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Abstract

We study various properties of the random planar grephdrawn uniformly at random from the
class?,, of all simple planar graphs amlabelled vertices. In particular, we show that the probability
thatR,, is connected is bounded away from 0 and from 1. We also show for example that each positive
integerk, with high probabilityR,, has linearly many vertices of a given degree, in each embedding
R, has linearly many faces of a given size, adhas exponentially many automorphisms.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let P, denote the class of all simple planar graphs on the vertices ln, and letr,
denote a graph drawn uniformly at random from this class. The random planar Bgaph
was introduced if5]. We are interested here in the probability tiRatis connected, the
number of vertices of a given degree, the number of faces of a given size in an embedding,
the existence of given (planar!) subgraphs, and so on. It turns out that the rate of growth of
£(n) = |P,| is of central importance to our investigations.
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Let us sketch some relevant background, concerning the numbers of planar graphs and
the numbers of edges in such graphs, before going on to give an outline of the paper.

First consider the number of unlabelled planar graphs.ulie} denote the number of
unlabelled simple planar graphs nmodes, that is, the number of isomorphism classes of
graphs irP,. Itis shown by Denise et gb] that there is a constapyf, theunlabelled planar
graph growth constansuch thai(n)/" — 7, asn — oo; and, using work of Tutt¢14]
on counting triangulations, that4B < y, < 75.9. The upper bound was recently reduced
to y, <32.2 by Bonichon et al{4].

Now let us return to considering labelled planar graphs. We shall see in Th&?2em
below that there is a constaytsuch that

(Z(n)/n!)l/” — 7, asn— oo. Q)

We cally, thelabelled planar graph growth constar§incel (n) <n!u(n) we havey, <v,,
and so from the above we haye< 32.2. We shall see that in fagt < y,. In[2] Bender et
al. give an asymptotic formula for the number of 2-connected grapfs iwhich shows
thaty, >26.1. Thus

26.1<y, <7,<322. (2)

A focus in investigating random planar graphs has been the number of edges in such
graphs. Itis shown ifb] that the expected number of eddd$E (R,,)|] is atleast3n —6) /2.
This is improved by Gerke and McDiarmjd] who showE [|E(R,)|] > 173;1 + o(n); and

(note thatl? > 1.85) that P{|E(R,)| < 1.851] = O(e~") for somes > 0.

In Osthus et al[9] it is shown that with probability - o(1) we havelE(R,)| < 2.56n.
This upper bound is improved [4] to 2.54xn. Numerical computations fer = 1000 using
the method suggested [i§] indicate that both upper and lower bounds are weak and that
the correct value is close taZ:. In [4] it is shown that the same upper bound 54
applies also to the number of edges in unlabelled planar graphs (and to connected labelled
or unlabelled planar graphs). Further it is shown that unlabelled planar graphs have at least
1.7n edges with probability + o(1) (and the same result holds for the connected case).

As one last piece of background on what is known al®ytnote that it has recently
been shown by Bodirsky et 4B] how to generat&®, exactly in time polynomial im. See
[1] and the references therein for a wealth of results on unlabelled connected planar maps
(embedded in the plane) with a given number of edges. From now on, we shall consider
only the labelled case, except in Corollarieg and4.8.

Outline of the paperin the next section we will show that the random planar grpis
connected with probability at leastd. In Section3 we will use this result to establish result
(1) above on the growth rate éfr). From that we will deduce in Sectighthat with high
probability R, has linearly many vertices of a given degree, and in each embedding there
are linearly many faces of a given size. In addition, we show thtsfa fixed planar graph
thenR,, contains with high probability linearly many vertex disjoint copiegipproving a
conjecture of Taragl3]. We deduce also the result mentioned above,jthat y,; and we
see that with high probabilit®,, has exponentially many automorphisms, and similarly for
random unlabelled planar graphs.
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In Section5, we show that the probability tha, is connected is bounded away from
one. In fact, we show thak,, contains an isolated vertex with probability bounded away
from zero. Similarly, we deduce that the probability ti®gtcontains a fixed planar graph
H as a connected component is also bounded away from zero. Finally we show, assuming
the ‘labelled planar graph isolated vertices conjecture’ (Conje&djethat as: — oo the
probability thatR,, is connected tends to a certain explicit constant, and similarly for the
probability thatR,, has a componert.

2. Connectivity |

In this section we will obtain bounds on the probability that a random planar graph is
connected and bounds on the expected number of components.

Theorem 2.1. The random numbet(R,) of components of the random planar gragh
is stochastically dominated ly+ X where X has the Poisson distribution with mdain
particular Pr[R, connected]>1/e and E[k(R,)]<2.

Indeed, we have the following more general result, which immediately implies Theorem
2.1

Theorem 2.2. LetC be any non-empty finite set of grapbach that for each graph G i,

if u and v are vertices in distinct components of G then the graph obtained from G by adding
an edge joining u and vis also (h Let R denote a graph sampled uniformly at random from

C. Then the random numbex R) of components of R is stochastically dominated bByX

where X has the Poisson distribution with mdarn particular, Pr[R connected]>1/e

and E[x(R)]<2.

We believe that the lower bounddon Pr[R, connectefifrom Theoren®.1is too low
and that the true value is closer to 0.95. Nevertheless, the bound from Th2@erght
well be tight. It would therefore be interesting is to exhibit a natural dfasigraphs which
shows that le is the best possible value. As a digression we note that if we Gaike
Theorem2.2to be the class, of all forests om labelled vertices, then the corresponding
(exact) result is

lim Pr[random forest irF, is connectefl= ¢~ /2.

n—oo

This follows from the result ifil2] that|F,| ~ e1/2n"—2,
In order to prove Theorer?.2we need two lemmas.

Lemma 2.3. Consider a Markov chainX,), with countable state spacet&nsition prob-
abilities p,, = Pr(X,+1 = v|X; = u], and with steady-state probabilities,. Let the
functionf: S — {0, 1,2, ..., m} be such thatifp,, > Othen f(v)< f(u) + 1, so that f
has‘at most unit increaselLet Sy = {s € S: f(s) = k} and letoy, = Zvesk n, for each
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k=0,1,...,m.Letas, ..., a,>0be such thatif§; # ¢ then

Z puv =ay foreachu e Si

veU <k S
and if Sy = @ thena; = 0. Alsg, letbo, ..., b,,—1 >0 be such that i§; # ¢ then

Z puy <by foreachu € S

VESk+1

and if Sy = ¢ thenb, = 0. Then

aj110k+1<byoy foreachk =0,...,m — 1.

Proof. Foreachk =1,2,...,mlet dy = ZueSk (nu Zueu,<ks,- p,w): then dy > ayoy.

Also, foreachk = 0,1,...,m — 1 letu; = ZueSk (nu Zveskﬂ puv)i then u; <byoy.
Letk € {0,1,...,m — 1} and consider the set = U; <« S;. Sincex,, = m, p,, defines a
circulation onS, the flowu; out of A equals the flow int@, which is at least/;,1; and so
uy >dgy1. Thus

brox Zug 2 di1 2 ak+10k4+1
as required. [

Lemma 2.4. Let 0<ry <s; for eachk >0, and suppose thaty = yo = 1, x; = ]‘[’]“(1) rj

andy, = ]_[] vs; for k>1and suppose that”; - y; is finite. Letpr = xi /(325 0 X;))
andgr = yi/(X ;> ¢,) for k>0.Then the distributioripy) is stochastically dominated
by the distribution(gy).

Proof. It suffices to consider the case whege= s, for eachk >0 other than somé. [For
we could then move fromy, r1, r2, ... t0sg, r1, r2, ... 10 50, 51, r2, . .. and so on, and use
an approximation argumentdf # r¢ for infinitely manyk >0.] Let k>0 be an integer.

We must show thal; <, p; > Y <, q)- Lete = 35 _ox; = Y5 g y;.
Suppose first that, = 0. Thenx;  , = x;,, =--- = 0. If0<k<k then

ngkxj Z;gkxj j<ky/
Sy s gel_qsd 5,

=
i<k ¢ 2j>0Yi  2jz0Yi i<k

as required. Ik > k, then)"; ., p; =1> 3", q;.
Now suppose that: # 0. Lety = s;/r; sothaty>1, and ledd = Z

Y jsoXj=c+dand) ;- oy =c+d. If 0 <k <k then

_i41%j- Note that

Z ._Zj<kxj>zj<kxf_ /<ky1_z
bi c+d 7 c+yd c+yd -

J<k J<k
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as required. Suppose then that k. As ZI;:JGH xj <d we obtain
k N Nk ) . k .
Z pj = ° Zj:12+1x/ > ¢+ VZJ:IEHX-/ _ c+ Zj:lEJrlyf
/ c+d - c+yd c+yd

<k
~Y g O

j<k

Proof of Theorem 2.2. Form a graphG(C), with a vertexvs for each graplG in C, and
with verticesvg andvy adjacent if they differ in exactly one edge. Metlenote the union
of all the vertex sets of all the graphs@rand letn = |V/|.

Perform a random walk oG (C) as follows. Suppose that we are currently at a vertex
vg. Pick a paire of distinct vertices uniformly at random from If e forms an edge in the
current graplG and if the graphH obtained fromG by deletingeis also inC then move to
vy, if eis not an edge in the current gra@and if the graptH obtained fromG by adding
eis also inC then move tawg; and if neither of the above conditions hold then stay still.
Since the transition matrix is symmetric, the uniform distribution is a stationary distribution
for this random walk.

We shall apply Lemma&.3. Let f(vg) = k(G) — 1 for each vertexg in G(C). Thenf
has at most unit increase. Letbe the maximum value of (G) overG € C. Observe that
Sr denotes the set of graphs frafrwhich have exactly + 1 components, and for each
k=0,1,...,mwehaveS; # @ and sas; = |Sk|/|C| # 0. Observe also that the transition
probabilitiesp,,,, of the Markov chain are either zero or equal to some fixed congiant
(whichis equalto 1(5)). Hence, the constanig andb, of Lemma2.3can be set as follows.
Fork=1,2,...,mlet

= po - min # EG) |G cC N k(G =k
aci=po- min_ #e g EG)|G+e k(G +e) = k)

andfork =0,1,...,m — 1let

by := po - max #eecEG)|G—ecC NKG—e)=k+2].
GeC:k(G)=k+1

(Here we take the maximum over an empty set to be 0.) As the number of possible edges
between two disjoint set& andY is | X||Y], and if 0 < |X|<|Y]| then|X||Y| > (|X]| —
1 (Y| + 1), it follows that we may takey = pg - [(g) + k(n — k)]. Since the number of
edges in a spanning forest of a graph with- 1 components ia — k — 1, we may take
by = po - [n — k — 1]. Note that for these values we halg/a;1<1/(k + 1) for each
k=0,1,...,m — 1. (See also Proposition 7 and Corollary §%j)

Letry = oxy1/0xfork =0,1,...,m—1andlet; = Ofork>n.Also,lets; = 1/(k+1)
for eachk >0. Then by Lemm&.3

rk = 0k41/0k <by/ag 1< sk

foreachk = 0,1,...,m — 1. Nowx; = g¢/ao and hencep; = oy for all k>0 in the
notation of Lemma.4, so thatk(R,) — 1 has the distributiofipy). Also, gx = e~ 1(1/k!)

for eachk >0, so that the distributiofyy) is the Poisson distribution with mean 1. Hence
the theorem follows from Lemm2a4. [
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Actually, basically the same proof can be used to bound the probability that a random
planar graph conditioned on having only components of size atiléastonnected. We
obtain the following extension of Theore22

Theorem 2.5. LetC be any non-empty finite set of grapksch that for each graph G in

C, if u and v are vertices in distinct components of G then the graph obtained from G by
adding an edge joining u and v is also ¢h Let R denote a graph sampled uniformly at
random fronC. Then for each positive integerthe random number of components of R of
order at least i is stochastically dominated by X, where X has the Poisson distribution
with mearil/i. In particular, if each component of each graphdrhas order at least i then
Pr(R connected]>e~ Y and E[k(R)]<1+ 1/i.

Proof. The only difference to the proof of Theore22 is that we takef (vg) to be the
number of components of order at leiasind the values af, andb; have to be redefined. The
minimum value in the definition af; is now obtained for the graph havikgzomponents
with exactlyi vertices and one component with— ki vertices (if such a graph is @),
yieldinga; = po - [(g)i2 + ki(n — ki)]. Similarly, the maximum fob; is obtained for a
graph havingk components with exactlyvertices and a tree component with- ki — 1
edges (if such a graph is ifY), yielding by = po - [(n — ki — 1 — 2( — 1))]. Hence,
bx/ax+1<1/(i(k + 1)) foreachk = 0, 1,...,m — 1, from which the claim now follows
in exactly the same way as in the proof of Theor2@ [

3. The number of planar graphs

The following lemma, which is a basic property of superadditive functions (see for ex-
ample[8, Lemma 11.6] will be very useful in our next theorem.

Lemma 3.1. Letf: N — N beafunctionsuchthat(i+j)> f()- f(j)foralli, j € N,
and letc = sup, f(n)Y/" (where c could bec). Thenf (n)Y" — ¢ asn — oc.

Theorem 3.2. There exists a finite constapt > 0 such that

<Z(n)>l/ﬂ
— — Yy asn— o0.
n.

Recall that we cal}, thelabelled planar graph growth constant

We shall deduce Theore&2from a more general result. Consider a non-empty alass
of finite graphs, which is closed under isomorphism. Cadimallif there is a constard
such that the numbef(n) of graphs inC on the vertices 1 . ., n satisfiesf (n) <d"n! for
all n sufficiently large; that isC is small if sup, (f(n)/n)Y" < co. CallC addableif (a) a
graphGis inC if and only if each component @ is in C; and (b) for each grap@ in C, if
u andv are vertices in distinct components®fthen the graph obtained fro@®by adding
an edge joiningi andv is also inC. For example, we saw earlier that the class of forests is
small, and clearly it is addable.
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Theorem 3.3. LetC be a non-empty class of finite graphs which is small and addable. Then
there is a finite constant > 0, the growth constant fo€, such that

<f<n)>i
— C as n — OQ.

n!

Proof. We letg(n) := f(n)/(¢? - n!) for eachn >1. Letc = sup, g(n)/". Thenc < oo

sinceC is small; andc > 0 sinceC is non-empty and s@(n) > 0 for somen. Denote by

fe(n) the number of connected graphs on the vertices.1 n which are inC. Note that
Theoren.2(applied to the graphs with vertices 1. . ., n) implies thatf,.(n) > f (n)/e.

Now £ + j)= (") - fe(i) fo(j) forall i, j € N: thisis clear ifi # j, and ifi = j we

could add an edge between the two components so that we do not need to divide by two.
We deduce that

. . 1 | j
ACR )N Oy A )

SO = a7 i il 2l
The theorem now follows from Lemni&a 1l [Observe that by the definition afwe also
have f (n) < e?c"n! for each positive integar] O

Proof of Theorem 3.2. Clearly, the clas$ of all labelled planar graphs is addable. As
we saw in the introductory remarks, we hak@) <n! - u(n) <n!- ¢" for an appropriate
constant and all sufficiently larger. Hence,P is also small and the theorem thus follows
from TheorenB3.3. O

Aswe will see shortly, the expected numiigof isolated vertices iR, plays animportant
role. Clearly,

L —1)

1, = n-Pr[v,isisolated inR,] = n
L(n)

From[5] we know that’(n) > (6n — 15)¢(n — 1) for n>5, so that

forn>5.

I <

n
6n — 15
In Theoremb.1 below we show that
Li=oe Y+ 0(1)

for an appropriate constant@ « < 1. That is,/, is contained in the intervgbe ! —
e, 1/6 + ¢] for all ¢ > 0 andn sulfficiently large. This prompts:

Conjecture 3.4(The labelled planar graph isolated vertices conjecjurg, tends to a
limitasn — oo.
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Note that, if this conjecture is true, then in fact the limit mustypé, wherey, is the
labelled planar graph growth constant, since

n!

—Zlogl == Iogme log7,.

Thus an equivalent conjecture is that

I, — y;l asn — 0.

4. Degrees, faces, subgraphs

We turn now to questions such as, how many vertices of dégoednow many triangular
faces does the random planar graphtypically have (in some embedding)? We start by
proving a more general result.

Let H be a graph on the vertex sft, .. ., i}, and letG be a graph on the vertex set
{1,...,n} wheren > h. Let W C V(G) with |W| = h, and let the ‘rootry denote the
least element iW. We say thatH appearsatW in G if (a) the increasing bijection from
{1, ..., h} to Wgives an isomorphism betweéhand the induced subgragh W] of G;
and (b) there is exactly one edgeGrbetweenV and the rest o, and this edge is incident
with the rootry . We let f (G) be the number of appearancesbih G, that is the number
of setsW C V(G) such thaH appears atVvin G.

Theorem 4.1. LetC be a non-empty class of finite graphs which is addable and swi#il
growth constant c. LeR, = R, (C) be uniformly distributed over the graphs éhwith
vertex setl, ..., n}. Let H be a connected graph on the vertex{det .., i} in C, and let
o = 1/(92c" (h + 2)h!). Then there exists such that

Pr( fu(Ry) <an] < e forall n>no. )

Before we prove this result, let us note that in particular it implies that there is a constant
o > 0 such that the probability thdk, fails to have a subgrapkis is O (e~*"). This gives
rise to a fast expected-time colouring algorithm for planar graphs as follows. First we check
if there is a subgrapk 4, in linear time, se@l0]. If there is one we apply the quadratic time
algorithm to four-colour planar graphs, which follows from the proof of the four-colour
theorem, sefl 1], to colour the graph optimally. In the remaining cases, which happen with
probability at mosD (e~*"), we colour the graph optimally in subexponential timev")
by using the/n-separator theorem. It follows that we can colour a random planar graph
optimally in quadratic expected time. This observation is due to Anusch Taraz and Michael
Krivelevich.

Proof of Theorem 4.1. We shall often writex instead of| x| or [x] to avoid cluttering up
formulae. This should cause the reader no problemsflzete?c” (h + 2)h!. Observe that
the bound orx implies thateff < 1 and we may therefore write$)* = 1 — 3¢, where
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0 < ¢ < 1. Note that
1—¢
- 1
(1-391+e2

Let f(n) denote the number of graphsdronn vertices. By Theorer.3there is a positive
integerng such that for each > ng we have

(4)

A-e" - nd"<fn)<@A+¢"-n!c". (5)

Letd = ah and note thad < 1.
Assume that Eq.3) does not hold for some > ng. We intend to show that then

F(@+0m) > L+eH" (14 on]t- T,

contradicting §). In order to see this, we construct grajgfisn C on vertex setl, ..., (1+
o)n} as follows. First we choose a subsetoaf special vertices((lglf)”) choices) and a
graphG < C on the remaining vertices that satisfiegy (G) <an. By assumption there

are at least
e fn)=e (1 —e)"c"n!

such graph$s. Next we consider thén special vertices. We partition them int@ (un-
ordered) blocks of sizb. On each blockB we put a copy oH such that the increasing
bijection from{1, ..., h} to B is an isomorphism betweethand this copy. Call the lowest
numbered vertex iB theroot rg of the block. For each block we choose a non-special
vertexvg and add the edge; v from the root to this vertex: observe thatappears aB

in G’. This completes the construction 6f € C. For each choice of special vertices, and
eachG e C on the remainingn vertices, we construct

< on ) 1 o (On)In*" < (on)!
h---h

e T W an)! T (e

graphsG’.

How often is the same gragh’ constructed? Call an oriented edge- uv goodin G’ if
itis a cut-edge irG’, the componen of G’ — e containingu hash nodesyu is the least of
these nodes, and the increasing map f{dm. ., i} to V(G) is an isomorphism between
H andG. Observe that each added oriented edge; is good. Indeed, there is exactly one
good oriented edge for each appearanck @f G. We shall see tha’ contains at most
(h 4+ 2)an good oriented edges. It will then follow that the number of times @fatan be
constructed is at moséfh*;{i)“”) <((h + 2)e)™.

We may bound the number of good edge&iras follows. (a) There are exactty added
oriented edgesgvp. (b) There are at mostz good oriented edges= uv in E(G) (that
is, such that the unoriented edge iG for in this case the entire component@f — ¢
containingu must be contained i (if it contained any other vertex it would have more
thanh vertices), and so the number of them is at mAgtG). (c) There are at mogion
‘extra’ good oriented edges. To see this, consider a lyeind letd denote the connected
graph formed from the induced subgra@H B] (which is isomorphic tdd) together with
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the vertexvp and the edgevp. Each ‘extra’ good oriented edge must be a cut edge in
such a graplH oriented away fromyg, and in each grapH there are at mostcut-edges.
We may put the above results together to obtain

A+on\ _,, o (on)!
f((L+0)n) > < n )~e (1—¢)"c"n!- %

— [(L+ O)n]! - T+ (1 _gyn. (ezch (h + 2)h!oc) -

((h+2)e)~™

5 .
(/>) FA+0n) A+ M 1 _g". (1—3)™"

1—¢ "
= f((1+40)n) <—(1_ 31T 5)2>

2 @+ om.
yielding the desired contradiction.(]

We shall use the last result withas the clas® of all labelled planar graphs, which we
have seen is addable and small. By choosing appropriate grbplesare able to deduce
that with high probability, the random planar gragh has (a) linearly many vertices of
each given degree, (b) for all embeddings linearly many faces of each given size, and (c)
exponentially many automorphisms. After that, we consider appearances of linen
graphing,.

Comment We might be interested in a random connected grapR,inor perhaps a
random connected or 2-vertex-connected grapR,inand so on. For suitable definitions
of ‘addable’ and ‘appears’ there are corresponding versions of the last theorem: we do not
pursue such results here.

Theorem 4.2. For a graph G letd, (G) denote the number of vertices with degree equal
to k. There exists a constadit> 0 such tha for each positive integer, kf we seto;, =
d/(y’g(k + 2)!), graph constarnt then for all sufficiently large n

Pridi(R,) < axn]<e ™", (6)

Proof. Consider the case whetis a star ork + 1 vertices. More precisely, |ét be the
graph on vertice$l, ..., k 4+ 1} in which vertexk + 1 is connected to all other vertices.
Since the appearanceslafdefine distinct vertices of degré&ewe haved, (G) > fy(G),
and so the result follows from Theorefri. [

Observe that ifi >2 andH is the star on verticefl, ..., ik} in which (in contrast to
the above proof) vertex 1 is connected to each other vertex, &dsithe star on vertices
{1, ..., h + 1} in which vertex 1 is connected to each other vertex, tHappears times
in G, each time centred at vertex 1, and so the appearanddsacé not vertex disjoint.
However, if the grapi is 2-edge-connected then the appearancesiofny graphs have
to be vertex disjoint.

Theorem 4.3. For a planar graph G letf; (G) denote the number of faces of sizerni-
mized over all embeddings of G. There exists a congtant0 such thatfor each integer
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k>3, if we setf, = d//(y’g(k + 1)), then for all sufficiently large n
Prifi(Ry) < Pynl<e P, @)

Proof. We again apply Theoredh 1 This time we chooselacycle on vertice$l, ..., k}
asthe grapHl. SinceH is 2-edge-connected, the appearancésiudve to be vertex disjoint.
Also, in each embedding of the gragh on the sphere, each appearandd obrresponds to
ak-face of its component of the graph. Hence the numbkifates in any plane embedding
of R, is atleast the number of appearanced t#ss twice the number( R, ) of components.
But by Theoren®.1, Pr(x(R,) > j1<1/j!, and the theorem follows. [

Let us briefly consider large vertex degrees and face-sizes. It is not difficult to check that
Theoremd.1remains true if the orddr of the graptH depends om, as long as it does not
grow too quickly. We obtain:

Proposition 4.4. With probabilityl —o(1) arandom planar graplR, has maximum degree
Q(ogn/loglogn), and has the property that every embedding contains a face of size
Q(logn/loglogn).

We may easily obtain an upper bound of abouble@n the maximum size of a face, to
pair with the second half of the above result.

Proposition 4.5. Letw(n) — oo asn — oo, and letd(n) be the probability thaR,, has an
embedding with a face of size at leltsd, n + w(n). Thenlim inf,,_, o d(n) = 0,and if the
labelled planar graph isolated vertices conjectu@njecture3.4, holds therd(n) — Oas
n — o0.

Proof. If f denotes logn + w(n), then
en+1)=8m)en) - 27 = 5(n)emn) n o),
so that
Ln+1)
nt(n)
and the result follows. [

o(mym(n) <

bl

Now we consider graph automorphisms. Wedet(G) denote the number of automor-
phisms of a grapl®.
Theorem 4.6. There are constants, 5, y > 0 such that
Pri2* <aut(R,) <2P"1 = 1— 027,
Proof. LetH be the graph on the vertex gét 2, 3} with the two edge$1, 2} and{1, 3}.

Then the number of automorphismast (G) is at least 27 (%), Thus by Theorem.1, there
are constants, y > 0 such that

Prlaut(R,) < 2™l = 0(27"").
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Now consider the upper bound an7(R,). Let f > 0 satisfy Z~7 > v,/7;- The isomor-

phism class of a grap8 in P, (that is, the set of graphs iR, isomorphic toG) has size

n!/aut(G). Thus ifaut (G) > 2P then the isomorphism class Gfin P, has size at most
n!/2P" Hence

u(n) =L(n)Priaut (R,) =21 27 /1

and so

u(n)
t(n)/n!

From the lower bound oy and the upper bound gr) in (2), we see that we may choose
p =0.31.

Priaut (R,) >2/" < ————27/" = <y_"2‘ﬁ+o(1)> —o@™. O
Y1

Corollary 4.7. The labelled planar graph growth constaytand the unlabelled planar
graph growth constang, satisfyy, < y,.

Proof. Again we use the observation that the isomorphism class of a @apf, has size
n!/aut (G). Thus by the last theorem, the number of such graphs which are in isomorphism
classes of size 2=*'n!isat most 27"¢(n), which is at mos%ﬂ(n) for n sufficiently large.

But then

u(n)=3L(n)/ (2" n),
that is
2(n)/n! <2Y" " u(n);

and it follows thaty, <27%y,. O

Corollary 4.8. Let U, denote a graph sampled uniformly at random from the unlabelled
simple planar graphs on n vertices. There is a conséant0 such that

Prlaut (Uy,) <2°"] = 0(27").
Proof. The last result showed that/y, < 1.Letd > O satisfy 22 > y,/y,. Observe

as before that it; € P, satisfiesiur (G) <2°" then the isomorphism class Gfin P, has
size at least 2”"n!. Hence

£n) > u(m)Prlaut (U,) <21 27!

and so

Prlaut (U,) <2°1< Z(”()/)” 20n _ (V_l 20 —|—0(1)) =027, O
n
We now turn to copies iR, of aplanegraphH, that is of a grapiH embedded in the
plane. What does it mean fét to ‘appear’ inR,,? LetH andG be two plane graphs. Let
us say thatH appearsin G at the vertex seW < V(G), if (a) the underlying graph of

u
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>ﬁ_

Fig. 1. Plane graphid which cannot appear iall embeddings oR,,.

H appears a¥Vin the underlying graph o, (b) there is a continuous deformation of the
plane takingH to the induced plane subgraphiW] of G, and (c) if no vertex o¥/ (G) \ W
is contained in an interior face of[W].

We start with anillustrative example. Consider the two grapimsFig. 1. Then, obviously,
for each planar grap® there does exist an embedding®fn which H does not appear.
(Just start from an arbitrary embedding and then flip the interior vertices/vertex into the
other face.) Itis thus not possible to show that, for a given plane dfatite random planar
graph R, contains linearly many copies &f in eachembedding. On the other hand we
know from Theoremd.1 that R,, contains with high probability linearly many copies of
each fixed planar graph.

By arguing as in the proof of Theorefn3we may obtain

Proposition 4.9. Let H be a connected plane graph. Lgi(G) denote the function which
counts for a planar graph G the maximum over all embeddings of G of the maximum number
of pairwise vertex disjoint appearances of H. Then there exists a constartt such that

Prifu(Ry) < an]<e™** for all sufficiently largen.

If H is 3-connected then the claim remains trugjf (G) is defined byninimizing over all
embeddings of G.

To close this section, we return to considering vertex degrees. We show that the expected
number of vertices of degree 0, 1 or 2 in a random planar giapten be easily related to
other quantities of interest. Lé{n) denote the average degreeRryf. that is,

dmy=2 | Y |EG)||/ (@),

GePy,

where as befor®, denotes the collection of all simple planar graphsitabelled vertices.
Fromthe results noted earlier on the number of edgRgs ime may see that 3< d(n) <5.08
for n sufficiently large.

Theorem 4.10. Let X; denote the number of vertices with degree i in a random planar
graphR,,. Then

_n~£(n—1)

E[Xol = W = In,
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E(X1l=(n—-1) ~_[E [Xo] = (n — D)1,
E(X2]l=E[X1] - d(n —1),
whered (n — 1) is the average degree &f,_1.

Proof. Clearly,

-1
E[Xo] = n-Pr[v, has degree 0 iR,,] n- K(Z( ) )
n

and similarly,

(n—1tn -1
n—
£(n)

To show the third claim we proceed as follows. [Btdenote, as above, the collection of
all simple labelled planar graphs orvertices. Furthermore, we denote for a planar graph
G = (V, E) by add(G) the number of edges¢ E such thaiG + e is still planar.

Consider now the digraph with vertex g8t and directed edgess, H) if and only if
H = G + e for some edge ¢ E(G). As the sum of all indegrees is equal to the sum of all
outdegrees, we deduce

Y IEG) = ) add(G).

GeP, GeP,

E[X1] = n-Pr[v, has degree 1iR,] =

Observe also that all graphsfit in which vertexv,, has degree exactly two can be obtained
from a graphG’ on the remaining vertices by joining to both vertices of an edge @' or
to both vertices of an edgé that can be added 16’ without destroying planarity. Hence,
£(n) - Prv, has degree 2 i®,] = Z (IE(G"| + add(G"))
G ePy-1
=2 ) |EG))
G'e€Pp-1
=0 —Dln—Dd(n —1).
Hence,
E[X2]=n - Pr[v, has degree 2 iR,]
_n(n—1tn —1)
B £(n)
=E[X1]-d(n — 1). O

din—1)

5. Connectivity I

In this final section, we first give a lower bound for the probability tRahas an isolated
vertex, and more generally thAf, has a component isomorphic to a given planar gtdph
After that, we see that if we assume the truth of ConjecBMethe labelled planar graph
isolated vertices conjecture, then we can determine the limiting values of these probabilities,
and the limiting value of the probability th&, is connected.
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Theorem 5.1. Leta > Obe suchthaR, has atleastn vertices of degregwith probability
1—0(1) asn — oo (such anx exists by Theore®.2). Then

Pr(R, has an isolated vertex] >ae t+ o(1).

Proof. Let us denote by (n) the number of labelled planar graphs mwertices which
contain at leastn vertices of degree 1, and by (n) the number of connected labelled
planar graphs on vertices which contain at leagt vertices of degree 1. Finally, [t (n)
denote the number of labelled planar graphs@ertices which contain an isolated vertex.
By Theorem2.1 we know thaté.(n) >e¢~1 - £(n). By our choice ofx we know that
{(n)>(1— &(n)) - £(n), whereg(n) = o(1). Combining these inequalities we get

)= (et —em)) - £(n).

Clearly, every graph with at leash vertices of degree 1 can be used to consteuct
graphs with an isolated vertex by simply removing one of the edges incident to a vertex of
degree one. In addition, one easily observes that if we start fammectedyraphs only,
then every graph is generated at most1 times. (Note that this corresponds to the number
of ways to reattach the isolated vertex.) Hence, we get

mn»Mxl— een) o et )
p—

from which the claim of the theorem follows immediately.]

Actually, the proof of Theoren.1 easily generalizes to (finite) components different
from isolated vertices. Recall thatit (H) denotes the size of the automorphism group of
a graphH.

Theorem 5.2. Let H be a(fixed planar graph on k vertices. Then
Pr[R, contains a component isomorphic to H] > (1+ o(1)) - e_lcxk/aut(H)

whereo > 0is a constant as in Theorefl

Proof. We proceed as in the proof of Theoré&mi. Every graph with at leastn vertices

of degree 1 can be used to constr(fﬁ‘t) . #('H) graphs with a component isomorphic

to H. Again the fact that we start with connected graphs only implies that every graph is
generated at most — k)* times. Hence, we get that the number of graphs with a component

isomorphic toH is at least
; k!
Ec(l’l) ’ (3;(”) " aut(H)
(n — k)k

from which the claim follows similarly as above[]

Next we see that if we assume the truth of Conjec®i the labelled planar graph
isolated vertices conjecture, then the probability tRatis connected tends to a limit and
we can determine this limit, and similarly for the probabilities appearing in the above
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two theorems. We start with some notation and two lemmas. As usudl,[{&);] =
E[X(X —1)---(X — k + 1)] denote théth factorial moment.

Lemma 5.3. Assume that Conjectu4 holds. LetH;, . .., H,, denote a fixed collection
of pairwise non-isomorphic connected planar graphs. Furthermete:; := |V (H;)|; let
a; := aut (H;), the number of automorphisms Bf; and IetX,(f) denote a random variable
which counts the number of components isomorphié;to the random planar grapl®,
on n vertices. Then

1 1\~ 1 o
[E[(Xr(l ))kl . (Xr(lm))km] N <—n1> i asn — o0
ai -y, am -7,

for everyky, ..., k, € No, wherey, is the labelled planar graph growth constant.

Proof. Consider some fixed constaris . .., k, € No, and letk = Y\ ; kyn. In the
following we assume without loss of generality that 1 for all 1<i <m. We construct a

planar graph om vertices with at least; components that are isomorphici® as follows.

First we choose the vertices of the components, then we insert appropriate cafijesof

the vertices of each component and choose a planar graph on the remaining vertices. This

can be done in exactly

m ki i—1 j i i
l_[ l_[ <n — > iksng — (j — 1)”l> . n_" L(n —K)
ni di

i=1 j=1 !

ways. Now let us deduce how often a specific planar g@&ghconstructed. Obviously, this
depends on the number of component§&dhat are isomorphic to som; . If G contains
t; components that are isomorphici, thenG is constructed exactly

[[ei-@G-D @ —k+1D)
i=1

times. Hence, if we denote ti(n; 1, ..., t,,) the number of planar graphs orvertices
with exactlys; components that are isomorphicf#, then the definition of the expectation
implies

ELCX M)k - (XU, 1

= Tt =Dt —k ity ..o tm)
= Z <1t, ti =1 - (t k,+1)) o

Hyeortiy =1 \i=

lﬂ[ lk_[ <n—Ziziksns — —1)n,->ni! tn = K)
[1] , a | )
i=1 j=1

nj aij
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m K K .
1 ) ( , (o —i)
= l_[_k, . l—[(n—l+1))~<1_[_—.
(i:l a; i=1 gt it D
m K
1
i=1 Y i=1

But now Conjecture3.4 (which is equivalent to lim, . I, = y;l) completes the proof,
sinceK is a constant. [

In order to apply Lemma&.3the following lemma (see for examp]é]) turns out to be
very useful.
Lemma 5.4. Let(X,(,l), R X,(lm)) be m-vectors of random variablesherem > 1 is fixed.
If A1, ..., 4, are such thatasn — oo,
ELXP)gy - (X, ] — AT jh

for everyky, ..., kn € No, then(x, ..., x™) 4 (Z1,...,Z4), whereZ; € Po(J;)
are independent.

With these two lemmas at hand we can now determine the limiting value of the probability
that R, is connected.

Theorem 5.5. Assume that Conjectu&4 holds. Enumerate the connected graph$in
thenP, thenP3 and so onas H1, H», Hs, . ... Letn; := |V (H;)|, and leta; := aut (H;),
the number of automorphisms Hf. j vertices Then

o0 ‘Mll'
Pr[R, is connected] — e~ YizalV@ir) g pn — oo,

Proof. For each positive integdsrlet
S ST )

From Lemméab.3together with Lemm&.4 it follows that
Pr[R, has no component of ordetk] = p; + o(1)

asn — oo. If X has the Poisson distribution with mean(L+ 1), then by Theorer2.5we
have

Pr[R, has at most one component of ordek + 1] >Pr[X = 0] = ¢~ Y/*+D,
Hence

Pr[R, is disconnected< 1 — e Y **+D 11— p + 0(1).
Thus

i — (L— e YDy 4 5(1) <Pr[R, is connectef pi + o(1),
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S0
IPr[R, is connectefl— pi| <1 — e V&0 4 5(1),
and the theorem follows.

Finally, we note that Lemmas.3 and 5.4 also determine the limiting values of the
probabilities considered in Theoreéh? and thus in Theorers. 1

Theorem 5.6. Assume that Conjectui@4 holds. Let H be a fixed planar graph and let
aut (H) denote the number of automorphisms of H. Then the number of components of

R, isomorphic to H is asymptotically Poisson distributed with paramét@rvhere/l‘1 =

aut(H)y‘KV(H)l; and so

Pr[R, has a component isomorphic to H]

—1/(aut (H)-y)"

—- 1l—e as n — oo.

As a special case we obtain the limit of the probabilities tRatcontains an isolated
vertex.

Corollary 5.7. Assume that Conjectu®4 holds. Then the number of isolated vertices in
R, is asymptotically Poisson distributed with parametgy,; and so

Pr[R, contains an isolated vertex] — 1—e Y asn — oco.
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