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The concept of color-bounded hypergraph is introduced here. It is a hypergraph (set system)
with vertex set X and edge set & = {Eq, ..., E,}, where each edge E; is associated with two
integers s; and ¢; such that 1 <'s; < t; < |E;|. A vertex coloring ¢ : X — N is considered to
be feasible if the number of colors occurring in E; satisfies s; < |@(E;)| < t;, foralli < m.

Color-bounded hypergraphs generalize the concept of ‘mixed hypergraphs’ introduced
by Voloshin [V. Voloshin, The mixed hypergraphs, Computer Science Journal of Moldova
1(1993) 45-52], and a recent model studied by Drgas-Burchardt and tazuka [E. Drgas-
Burchardt, E. tazuka, On chromatic polynomials of hypergraphs, Applied Mathematics
Letters 20 (12) (2007) 1250-1254] where only lower bounds s; were considered.

We discuss the similarities and differences between our general model and the more
particular earlier ones. An important issue is the chromatic spectrum - strongly related

to the chromatic polynomial - which is the sequence whose kth element is the number
of allowed colorings with precisely k colors (disregarding color permutations). Problems
concerning algorithmic complexity are also considered.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction
In this paper we initiate the study of a coloring concept concerning finite set systems. The following model will be

considered, as announced in [3] under a somewhat different terminology: a color-bounded hypergraph is a four-tuple
H =1{X,8E,s,t}

where (X, &) is a hypergraph (set system) in the usual sense, with a finite vertex set X and edge set &,
X={x1,..., %}, & ={E1,...,E;}

with X # @ and |E;| > 2 for all edges; whereass : & — Nandt : & — N are positive integer-valued functions on &, such that
1<s(E) <tE)<|El VIi<i<m

To simplify the notation, we shall write

s; .= S(E;), t; == t(E), S = maxs;, t = max t;.
1<i<m

1<i<m
A vertex coloring ¢ : X — N is considered to be feasible if the number of colors occurring in E; satisfies

si<lpE) <t foralll<i=<m.
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Our model has been inspired, on the one hand, by the recent work of Drgas-Burchardt and Lazuka [8], who considered the
case of arbitrarily specified lower bounds s; but without upper bounds (which is equivalent to writing t; = |E;| for all i < m);
and, on the other hand, by the area of mixed hypergraphs, introduced by Voloshin [23,24]. In the latter, the C-edges and D-
edges can be characterized as (s;, t;) = (1, |E;| — 1) and (s;, t;) = (2, |E;|), respectively. The so-called ‘bi-edges’ are then those
with (s, t;) = (2, |E;]—1); hence, these notions have a natural and unified description in our model. Moreover, the traditional
concept of ‘proper vertex coloring’ in the usual hypergraph-theoretic sense can be described with (s;, t;) = (2, |E;|) for all
edges.

It turns out that color-bounded hypergraphs provide not just a common generalization of the earlier coloring concepts,
but in fact a much stronger model is obtained. This is demonstrated in the results of Section 4 on the possible numbers
of colors in a feasible coloring, and of Section 5 on unique colorability; and partly of Section 6, too, concerning 2-regular
hypergraphs. Striking differences between color-bounded and mixed hypergraphs are explored further in our paper [4]
where hypergraphs of particular structures are studied. Nevertheless, some earlier results on mixed hypergraph coloring
remain valid for color-bounded hypergraphs, too. These include some facts about the chromatic polynomial, which is
considered in Section 3.

It was shown in [15] that mixed hypergraphs can represent list colorings of graphs (a survey on the latter can be found
in [18]). The recent paper [12] explores many further types of graph coloring that can be expressed in terms of mixed
hypergraphs. Due to its strength, our new model may lead to further such relations and a deeper understanding of the
known ones. We are grateful to the referee for comments in this direction and for inviting our attention to the paper [12].

Some of the results presented here have been announced in [3].

1.1. Notation and terminology

Here we recall some standard definitions from the literature, and extend them to color-bounded hypergraphs.

Mixed hypergraphs. A mixed hypergraph # has vertex set X and two types of edges, the so-called C-edges and D-edges. A
vertex coloring of # is feasible if every C-edge has two vertices with a common color, and every £-edge has two vertices
with distinct colors. A bi-edge is a vertex subset, which is a C-edge and D-edge at the same time. As has been told, the edge
types of mixed hypergraphs can be expressed in a simple unified way in the color-bounded model:

e C-edge:s; =land t; = |E| — 1,
o D-edge:s; =2 and t; = |E],
e bi-edge:s; =2 and t; = |E| — 1.

Concerning mixed hypergraphs, we refer to the monograph [25] as a comprehensive source of information, and to the
survey [21] that discusses further recent results and includes selected open problems.

Feasible set, chromatic spectrum. Each feasible vertex coloring ¢ of a color-bounded hypergraph # induces a color partition
X1 U---UX, = X, where the partition classes are the (inclusionwise maximal) monochromatic subsets of X under ¢. For
k = 1,2,...,nthe number of color partitions of X into precisely k nonempty classes will be denoted by r,. The chromatic
spectrum of # is the n-tuple

(ri,r2, ..., 1).

We consider two chromatic spectra (p1, p2, ..., p;) and (ry, 12, . .., 1) to be equal if one is a prefix of the other, and all the
remaining entries of the other sequence are zeros. That is, assuming j < k, we require p; = r; forall 1 <i <jand r; = 0 for
allj < i < k. Adopting this point of view, we usually write chromatic spectrum in the form omitting all zeros from the end.
If two hypergraphs have equal chromatic spectra, they are said to be chromatically equivalent.

The feasible set of J¢, denoted by &(#¢), is the set of possible numbers of colors in a coloring:

() = {k | e # 0}

The hypergraph # is colorable if #(#) # ¢; and otherwise it is called uncolorable. A small uncolorable color-bounded
hypergraph is obtained on three vertices if we prescribe s; = 2 on the vertex pairs and t; = 2 on the 3-element set.

Upper and lower chromatic number, gaps. Assuming that J¢ is colorable, the largest and smallest possible numbers of
colors in a feasible coloring are termed the upper chromatic number and lower chromatic number of #, respectively. In
notation,

x(F) = min &(H), X(FH) = max &(H).

If #¢ is uncolorable, these values are defined to be y(#) = x(#) = 0.
A gap in the chromatic spectrum of #, or a gap of &#(J), is an integer k ¢ &(#) such that min &(#) < k < max ¢(F).
If #(#) has no gaps, then the spectrum or feasible set is termed continuous or gap-free; otherwise it is said to be broken.
More generally, a gap of size £ in ¢(#) means £ consecutive integers that are all missing from &(#¢), larger than x(F)
and smaller than y(#).
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Stirling numbers. As usual, for n > k > 0 we denote by S(n, k) the Stirling number of the second kind, which is the number
of partitions of n elements into precisely k nonempty sets. We also write [A], :== A(A — 1) --- (A — k + 1) to denote a ‘falling
power’. Let us recall the following fundamental equation:

n
A=Y "S(n, k) - [Mr. (1)
k=1

Other models. There are many other kinds of restrictions that look interesting and are worth studying. In the most general
one, termed pattern hypergraph, each edge is associated with a collection of feasible color partitions on its set of vertices,
and a vertex coloring of the entire hypergraph is feasible if and only if the induced color partition on each edge also is so.
This concept was studied by Dvorak et al. [9], their main result characterizes those pattern types which admit gaps in the
feasible set.

We note already at this early point that there is a natural way to assign values s;, t; to the edges E; of a pattern hypergraph,
too. Namely, for each edge we can take the smallest and largest numbers of nonempty classes, over the feasible color
partitions of E;. Similarly, the parameters ¥, ¥, and the set & have their obvious meaning for every colorable pattern
hypergraph. Having these definitions at hand, the main results of Section 3 remain valid for this most general model, too.

From the many further variants of interest, let us just mention one studied in the papers [5,6]. Instead of - or, in addition
to - bounds (s;, t;) on the cardinality of largest multicolored subset of E;, it is also natural to consider bounds (a;, b;) on its
largest monochromatic subset. Conditions of this type lead to another general model, provably different from the present
one, but admit a common solution with color-bounded hypergraphs when restricted to certain particular classes. The class
of mixed hypergraphs lies in the intersection of the models defined in terms of (s;, t;) and of (a;, b;).

Hypergraphs. For convenience, let us recall a few standard definitions, too. A hypergraph is r-uniform if |E;| = r for all of its
edges, and d-regular if each vertex is incident with precisely d edges. The dual of # = (X, &) is obtained when we represent
each edge E; € &€ by a new vertex x; and each vertex x; € X by a new edge E;, while keeping the structure of incidences
unchanged; i.e., xi € E if and only if x; € E;. A hypergraph is linear if any two of its edges have at most one vertex in
common.

2. Preliminary results

In this preliminary section, we make some simple observations. First, connections of color-bounded hypergraphs with
mixed hypergraphs are considered. After that, we determine the condition of colorability, and the lower and upper chromatic
number of complete uniform hypergraphs with uniform color-bounds.

2.1. Simple reductions

There are particular situations where a color-bounded hypergraph can be reduced to one with smaller edges, or even
to a mixed hypergraph. Below we mention such cases, collected in one assertion of several parts. Throughout, C-edges and
D-edges are meant in the sense of mixed hypergraphs.

Remark 1. Let # be a color-bounded hypergraph. If no structural conditions are imposed, then the following reductions
can be applied.

(a) If s; = t; = |E;|, then one may replace E; with all of its 2-element subsets as D-edges, because every feasible coloring
of E; assigns mutually distinct colors to its vertices.

(b)Ifs; = 1and t; < |E;| — 1, then one may replace E; with all of its (t; + 1)-element subsets as C-edges, because the
original E; is colored in a feasible way if and only if no t; + 1 of its vertices are totally multicolored.

(c)More generally, if t; < |E;| — 1, then one may modify the bounds (s;, t;) of E; to (s;, |E;]) and insert all the (t;+ 1)-element
subsets of E;, with bounds (1, t;).

(d) In parts (b) and (c) it suffices to take all the (t; + 1)-subsets incident with one arbitrarily chosen vertex of E;, because
in any coloring, each vertex of E; can be completed to a largest polychromatic subset of the edge.

There is a consequence of these reductions that we find worth mentioning separately:

Corollary 1. If # does not have any edges such that |E;| > 3 ands; > 2 hold simultaneously, then there exists a mixed hypergraph
on the same vertex set, with precisely the same feasible colorings as J.

Proof. If s; = 1, then reduction (b) replaces E; with C-edges of cardinality t; + 1. The situation is similar if s; = 2, except
that E; itself becomes a D-edge under reduction (c) in this case. Finally, if s; > 3, then |E;| < 3 by assumption, and so the
conditions; < t; < |E;| implies s; = t; = |E;| = 3. Hence, the edge can be replaced with three 2-element D-edges, applying
reduction (a). O
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It is important to note that the reductions listed in Remark 1 may lead out from a particular class of hypergraphs. For
example, as shown in [4], already the 3-uniform color-bounded hypertrees (hypergraphs representable with subtrees of a
tree) differ substantially from mixed hypertrees.

Let us note further that the edges with 2 < s; < |E;| = t; usually cannot be replaced with any combinations of D-edges.
This is the reason for the fact (demonstrated in Section 4.1) that assuming a fixed number of vertices, some chromatic spectra
are possible for color-bounded hypergraphs but cannot occur in mixed hypergraphs.

2.2. Complete uniform hypergraphs
Here we consider the following particular example.

Definition 1. Letn > r > t > s > 1 be integers. The complete uniform color-bounded hypergraph X, (r; s, t) is the 4-tuple
(X, &, s, t) such that X consists of n vertices, and the edge set & contains all the r-element subsets of X with associated
constant bounds s; = sand t; = t.

Proposition 1. The hypergraph X, (r; s, t) is colorable if and only if

(i) t=r,or
(ii) s=1, or
(i) n<r—14| = e —s+ 1),

Proof. For t = r, the hypergraph is evidently colorable with n colors; and if s = 1, then all vertices can get the same color.
This shows the sufficiency of the first two cases.

Suppose next that K, (r; s, t) is colorable and that t # r, s # 1 hold. Assuming a coloring with at least t + 1 colors, this
would yield some edges colored with more than ¢ colors (since t < r). This is forbidden, hence there appear at most t color
classes.

If there were s — 1 color classes whose union consists of at least r vertices, they would determine an edge with fewer than
s colors. Therefore, even the s — 1 largest color classes can have at most r — 1 vertices in total. The remaining color classes

are of size at most LEJ each, and their number is at most t — (s — 1). Summing up, if K, (r; s, t) is colorable, then

r—1
n<r—14(—-s+1) L—J
s—1
necessarily holds.

From now on, we assume thatt #r,s # l,andn <r— 1+ (t—s+ 1) LEJ We need to prove that the hypergraph is
colorable. Let us write (r — 1) in the form r — 1 = a(s — 1) + m, where a and m < s — 1 are nonnegative integers. Applying
thata = \_%J andm=r—1—(s—1) \_%J we get the assumption rewritten in the form n < at + m. Hence, forn’ = at+m
vertices there exists a vertex partition X = X; U - - - U X; such that X; has cardinality a + 1 for 1 < i < m, and cardinality a for
m+ 1 <i < t. Moreover, a partition with t nonempty classes can be obtained for n vertices, too, by removing n’ — n vertices
in any way so that at most |X;| — 1 are deleted from each X;.

It remains to observe that this vertex partition colors X, (r; s, t) properly. Indeed, the union of the s — 1 largest classes
has at most a(s — 1) + m = r — 1 elements, therefore every edge contains at least s colors. Moreover, there are just t colors,
so that the upper bound is respected, too. This completes the proof. O

Remark 2. Along with the proof, we have also obtained that the upper chromatic number of a colorable color-bounded
hypergraph X, (r; s, t) is

o t,ift £ 1 and
o n,ift=r.

More generally, one may consider the complete (p, q)-uniform (s, t)-hypergraphs X, (p, g; s, t), where all p-subsets of the
underlying n-set have color-bounds (s, p) and all the g-subsets have bounds (1, t). Here we assume q > t > sand p > s. The
case q = t has been already included above, because it means no real upper bound and hence it is equivalenttop = g = t.
On the other hand, if ¢ > ¢, it is readily seen that every g-element subset contains at most t colors if and only if so does
every (t + 1)-element subset. Consequently, x(K,(p, ¢; s, t)) = X(K.(p, t + 1;s,t)) < t holds, and these two hypergraphs
are chromatically equivalent. (In particular, both are colorable or both are uncolorable.) For this reason, the value of q is
irrelevant and, along the lines of the proof above, we obtain:

Proposition 2. The color-bounded hypergraph X, (p, q; s, t) is colorable if and only if

(i) t=gq, or
(ii) s=1, or
(i) n<p—1+ |5 Ct-s+1. O
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Putting s = 2 and t = g — 1, the following simple inequality (first observed in [19]) occurs as a particular case.

Corollary 2. The complete mixed hypergraph on n vertices, with all p-element subsets as D-edges and all g-element subsets as
C-edges is colorable ifand only if n < (p — 1)(q — 1).

Already this rather restricted structure indicates that color-bounded hypergraphs are much more complex than mixed
ones: while the latter would admit a one-line proof, the former needs some work.

We have already observed that the s— 1 largest color classes can have at most r— 1 vertices. As regards the lower chromatic
number, this leads - in the same way as above - to:

Proposition 3. For every r > s > 2 we have

X5, 1) =5 — 1+ (”‘r“w

=]

and, if t is not smaller than this lower bound and q > t,or t > s and q = t, then

n—r+1
X(J(n(r, q.s, [’)) =s—1 + ’7-‘ O

k=]
3. Chromatic polynomials

Most of the results proved in this section are valid in the general model of pattern hypergraphs, therefore we do not restrict
ourselves to color-bounded ones here.

Let us extend the standard notion of chromatic polynomial P(#, ) for this widest class of hypergraphs. By definition,
the value of P(#, )) for a positive integer A = k is the number of feasible colorings with at most k colors; that is, the number
of mappings ¢ : X — {1, ..., k} whose color partition (¢~ (1), ..., ¢~ 1(k)) induced on X is feasible for #. (Here some of
the sets ¢~ !(i) are allowed to be empty.)

Let us emphasize some substantial differences between r, and the value of P(#, A) at A = k. The former does not count
permutations of colors to be distinct, while the latter does; moreover, the former only takes into consideration the colorings
with precisely k colors.

It is clear that if # is uncolorable, then its chromatic polynomial is P(#¢, ») = 0, the identically zero function. For this
reason, we assume throughout this section that # is colorable. (It does not mean that hypergraphs derived from #¢, too, will
be assumed to be colorable.) The chromatic polynomial will be written in the form

P(H,A) =) ad.
k=0
After recalling some known facts from the literature, we shall first observe that this is a legal notation, as the number of

colorings with at most A colors is indeed a polynomial of . For an easier formulation of some assertions, we shall use the
notation

€V ={Eecé€||El=r)
and m, = |&®|, for all r > 2. In particular, &® is the graph formed by the 2-element edges of .
Known facts

1. Ifs; = 2 and t; = |E;| for all i (that is, hypergraph coloring in the usual sense), then
(a) P(#, 1) is a polynomial of order n = |X]|,
(b) a, =1and gy =0,
(¢) Y=o a = 0, if there exists at least one edge,
(d) a,_1 = —my, where m; = |8(2)|, [7]
)

(e) ay_y = (”;2) — m3 — t,, where t, is the number of triangles in the graph €@, provided that no E; € €? is a subset of

any E; € & This follows from a general equation of [7], although it is not stated there explicitly.
2. Facts (1a)-(1e) can be extended to hypergraphs such that

s;>2 and tt=1E| V1<i<m,

with some modifications in (1d) and (1e). In the present case, each edge E; of # having s; = |E;| is replaced with its
2-element subsets as edges, and € for r > 2 is meant to be the collection of r-element edges after this operation. Then
a,_1 is determined as in (1d), and the formula of (1e) for a,_; is proved to be valid under the further conditions; < |E;| — 2
for all E; ¢ €@, which also implies that m3 = 0 holds [8].

3. If #¢ is a mixed hypergraph, then P(#, 1) = Z,)f:x ri[Alk, [24].
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Turning now to color-bounded and, more generally, pattern hypergraphs, we begin with the following very general
observation.

Proposition 4. Let ¢ = (X, &) be a hypergraph, and & a given set of partitions of X, whose members are the allowed
color partitions for €. For k = 1, ..., |X| denote by r, the number of those partitions in & which have precisely k nonempty
classes. Then the number P(F, 1) of allowed colorings of # with at most A colors is a polynomial of A, and it can be written
as P(H, 1) = Yoo kAl

Proof. A unique ordering can be assigned to the classes of each partition in #, according to their vertex of smallest subscript
in the order x4, . . ., x,. Enumerating along this ordering, if P € & has precisely k classes, then there are exactly [1], ways to
assign distinct colors to its classes. O

Corollary 3. For every J, P(#, 1) is a polynomial of order x = x(#) whose leading coefficient equals rg, that is the number of
color partitions with the maximum number of colors.

Corollary 4. Two hypergraphs are chromatically equivalent if and only if they have the same chromatic polynomial.

The following fact has been proved in [8] for the hypergraphs where t; = |E;| holds for all edges.

Corollary 5. Every chromatic polynomial can be written as the sum of chromatic polynomials of graphs, without any negative
coefficients.

Proof. It suffices to observe that [A]; is the chromatic polynomial of the complete graph on k vertices, and that none of the
[A]x can have a negative coefficient in P(#, A). O

Remark 3. By definition, all integers i with 1 < i < x(J) are roots of P(#, )).

Corollary 6. If # is colorable and y(F#) = x(#), then the set of roots of P(J, 1) is
{ieNU{0} i< x(#) -1}

and each root has multiplicity one; and vice versa, if the roots of P(#, L) are 0, 1, ..., k — 1 and each of them has multiplicity
one, then # is colorable and x(#) = X (#).

Proof. If x(#) = x(#) = k > 0,then P(#,L) = .- A(A — 1) --- (A — k + 1) by Proposition 4. Conversely, the given set
of roots (without multiple roots) implies that P(#, A) is of the form r, - A(A — 1) - - - (A — k + 1), from which we obtain that
r; =0 forevery 1 <i < kand also fori > k, so that k is the unique possible number of colors. O

For the explicit computation of P(#, 1), let us introduce the following notation:

e J¢ + C;; — the hypergraph obtained from # by inserting the C-edge {x;, x;} withs =t =1
e J# + D;; — the hypergraph obtained from # by inserting the D-edge {x;, x;} withs =t = 2.

In order to compute P(#, A), the following recursion may be useful.

Proposition 5. If {x;, x;} is neither a C-edge nor a D-edge, then

P(#, 1) = P(H + Gij, A) + P(H + Dij, A).
Proof. The first and second terms on the right-hand side count the numbers of those colorings of # with at most A colors
in which x; and x; get the same color or distinct colors, respectively. 0O

In the same way, one can also observe that

X(H) = max(x(¥ + Cij), X(H + Dij))
for every #¢. The analogous formula

X(H) = min(x(H + Cij), x(¥ + D))

is valid under the slight restriction that both hypergraphs #+C; ; and # +D; ; on the right-hand side are colorable; otherwise
the uncolorable one has to be omitted and the lower chromatic number is equal to that of the colorable modified hypergraph.

Remark 4. This recursion leads to an analogue of the ‘Splitting—Contraction Algorithm’ developed by Voloshin for mixed
hypergraphs [23].

Proposition 6. If maxi<i<, ;i > 2, then the sum of the coefficients of P(#, 1) is equal to zero; and if s; = --- = s, = 1, then
the sum is equal to 1.
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Proof. The value P(#, 1) is equal to the sum of coefficients, and at the same time it counts the number of allowed colorings
with just one color. The latter obviously is eitherOor 1. O

Proposition 7. The constant term in P(J, 1) is equal to zero.
Proof. According to Proposition 4, each term in the formula for P(#¢, A) is divisibleby A.. O

The following example shows that facts (1d) and (1e) do not remain valid if some edges have t; < |E;|.

Example 1. Let # have the only one edge, E; = X, withs; = 1and t; = n — 1. Then

n—1 n—1 n—1i-1
P(H, M) = A" = =) =21 i—A"2 Y i+ 0" ?)
i=0 i=0

i=1 j=0

_ n n—-1 _ 1(1‘[)2_1(211) n—2 n-3
B <2))‘ (2 2 sls))* +00™)
because

Y= Yi(y)=3 X r-g 2P

j<i<n—1 i<n—1 i<n—1 i<n—1

1, , 1
gn n—1) —En(n—l)(Zn—l). O

The following result completely characterizes the chromatic polynomials under the assumption P(1) = 0.

Theorem 1. Let P(A) = Zf:o aA¥ £ 0 be a polynomial such that P(1) = 0, i.e. Zﬁ;o a, = 0. The following properties are
equivalent.

1. P(A) is the chromatic polynomial of a color-bounded hypergraph.
2. P(A) is the chromatic polynomial of a mixed hypergraph.
3. P(A) is the chromatic polynomial of a pattern hypergraph.
4, P()) satisfies all of the following conditions.
(i) All coefficients a,. of P()) are integers.

(ii) The leading coefficient a, is positive.

(iii) The constant term aq is zero.

(iv) For every positive integer j < ¢, the inequality

i
> a-Sk.j) =0
k=j

is valid.

Proof. The condition P(1) = 0 means that if some hypergraph # has P()) as its chromatic polynomial, then at least one
edge E; € # hass; > 2. In particular, if # is such a mixed hypergraph, then it contains at least one D-edge. Due to the
construction in [11], prescribing the numbers of k-colorings in an arbitrary way for k = 2, ..., ¥, there exists a mixed
hypergraph with this given chromatic spectrum (provided that r; = 0, which is now the case). Since this already includes
all possible variations, the equivalence of properties 1-3 follows.

In order to prove the equivalence of property 4 with 1 through 3, let us introduce the notation r; = Zﬁ=j ai - S(k, j) for
j=1,...,£.0napplying Eq. (1), we rewrite

¢ ¢ k ¢ ¢ ¢
P(A) = ar =D a ) Sk.j)-[Aj =Y AL Y ac-SCk.j) =Y 1+ [ (2)
k=1 k=1 j=1 j=1 k=j j=1

It is clear that r, = a,. Moreover, all the g, are integers if and only if all the r, are integers. Indeed, the largest subscript j for
which r; is not an integer would yield that g; is not an integer either; and vice versa.

Suppose now that P(A) is equal to P(#, A) for some mixed hypergraph #. By Proposition 4, the meaning of r; is the
number of color partitions into precisely j nonempty vertex classes. Consequently, r; > 0 must hold for all j, which
implies (iv). Also, the condition ag = 0 follows by Proposition 7.

Conversely, suppose that the conditions 3(i)-3(iv) are valid for P(A). Applying Eq. (2) we obtain a sequence (r})j~o of
nonnegative integers. We observe now that r; = 0 necessarily holds; this follows from the assumption P(1) = 0, because
the right-hand side of (2) yields P(1) = r;. Thus, due to [11], there exists a mixed hypergraph # whose chromatic spectrum
is (rj)j=0. This completes the proof of the theorem. O

Corollary 7. For every color-bounded hypergraph # = (X, &, s, t) there exists a mixed hypergraph with the same chromatic
polynomial and with the same chromatic spectrum.
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Proof. For the case max;<i<, S > 2, this is just the equivalence of properties 1 and 2 above. In the other case, ifs; = --- =
sm = 1, we replace each E; with all its (t; + 1)-element subsets as C-edges, as described in reduction (b) of Remark 1. The
color partitions of this ‘mixed’ C-hypergraph are precisely those of #. O

We shall see later that this property does not remain valid anymore when the hypergraph under consideration is
assumed to be uniform. It is not valid either in the class of hypergraphs generated by the conditions (a;, b;) on the size
of monochromatic subsets of edges (mentioned in the paragraph “Other models” of Section 1), as proved in [5].

Concerning pattern hypergraphs, 1-colorability does not imply that the chromatic spectrum is gap-free. This makes it
possible to characterize the chromatic polynomials completely.

Proposition 8. The polynomial P()) = Zf:o a AX is the chromatic polynomial of some pattern hypergraph if and only if all of the
following conditions hold.

(i) All coefficients a, of P()\) are integers.
(ii) The leading coefficient a, is positive.
(iii) The constant term aq is zero.
(iv) For every positive integer j < ¢, the inequality

¢
Zak S(k5]) > 0
k=j
is valid.
v) Yoa=0o0r1.

Proof. The number of 1-colorings, that is the value P(1) = Zf:o ay, is either 0 or 1, yielding the necessity of (v). For the case
of P(1) = 0, the proof of Theorem 1 verifies the assertion for pattern hypergraphs as well. Moreover, the argument given
there also implies that the conditions (i)-(iv) are necessary for the case P(1) = 1, too.

As regards P(1) = 1, the crucial point is that for the 1-colorable pattern hypergraphs (equivalently when r; = 1), the
other entries of the chromatic spectrum can be arbitrarily prescribed nonnegative integers. To prove this, consider the

nonnegative integers r,, ..., ry and let a sufficiently large n be chosen such that S(n, k) > r, holds for each k = 2, ..., £.
Create a hypergraph # = (X, {X}) on n vertices. By the choice of n, we can prescribe for the hyperedge X exactly r, feasible
k-partitions for every 1 < k < ¢, which results in a pattern hypergraph # with chromatic spectrum (ry = 1, rp, ..., 1¢).

From this point the proof can be completed as in the case of Theorem 1. O

4. Gaps in the chromatic spectrum

In this section we study the feasible sets of color-bounded hypergraphs. The main results are the determination of largest
gaps in hypergraphs with a given number of vertices, and the characterization of feasible sets of uniform color-bounded
hypergraphs (Theorem 3).

4.1. Largest gap

It was proved in [10] that any finite set of integers greater than 1 is the feasible set of a mixed hypergraph, but the smallest
number of vertices realizing a given set is not known. For gaps of size k, however, a construction on 2k + 4 vertices was given
in [10]. This 2k + 4 is the smallest possible order, which follows from another result of the same paper, although it was not
stated explicitly until [5]. On the other hand, for color-bounded hypergraphs the minimum is much smaller, as shown by
the following tight result.

Theorem 2. If a color-bounded hypergraph has a gap of size k > 1 in its chromatic spectrum, then it has at least k + 5 vertices.
Moreover, this bound is sharp; that is, for every positive integer k there exists a hypergraph ¢ = (X, €,s,t) with |X| = k+5
vertices whose chromatic spectrum has a gap of size k.

Before the proof, we make two simple observations.

Proposition 9. Every 1-colorable color-bounded hypergraph has a gap-free chromatic spectrum.

Proof. If all the vertices can be colored with the same color, every s; equals 1. Then assuming an £-coloring (¢ > 2) of #,
the union of any two color classes yields a proper (¢ — 1)-coloring, consequently no gaps can occur. O

Proposition 10. Every n-colorable color-bounded hypergraph on n vertices has a gap-free chromatic spectrum.

Proof. If the vertices can have mutually different colors, then for every edge E; the equality t; = |E;| holds, namely there is
no upper restriction on the number of colors. In this case consider an arbitrary proper ¢-coloring of #. If £ < n, there exists
a color class with at least two vertices, and by splitting it into two parts we obtain a proper (¢ + 1)-coloring. O
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Proof of Theorem 2. According to Propositions 9 and 10, there cannot occur any gaps of size k on fewer than k + 4 vertices.
Moreover, n = k + 4 vertices would mean &(#) = {2, k + 3}.

Assume for a contradiction that such a hypergraph exists. Note that k + 4 > 5 holds. Due to the 2-colorability, the
inequality s; < 2 is valid for every E;. Considering a coloring ¢ with precisely k + 3 = n — 1 colors, there exist at least three
single color classes, say {x1}, {x»}, {x3}. The hypergraph has no (k+ 2)-coloring, hence the contraction of classes {x;} and {x,}
results in an edge E; colored with fewer than s; colors. Taking into consideration that s; < 2, this means E; would become
monochromatic by the contraction, thus E; = {x, x2} with bounds (s;, ;) = (2, 2). Similarly, there are (2, 2)-edges also for
{x2, x3} and {x3, x1}, hence every proper coloring assigns three different colors to the vertices x1, x,, x3. This contradicts the
supposed 2-colorability of #, consequently there appears no gap of size k on fewer than k + 5 vertices. O

To show that this bound is sharp, we present a hypergraph #, = (X, &, s, t) with feasible set {3, k + 4} on k + 5 vertices,
for every positive integer k.

Example 2. Consider the hypergraph #, with vertex setX = {x1, x2, ¥1, ¥2, .. ., Yi+3} and with edge set & = {{x1, x2, y;, ¥;} |
1 <i <j < k+ 3}, where each of the edges has bounds (s, t) = (3, 3).

If a proper coloring ¢ assigns different colors to x; and x,, there appears exactly one more color on the vertices
Y1,¥2, - - - » Yke3. It is clearly realizable with color classes {x1}, {x2}, and {y1,y2, ..., Yx+3}, hence # can be colored only with
precisely three colors in this case.

On the other hand, if ¢ assigns the same color to x; and x;, the (3, 3)-edges are properly colored if and only if any two
distinct vertices y; and y; have colors different from each other and from ¢(x;), too. Thus, in this case we obtain a proper
(k + 4)-coloring.

Since there are no other cases, the feasible set is {3, k + 4}; that is, for every positive k the hypergraph #, has a gap of
size kon k + 5 vertices. O

Remark 5. In pattern hypergraphs, the minimum order for a gap of size k is equal to k + 2. This bound is attained by the
hypergraph # = (X, {X}) with |X| =k+2andr; =12 = 1,1, = --- = ry1 = 0; i.e,, where the vertex set is required to be
either monochromatic or completely multicolored.

4.2. Feasible sets of uniform hypergraphs

As was shown in Section 3, the classes of mixed and color-bounded hypergraphs generate the same set of chromatic
polynomials; moreover, the feasible sets are the same in any case. In hypergraphs with restricted structures, however, there
appear substantial differences. We consider the following three types, the third one being the main issue of this subsection.

e Hypertrees

These are hypergraphs that can be represented as subtrees of a tree, in the way that there exists a tree graph on
the vertex set of the hypergraph, such that each hyperedge induces a subtree in it. The chromatic spectrum of mixed
hypertrees is gap-free and their lower chromatic number is at most two [13]. Hence, their feasible sets determine
precisely the intervals of the form [1, ..., k]or [2, ..., £], wherek > 1and ¢ > 2.

On the other hand, we have proven in the paper [4] that color-bounded hypertrees can have arbitrary large gaps in the
chromatic spectrum, and any positive integer can occur as a lower chromatic number. Any set S of integers with min S > 3
can be obtained as the feasible set of some color-bounded hypertree; if the lower chromatic number equals 1 or 2,
however, then the chromatic spectrum is necessarily gap-free.

e Interval hypergraphs

Mixed interval hypergraphs - hypertrees whose underlying tree is a path - have a gap-free chromatic spectrum with
lower chromatic number 1 or 2 [10], whilst in the color-bounded case the spectrum still remains gap-free but the lower
chromatic number can be any positive integer [4].

e r-uniform hypergraphs

The 2-uniform mixed and color-bounded hypergraphs are practically the same: the (1, 2)-edges have no effect on
coloring, and after their deletion we get a 2-uniform mixed hypergraph (i.e., a ‘mixed graph’).

The larger cases, where r > 3, will be treated in this subsection and essential differences will be demonstrated in
comparison with mixed hypergraphs.

We now consider the feasible sets belonging to r-uniform hypergraphs, for different values of r.

For the following observations the classes of possible feasible sets will be denoted by %, and ¥, regarding mixed and
color-bounded hypergraphs, respectively. When we refer only to feasible sets of r-uniform hypergraphs, upper indices will
be used: ¥, and #_. Since mixed and color-bounded hypergraphs generate the same chromatic polynomials, the sets %,
and #; are equal.

For r-uniform mixed hypergraphs, the feasible sets have been characterized in [2] as follows:

The set S of positive integers is a feasible set of an r-uniform mixed hypergraph (r > 3) if and only if

(i) min(S) > r, or



Cs. Bujtds, Zs. Tuza / Discrete Mathematics 309 (2009) 4890-4902 4899

(ii) 2 < min(S) < r — 1and S contains all integers between min(S) and r — 1, or
(iii) min(S) = 1and S = {1, ..., k} for some natural number k > r — 1.

Accordingly, the 3-uniform mixed hypergraphs generate all possible feasible sets from %, except the set {1}. Increasing
the value of r, for all integers 3 < r; < r, the inclusion %' 2 Fa? holds. Thus, the classes F; of possible feasible sets
determine a strictly decreasing infinite set-sequence: %, 2 Fa 2 - 2 Fn 2 .- Forevery feasible set S € #,, there
are only finitely many values of r such that an r-uniform mixed hypergraph can have S as its feasible set, since in this case
r < 14 maxS$ necessarily holds. Consequently, there is no feasible set belonging to every element of the above nested
sequence.

Contrary to this, we are going to prove that in the case of color-bounded r-uniform hypergraphs the classes #_" of possible
feasible sets, for all r > 3, are the same.

Proposition 11. For every color-bounded hypergraph J¢; having edges only of sizes not larger than r, there exists a chromatically
equivalent r-uniform color-bounded hypergraph F¢,; that is, P(#1, L) = P(F3, A).

Proof. Any given hypergraph #¢; = (X;, &1, $1, t1) with edges not larger than r can be extended to #, in the following way.
For each vertex x; € X;, we take additional r — 1 copies, and join them with x; in an r-element (1, 1)-edge to ensure that in
each coloring they get the same color as x;. Then every edge E; of #; can be extended to an r-element edge of #, by adjoining
r — |Ej| ‘copy vertices’ of some x; € E; to it, whilst the color-bounds remain unchanged. Clearly, the feasible colorings of #;
and #¢, are in one-to-one correspondence, thus the two hypergraphs have the same chromatic polynomial. O

Proposition 12. For each integer r > 3, the r-uniform color-bounded hypergraphs generate all possible feasible sets from ..

Proof. For r = 3, already the mixed hypergraphs generate all the feasible sets from #,, except the set {1}. Obviously, the 3-
uniform color-bounded hypergraphs determine all these feasible sets and also the set {1}. A trivial example for the latter has
three vertices joined by a 3-element (1, 1)-edge. Due to Corollary 7, %, = . holds, hence we obtain that %, = #2. Applying
Proposition 11, we obtain for any r > 3 that every 3-uniform color-bounded hypergraph has some r-uniform chromatic
equivalent, therefore " 2 ¥2. But ¥ contains all the possible feasible sets of color-bounded hypergraphs, thus for every
r > 3 the equality ¥/ = # holds. O

The class of feasible sets occurring for mixed hypergraphs was characterized in the paper [ 10]. Combining that result and
the above proposition we obtain:

Theorem 3. For every integer r > 3, a set S of positive integers is the feasible set of an r-uniform color-bounded hypergraph if
and only if

(i) minS > 2, or
(ii) minS=1and S = {1, ..., k} for some natural number k > 1. O

Comparing the possible feasible sets of r-uniform mixed and color-bounded hypergraphs, we can conclude that for r = 2
they are the same (classical graphs), and for r = 3 there is only one feasible set — namely, {1} - appearing in the color-
bounded case and not belonging to any mixed hypergraphs. But increasing the value of r the difference becomes more and
more substantial.

Now, we take some observations concerning the chromatic spectra of (r-uniform) color-bounded hypergraphs. It was
proven for mixed hypergraphs in [11] that any vector (ry, 13, ..., 1) withry = 0and r,, ..., r, € NU {0} can be obtained
as the chromatic spectrum of some mixed hypergraph. In the construction of the proof there occur only C-edges of size 3
and D-edges of size 2. This mixed hypergraph can be considered color-bounded as well, and since it has edges of size not
larger than 3, we can apply Proposition 11 to get, for each r > 3, an r-uniform color-bounded hypergraph with the above
chromatic spectrum. As a consequence, we obtain:

Proposition 13. For every finite sequence ry, 13, . . ., 1, of nonnegative integers and for every r > 3 there exists some r-uniform
color-bounded hypergraph whose chromatic spectrumis (ry =0,r2,...,1). O

This means that under the assumption P(1) = 0, the characterization of chromatic polynomials in Theorem 1 is valid for
r-uniform color-bounded hypergraphs, too.

As was proven in Section 3, the possible chromatic polynomials — and also the chromatic spectra - are the same in the
case of mixed and color-bounded hypergraphs. Considering a fixed integer r > 3, however, by the characterization from [2]
and by our Theorem 3, there exist feasible sets and hence chromatic spectra, too, occurring for r-uniform color-bounded,
but not occurring for r-uniform mixed hypergraphs. We are going to point out that, even when assuming a fixed common
feasible set and r-uniform hypergraphs, the corresponding spectra can be different.

Let r = 4 and the feasible set {1, 2, 3} be considered.

For 4-uniform mixed hypergraphs, this means that there occur only C-edges of size 4, hence any partition of the vertex
set into 1, 2, or 3 color classes induces a feasible coloring. Therefore r; = 1, , = S(n, 2), and r3 = S(n, 3) hold, where n
denotes the number of vertices. In particular, r; = 1 and r, = 15 together imply thatn = 5 and r; = 25.
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On the other hand, in 4-uniform color-bounded hypergraphs the 1-colorability means that the lower bound s; equals 1
for every edge E;, and after the contraction of (1, 1)-edges, any 2-partition of the n vertices yields a proper coloring. Thus
r1 = 1and r; = S(n, 2). But if there exists an edge with bounds (1, 2), then not all of the 3-partitions are feasible, hence
0 < r3 < S(n, 3) can hold. Analysis shows that if r; = 1 and r, = 15, then the first three entries in the chromatic spectrum
belonging to the feasible set {1, 2, 3} form one of the following triples:

e (1,15, 25) — five vertices and four or five 4-element edges, all of them with color-bounds (1, 3);
e (1, 15,7) — five vertices with one (1, 2)-edge of size four;
e (1,15, 1) — five vertices with two different (1, 2)-edges of size four.

As has been observed, only the first one can belong to 4-uniform mixed hypergraphs.

5. Uniquely colorable hypergraphs

A hypergraph # is called uniquely colorable if x(#) = X(#) = k for some k € N, and r, = 1. General properties
of uniquely colorable mixed hypergraphs have been studied in [22,1]. Moreover, uniquely (n — 1)-colorable and uniquely
(n — 2)-colorable mixed hypergraphs are characterized in [16]. Though it is co-NP-complete to decide whether a mixed
hypergraph (given together with one of its colorings) is uniquely colorable [22], it may be the case that uniquely (n — ¢)-
colorable mixed hypergraphs admit a relatively simple structural description for any constant c. In sharp contrast to this,
for color-bounded hypergraphs we prove:

Theorem 4. It is co- NP-complete to decide whether a hypergraph # = (X, &€, s, t) on n vertices is uniquely (n — 1)-colorable.
Proof. We are going to apply the following result of [ 17] from the algorithmic theory of balanced incomplete block designs:

It is NP-complete to decide whether a Steiner Triple System, whose blocks are viewed as the D-edges of a 3-uniform
(mixed, or ‘usual’) hypergraph, is colorable with 14 colors.

Now let X = {xq, ..., x,_»} be the vertex set of an ‘input’ Steiner Triple System § = STS(n — 2) = (X, 8) of order n — 2,
whose k-colorability (as a D-hypergraph) should be decided for a given integer k. Due to the result quoted above, in our
case k = 14 will be a suitable choice.

We construct a color-bounded hypergraph # on the vertex set X U {z, z;} - i.e., with two new vertices z, z, - in which
the hyperedges and color-bounds are defined as follows:

e B =BU{z, 2} withs(B') = 4 and t(B") = 5, for all blocks B € B;
o W =WU/{zq, 2z} withs(W) =1and t(W') = k + 2, for all (k+ 1)-tuples W € (,L);
o e;; = {x;, z;} withs(e;j) = t(e;;) = 2,forall1<i<n—-2andj=1,2.

We analyze the colorings ¢ of # by considering the following two cases.

Case 1: p(z1) = ¢(z2)

Due to the presence of the D-edges e; ;, the color-bound functions s, t reduce to the conditions |@(W)| < k+ 1 for all W
and |¢(B)| = 3 for all B. We may disregard the former, as it does not yield any real restriction. On the other hand, since § is
a Steiner Triple System, the blocks B € 8 cover all vertex pairs, and hence the latter equation means that any two vertices
in X must get distinct colors. Thus, X is (n — 2)-colored and # is (n — 1)-colored.

This type of coloring is unique and it exists for any STS(n — 2) input 4; and it obviously colors the constructed # with a
feasible (n — 1)-coloring.

Case 2: ¢(z1) # ¢(z2)

Then the conditions reduce to |@(W)| < k for all W and |¢(B)| > 2 for all B. Hence, such a coloring exists if and only if the
input Steiner system - admits a coloring with at most k colors. By the theorem quoted above, this is NP-complete to decide.

Given any input 4, the color-bounded hypergraph # together with its (n — 1)-coloring described in Case 1 can be
constructed in polynomial time for any constant k. This # is not uniquely (n — 1)-colorable if and only if 4§ is k-colorable.

Finally, an n-element set has precisely (g) partitions into n — 1 nonempty sets, and it can be checked efficiently for each

of those partitions whether it is a feasible coloring of #. Moreover, the problem of finding another coloring of # has its
obvious membership in NP. This completes the proof of the theorem. O

6. Regular hypergraphs and color-bounded edge-colorings of graphs

In the cases of classical and mixed hypergraphs, restricting the vertex degrees to at most 2 or prescribing that any two
edges share at most one vertex - that is, linear hypergraphs - sometimes makes problems algorithmically easier to handle.
For example, there can be given a well-characterized set of obstructions against the colorability of mixed hypergraphs with
maximum degree two [20]. Efficient algorithms on this class have also been presented in [14].

In contrast to this, we are going to prove that every color-bounded hypergraph can be transformed to a chromatically
equivalent 2-regular hypergraph. As a consequence, restricting the vertex degrees to at most 2, the time complexity of
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colorability problems does not change substantially. For comparison, let us mention that in [14] the mixed hypergraphs
were shown to admit chromatically equivalent representations with mixed hypergraphs of maximum degree 3. It follows
from known results on complexity that degree 3 cannot be reduced to degree 2, hence color-bounded hypergraphs yield a
stronger model in this respect, too.

Proposition 14. Every color-bounded hypergraph is chromatically equivalent to a 2-regular color-bounded linear hypergraph.

Proof. Consider a hypergraph # = (X, &, s, t). If there are vertices with degree 0 or 1, we can create some new edges
containing them, with nonrestrictive bounds s = 1 and t = |E|. Thus, we can assume that each vertex of #¢ has degree at
least 2.

To construct a 2-regular hypergraph #¢+, for each vertex x; of # we create d(x;) copies and let them form a (1,1)-edge.
The edges of # can be transformed to edges of #* in such a way that every vertex is replaced with one of its copies, and
every ‘copy vertex’ occurs in exactly one edge of this type. The color-bounds remain unchanged, and the vertices of # do
not belong to #+.

Obviously, the copies of a vertex x; have the same color in every feasible coloring of #*, so they can be contracted and
a feasible coloring of # is obtained; and vice versa. Thereby, # and #* are chromatically equivalent. Moreover, #* is a
2-regular hypergraph, where any two edges either are disjoint or have intersection of size 1, which completes the proof. O

It is important to note that this transformation generally does not preserve the special structural properties
(e.g., hypertree, circular hypergraph). On the other hand, some properties can be ensured; for example, the 3-uniformity
can be preserved by slightly modifying the construction.

According to the above proposition, it is enough to consider the 2-regular linear color-bounded hypergraphs regarding
the general coloring properties. Let us observe that the dual of a 2-regular and linear hypergraph # is a simple graph. Coloring
the vertices of ¢ according to the color-bounds corresponds to an edge-coloring of the dual graph, where each vertex has
the same color-bounds (s;, t;), as the corresponding edge in #.

Definition 2. Consider a graph G = (V, E) where each vertex x; is associated with integer color-bounds: 1 <'s; < t; < d(x;).
A color-bounded edge-coloring of G is a mapping from E to N, such that for every vertex x;, the incident edges are colored with
at least s; and at most t; distinct colors. In this model it is convenient to assume that G has no isolated vertices.

Theorem 5. Regarding the color-bounded edge-coloring of graphs:

(i) A set S of positive integers can be obtained as a feasible set if and only if minS > 2 orS=[1, ..., k] forsome k > 1.
(ii) The class of possible chromatic polynomials corresponds to the class of chromatic polynomials occurring for vertex colorings
of color-bounded hypergraphs.
(iii) These properties remain valid in the restricted class of bipartite graphs, too.

Proof. According to Proposition 14, for every color-bounded hypergraph #, there exists a chromatically equivalent 2-
regular, linear color-bounded hypergraph J¢*. The dual of #* is a simple graph G. The vertex colorings of #* are in one-
to-one correspondence with the color-bounded edge-colorings of G, provided that each vertex of the latter has the same
color-bounds as the corresponding edge in #¢+.

Conversely, every graph without isolated vertices has a dual hypergraph, and if there are assigned corresponding
color-bounds, the feasible edge-colorings of the former and vertex colorings of the latter determine the same chromatic
polynomial. This proves statement (ii).

Due to (ii), the possible chromatic spectra — and hence the feasible sets, too - are the same for the two structure classes.
Taking into consideration the characterization of possible feasible sets of color-bounded hypergraphs, statement (i) follows.

To prove (iii), it suffices to observe that the dual graph of the constructed hypergraph #* is bipartite: the two vertex
classes correspond to the ‘copy edges’ and the original edges of J¢, respectively. O

Remark 6. The validity of Theorem 5 can be extended to color-bounded edge-colorings of multigraphs, too. There can appear
no additional feasible sets and chromatic polynomials, since also the dual of a multigraph is a hypergraph (though not
necessarily linear).

7. Concluding remarks and open problems

In this paper we introduced a coloring concept of hypergraphs defined in terms of conditions on the polychromatic
subsets of edges. Since the object is quite new, there are many interesting problems that remain open. Let us mention
explicitly some of them in connection with the chromatic polynomial P(J¢, ).

Problem 1. Characterize the polynomials P(A) with P(1) = 1 that are chromatic polynomials of some mixed/color-bounded
hypergraphs.
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Problem 2. Characterize the meaning of coefficients of the chromatic polynomials of mixed/color-bounded/pattern
hypergraphs.

Problem 3. Characterize the meaning of roots of the chromatic polynomials of mixed/color-bounded/pattern hypergraphs.

Further properties of color-bounded hypergraphs are studied in the series of papers [4-6].
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