures and in the fraction of precipitation de-
rived from intense events. Future projections are less ambiguous
with large decreases in cold extremes, increases in warm ex-
tremes, and changes in the character of precipitation across re-
gions. For the 2071–2095 timeframe considered here and else-
where, GCMs and emissions scenarios are the primary sources of
uncertainty (Hawkins and Sutton, 2009). While just a single
emissions pathway was considered (RCP8.5) in our regional
downscaling approach, this is the RCP that current emissions are
mostly closely tracking (Sanford et al., 2014). In addition, the
magnitude of model differences relative to ensemble mean chan-
ges reflects a strong signal to noise ratio among the GCMs.

Studies of changes in extremes have traditionally focused on
larger regions and/or coarser resolution than those considered in
the demonstration presented here (Section 5). As shown in Fig. 3
through 8, substantial spatial variability in extremes and their
changes is presented at the sub-regional scale, even within regions
that often are considered relatively homogeneous. The impacts of
changes in extremes are unlikely to be uniform across even small
geographic areas. The impacts are also likely to depend on how
changes are distributed across seasons, which, due to space con-
straints, have not been considered here. It is also important to note
that the availability of high resolution observational data still
presents a major limitation for this type of analysis in many parts
of the world.

Impacts of climate extremes often result from simultaneous
extremes in more than one variable. For that reason, an emerging
theme in the analysis of extremes is bivariate or multivariate ex-
tremes (AghaKouchak et al., 2014; Schoelzel and Friederichs,
2008). For example, understanding the influence of climate ex-
tremes on agricultural yield requires consideration of both grow-
ing season temperature and precipitation extremes. For human
health considerations, prolonged periods with extreme tempera-
tures and humidity are an important consideration. Often, appli-
cation-dependent criteria are needed to translate changes in cli-
mate extremes to changes in impacts. As noted by Kunkel et al.
(2013a), detecting or projecting changes in extremes is only the
first step toward mitigating their impact.

Research on changes in regional extremes is likely to produce
“actionable” results for mitigation of impacts in the next decade,
requiring careful consideration of uncertainty and presentation of
results in terms that are understood by stakeholders (Pidgeon and
Fischoff, 2011). For example, Rosenberg et al. (2010) used the
Weather Research and Forecasting (WRF) regional model to
downscale precipitation from two GCMs (using different GHG
forcing) in the Northwest and found an increase in extreme
events, but found that the range of results was too large to inform
engineering design. Understanding the differences in projections
developed using different GCMs, downscaling tools, and



Fig. 4. Observed and projected values of the frost days ETCCDI indicator. The annual mean of the PRISM values for 1981–2005 are shown in the first row, followed by the
multi-model mean for the same period without (2nd row) and with (3rd row) bias correction using quantile mapping, the difference of the multi-model mean of the
projected changes (2071–2095) minus those of the 1981–2005 period without (4th row) and with (5th row) bias correction using quantile mapping, and the multi-model
standard deviation of the projected changes in the final row. The regions are as shown in Fig. 1. The dark lines represent state boundaries and the light lines are county
boundaries.

Fig. 5. Observed and projected values of the tropical nights ETCCDI indicator. The annual mean of the PRISM values for 1981–2005 are shown in the first row, followed by the
multi-model mean for the same period without (2nd row) and with (3rd row) bias correction using quantile mapping, the difference of the multi-model mean of the
projected changes (2071–2095) minus those of the 1981–2005 period without (4th row) and with (5th row) bias correction using quantile mapping, and the multi-model
standard deviation of the projected changes in the final row. The regions are as shown in Fig. 1. The dark lines represent state boundaries and the light lines are county
boundaries.
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Fig. 6. Observed and projected values of the summer days ETCCDI indicator. The annual mean of the PRISM values for 1981–2005 are shown in the first row, followed by the
multi-model mean for the same period without (2nd row) and with (3rd row) bias correction using quantile mapping, the difference of the multi-model mean of the
projected changes (2071–2095) minus those of the 1981–2005 period without (4th row) and with (5th row) bias correction using quantile mapping, and the multi-model
standard deviation of the projected changes in the final row. The regions are as shown in Fig. 1. The dark lines represent state boundaries and the light lines are county
boundaries.

Fig. 7. Projected values of the cold extremes using percentile-based ETCCDI indicators. For each indicator, the first row of maps shows the multi-model mean for 2071–2095
and the second row of maps indicates the ensemble standard deviation for period 2071–2095 (in percent). The regions are as shown in Fig. 1. The dark lines represent state
boundaries and the light lines are county boundaries.
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definitions for extremes, will reduce the range and uncertainty of
estimated changes by identifying unrealistic or inappropriate
methods. Key to this process is the identification of physical me-
chanisms leading to changes in extremes, including their seasonal
variations (Gutowski et al., 2010; Trenberth et al., 2015). For
example, extreme precipitation events in the United States are
typically associated with extratropical cyclones, tropical cyclones,
mesoscale convective systems, monsoon events, and associated
teleconnections with sea-surface temperature (Kunkel et al.,
2013a), but processes across spatial scales, including soil moisture



Fig. 8. Projected values of the warm extremes using percentile-based ETCCDI indicators. For each indicator, the first row of maps shows the multi-model mean for 2071–
2095 and the second row of maps indicates the ensemble standard deviation for period 2071–2095 (in percent). The regions are as shown in Fig. 1. The dark lines represent
state boundaries and the light lines are county boundaries.

Table 3
Regionally-averaged values for the percentile-based extreme temperature in-
dicators. For each indicator and region, values are percentages for the projected
2071–2095 mean percentage for 2071–2095 among the 8 downscaled GCMs and
the standard deviation of the mean projected percentage among the 8 downscaled
GCMs. All units are in percentages of days.

NW SW GP MW NE SE

TN10p
Ensemble Mean 0.9 0.7 1.9 1.1 0.4 1.3
Ensemble STD 0.5 0.4 0.6 0.4 0.2 0.7
TX10p
Ensemble Mean 1.2 1.2 2.7 1.5 0.6 1.9
Ensemble STD 0.7 0.6 0.9 0.8 0.4 0.8
TN90p
Ensemble Mean 53.5 55.1 51.1 43.6 45.5 50.0
Ensemble STD 11.2 8.5 7.1 5.8 7.8 5.2
TX90p
Ensemble Mean 40.0 49.1 41.1 43.1 42.3 51.1
Ensemble STD 7.1 7.4 6.1 7.9 8.1 9.1
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(Durre et al., 2000), evapotranspiration (Diffenbaugh et al., 2005),
land cover (Deo et al., 2009) and even loss or reconfiguration of
sea-ice at high latitudes (Tang et al., 2013), oftenwork in concert to
produce regional extreme events. For example, Kenyon and Hegerl
(2010) examined precipitation extremes as they relate to large
scale modes of atmospheric circulation variability and Grotjahn
et al. (2015) have reviewed short duration temperature extremes
in North America with special attention given to the correspond-
ing large scale meteorological patterns. Evaluation of climate
model simulations in the context of these multi-scale processes
and their relation to regional extremes (as in Loikith et al. (2015))
should be a key focus for the next decade of research.
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