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Abstract

We study various properties of the random planar graphRn, drawn uniformly at random from the
classPn of all simple planar graphs onn labelled vertices. In particular, we show that the probability
thatRn is connected is bounded away from 0 and from 1.We also show for example that each positive
integerk, with high probabilityRn has linearly many vertices of a given degree, in each embedding
Rn has linearly many faces of a given size, andRn has exponentially many automorphisms.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let Pn denote the class of all simple planar graphs on the vertices 1, . . . , n, and letRn

denote a graph drawn uniformly at random from this class. The random planar graphRn

was introduced in[5]. We are interested here in the probability thatRn is connected, the
number of vertices of a given degree, the number of faces of a given size in an embedding,
the existence of given (planar!) subgraphs, and so on. It turns out that the rate of growth of
�(n) = |Pn| is of central importance to our investigations.
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Let us sketch some relevant background, concerning the numbers of planar graphs and
the numbers of edges in such graphs, before going on to give an outline of the paper.
First consider the number of unlabelled planar graphs. Letu(n) denote the number of

unlabelled simple planar graphs onn nodes, that is, the number of isomorphism classes of
graphs inPn. It is shown byDenise et al.[5] that there is a constant�u, theunlabelled planar
graph growth constant, such thatu(n)1/n → �u asn → ∞; and, using work of Tutte[14]
on counting triangulations, that 9.48< �u < 75.9. The upper bound was recently reduced
to �u�32.2 by Bonichon et al.[4].
Now let us return to considering labelled planar graphs. We shall see in Theorem3.2

below that there is a constant�� such that

(�(n)/n!)1/n → �� as n → ∞. (1)

We call�� thelabelled planar graph growth constant. Since�(n)�n! u(n)we have����u,
and so from the above we have���32.2.We shall see that in fact�� < �u. In [2] Bender et
al. give an asymptotic formula for the number of 2-connected graphs inPn, which shows
that���26.1. Thus

26.1��l < �u�32.2. (2)

A focus in investigating random planar graphs has been the number of edges in such
graphs. It is shown in[5] that the expected number of edgesE [|E(Rn)|] is at least(3n−6)/2.
This is improved by Gerke and McDiarmid[6] who showE [|E(Rn)|]� 13

7 n + o(n); and
(note that137 > 1.85) that Pr[|E(Rn)|�1.85n] = O(e−�n) for some� > 0.
In Osthus et al.[9] it is shown that with probability 1− o(1) we have|E(Rn)|�2.56n.

This upper bound is improved in[4] to 2.54n. Numerical computations forn = 1000 using
the method suggested in[5] indicate that both upper and lower bounds are weak and that
the correct value is close to 2.2n. In [4] it is shown that the same upper bound of 2.54n
applies also to the number of edges in unlabelled planar graphs (and to connected labelled
or unlabelled planar graphs). Further it is shown that unlabelled planar graphs have at least
1.7n edges with probability 1− o(1) (and the same result holds for the connected case).
As one last piece of background on what is known aboutRn, note that it has recently

been shown by Bodirsky et al.[3] how to generateRn exactly in time polynomial inn. See
[1] and the references therein for a wealth of results on unlabelled connected planar maps
(embedded in the plane) with a given number of edges. From now on, we shall consider
only the labelled case, except in Corollaries4.7and4.8.
Outline of the paper: In the next section we will show that the random planar graphRn is

connected with probability at least 1/e. In Section3wewill use this result to establish result
(1) above on the growth rate of�(n). From that we will deduce in Section4 that with high
probabilityRn has linearly many vertices of a given degree, and in each embedding there
are linearly many faces of a given size. In addition, we show that ifH is a fixed planar graph
thenRn contains with high probability linearly many vertex disjoint copies ofH, proving a
conjecture of Taraz[13]. We deduce also the result mentioned above, that�� < �u; and we
see that with high probabilityRn has exponentially many automorphisms, and similarly for
random unlabelled planar graphs.
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In Section5, we show that the probability thatRn is connected is bounded away from
one. In fact, we show thatRn contains an isolated vertex with probability bounded away
from zero. Similarly, we deduce that the probability thatRn contains a fixed planar graph
H as a connected component is also bounded away from zero. Finally we show, assuming
the ‘labelled planar graph isolated vertices conjecture’ (Conjecture3.4), that asn → ∞ the
probability thatRn is connected tends to a certain explicit constant, and similarly for the
probability thatRn has a componentH.

2. Connectivity I

In this section we will obtain bounds on the probability that a random planar graph is
connected and bounds on the expected number of components.

Theorem 2.1. The random number�(Rn) of components of the random planar graphRn

is stochastically dominated by1+X where X has the Poisson distribution with mean1. In
particular Pr[Rn connected]�1/e and E [�(Rn)]�2.

Indeed, we have the following more general result, which immediately implies Theorem
2.1.

Theorem 2.2. LetC be any non-empty finite set of graphs, such that for each graph G inC,
if u and v are vertices in distinct components of G then the graph obtained fromG by adding
an edge joining u and v is also inC.Let R denote a graph sampled uniformly at random from
C.Then the random number�(R) of components of R is stochastically dominated by1+X

where X has the Poisson distribution with mean1. In particular, Pr[R connected]�1/e
and E [�(R)]�2.

We believe that the lower bound 1/e on Pr[Rn connected] from Theorem2.1 is too low
and that the true value is closer to 0.95. Nevertheless, the bound from Theorem2.2might
well be tight. It would therefore be interesting is to exhibit a natural classC of graphs which
shows that 1/e is the best possible value. As a digression we note that if we takeC in
Theorem2.2to be the classFn of all forests onn labelled vertices, then the corresponding
(exact) result is

lim
n→∞ Pr[random forest inFn is connected] = e−1/2.

This follows from the result in[12] that|Fn| ∼ e1/2nn−2.
In order to prove Theorem2.2we need two lemmas.

Lemma 2.3. Consider a Markov chain(Xt ),with countable state space S, transition prob-
abilities puv = Pr[Xt+1 = v|Xt = u], and with steady-state probabilities�v. Let the
functionf : S → {0,1,2, . . . , m} be such that ifpuv > 0 thenf (v)�f (u) + 1, so that f
has‘at most unit increase’. LetSk = {s ∈ S : f (s) = k} and let�k = ∑

v∈Sk �v for each
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k = 0,1, . . . , m. Leta1, . . . , am�0 be such that ifSk �= ∅ then∑
v∈∪j<k Sj

puv�ak for eachu ∈ Sk

and ifSk = ∅ thenak = 0.Also, let b0, . . . , bm−1�0 be such that ifSk �= ∅ then∑
v∈Sk+1

puv�bk for eachu ∈ Sk

and ifSk = ∅ thenbk = 0.Then

ak+1�k+1�bk�k for eachk = 0, . . . , m − 1.

Proof. For eachk = 1,2, . . . , m let dk = ∑
u∈Sk

(
�u

∑
v∈∪j<kSj

puv

)
: then dk�ak�k.

Also, for eachk = 0,1, . . . , m − 1 let uk = ∑
u∈Sk

(
�u

∑
v∈Sk+1

puv

)
: then uk�bk�k.

Let k ∈ {0,1, . . . , m− 1} and consider the setA = ∪j �kSj . Sincexuv = �upuv defines a
circulation onS, the flowuk out ofA equals the flow intoA, which is at leastdk+1; and so
uk�dk+1. Thus

bk�k�uk�dk+1�ak+1�k+1

as required. �

Lemma 2.4. Let 0�rk�sk for eachk�0,and suppose thatx0 = y0 = 1,xk = ∏k−1
j=0 rj

andyk = ∏k−1
j=0 sj for k�1 and suppose that

∑
j �0 yj is finite. Letpk = xk/(

∑
j �0 xj )

andqk = yk/(
∑

j �0 yj ) for k�0.Then the distribution(pk) is stochastically dominated
by the distribution(qk).

Proof. It suffices to consider the case whererk = sk for eachk�0 other than somêk. [For
we could then move fromr0, r1, r2, . . . to s0, r1, r2, . . . to s0, s1, r2, . . . and so on, and use
an approximation argument ifsk �= rk for infinitely manyk�0.] Let k�0 be an integer.

We must show that
∑

j �k pj � ∑
j �k qj . Let c = ∑k̂

j=0 xj = ∑k̂
j=0 yj .

Suppose first thatr
k̂

= 0. Thenx
k̂+1 = x

k̂+2 = · · · = 0. If 0�k� k̂ then

∑
j �k

pj =
∑

j �k xj

c
�
∑

j �k xj∑
j �0 yj

=
∑

j �k yj∑
j �0 yj

=
∑
j �k

qj ,

as required. Ifk > k̂, then
∑

j �k pj = 1� ∑
j �k qj .

Now suppose thatr
k̂

�= 0. Let� = s
k̂
/r

k̂
so that��1, and letd = ∑∞

j=k̂+1
xj . Note that∑

j �0 xj = c + d and
∑

j �0 yj = c + �d. If 0�k� k̂ then

∑
j �k

pj =
∑

j �k xj

c + d
�
∑

j �k xj

c + �d
=
∑

j �k yj

c + �d
=
∑
j �k

qj ,
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as required. Suppose then thatk > k̂. As
∑k

j=k̂+1
xj �d we obtain

∑
j �k

pj =
c +∑k

j=k̂+1
xj

c + d
�

c + �
∑k

j=k̂+1
xj

c + �d
=

c +∑k

j=k̂+1
yj

c + �d

=
∑
j �k

qj . �

Proof of Theorem 2.2. Form a graphG(C), with a vertexvG for each graphG in C, and
with verticesvG andvH adjacent if they differ in exactly one edge. LetV denote the union
of all the vertex sets of all the graphs inC and letn = |V |.
Perform a random walk onG(C) as follows. Suppose that we are currently at a vertex

vG. Pick a paireof distinct vertices uniformly at random fromV. If e forms an edge in the
current graphG and if the graphH obtained fromG by deletinge is also inC then move to
vH ; if e is not an edge in the current graphG and if the graphH obtained fromG by adding
e is also inC then move tovH ; and if neither of the above conditions hold then stay still.
Since the transitionmatrix is symmetric, the uniform distribution is a stationary distribution
for this random walk.
We shall apply Lemma2.3. Let f (vG) = �(G) − 1 for each vertexvG in G(C). Thenf

has at most unit increase. Letmbe the maximum value off (G) overG ∈ C. Observe that
Sk denotes the set of graphs fromC which have exactlyk + 1 components, and for each
k = 0,1, . . . , mwe haveSk �= ∅ and so�k = |Sk|/|C| �= 0. Observe also that the transition
probabilitiespuv of the Markov chain are either zero or equal to some fixed constantp0
(which is equal to 1/

(
n
2

)
). Hence, the constantsak andbk of Lemma2.3can be set as follows.

Fork = 1,2, . . . , m let

ak := p0 · min
G∈C :�(G)=k+1

#{e �∈ E(G) | G + e ∈ C ∧ �(G + e) = k}

and fork = 0,1, . . . , m − 1 let

bk := p0 · max
G∈C :�(G)=k+1

#{e ∈ E(G) | G − e ∈ C ∧ �(G − e) = k + 2}.

(Here we take the maximum over an empty set to be 0.) As the number of possible edges
between two disjoint setsX andY is |X||Y |, and if 0< |X|� |Y | then |X||Y | > (|X| −
1)(|Y | + 1), it follows that we may takeak = p0 · [(k2) + k(n − k)]. Since the number of
edges in a spanning forest of a graph withk + 1 components isn − k − 1, we may take
bk = p0 · [n − k − 1]. Note that for these values we havebk/ak+1�1/(k + 1) for each
k = 0,1, . . . , m − 1. (See also Proposition 7 and Corollary 8 of[5].)
Letrk = �k+1/�k for k = 0,1, . . . , m−1and letrk = 0 fork�n.Also, letsk = 1/(k+1)

for eachk�0. Then by Lemma2.3

rk = �k+1/�k�bk/ak+1�sk

for eachk = 0,1, . . . , m − 1. Now xk = �k/�0 and hencepk = �k for all k�0 in the
notation of Lemma2.4, so that�(Rn) − 1 has the distribution(pk). Also,qk = e−1(1/k!)
for eachk�0, so that the distribution(qk) is the Poisson distribution with mean 1. Hence
the theorem follows from Lemma2.4. �
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Actually, basically the same proof can be used to bound the probability that a random
planar graph conditioned on having only components of size at leasti is connected. We
obtain the following extension of Theorem2.2.

Theorem 2.5. Let C be any non-empty finite set of graphs, such that for each graph G in
C, if u and v are vertices in distinct components of G then the graph obtained from G by
adding an edge joining u and v is also inC. Let R denote a graph sampled uniformly at
random fromC. Then for each positive integer i, the random number of components of R of
order at least i is stochastically dominated by1+ X, where X has the Poisson distribution
with mean1/i. In particular, if each component of each graph inC has order at least i then
Pr[R connected]�e−1/i and E [�(R)]�1+ 1/i.

Proof. The only difference to the proof of Theorem2.2 is that we takef (vG) to be the
numberof componentsof order at leasti, and thevaluesofak andbk have tobe redefined.The
minimum value in the definition ofak is now obtained for the graph havingk components
with exactly i vertices and one component withn − ki vertices (if such a graph is inC),
yielding ak = p0 · [(k2)i2 + ki(n − ki)]. Similarly, the maximum forbk is obtained for a
graph havingk components with exactlyi vertices and a tree component withn − ki − 1
edges (if such a graph is inC), yielding bk = p0 · [(n − ki − 1 − 2(i − 1))]. Hence,
bk/ak+1�1/(i(k + 1)) for eachk = 0,1, . . . , m − 1, from which the claim now follows
in exactly the same way as in the proof of Theorem2.2. �

3. The number of planar graphs

The following lemma, which is a basic property of superadditive functions (see for ex-
ample[8, Lemma 11.6]) will be very useful in our next theorem.

Lemma 3.1. Letf : N → N be a function such thatf (i+j)�f (i)·f (j) for all i, j ∈ N,
and letc = supn f (n)

1/n (where c could be∞). Thenf (n)1/n → c asn → ∞.

Theorem 3.2. There exists a finite constant�� > 0 such that

(
�(n)

n!
)1/n

→ �� as n → ∞.

Recall that we call�� the labelled planar graph growth constant.
We shall deduce Theorem3.2from a more general result. Consider a non-empty classC

of finite graphs, which is closed under isomorphism. CallC small if there is a constantd
such that the numberf (n) of graphs inC on the vertices 1, . . . , n satisfiesf (n)�dnn! for
all n sufficiently large; that is,C is small if supn (f (n)/n!)1/n < ∞. CallC addableif (a) a
graphG is in C if and only if each component ofG is in C; and (b) for each graphG in C, if
u andv are vertices in distinct components ofG then the graph obtained fromG by adding
an edge joiningu andv is also inC. For example, we saw earlier that the class of forests is
small, and clearly it is addable.
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Theorem 3.3. LetC be a non-empty class of finite graphs which is small and addable. Then
there is a finite constantc > 0, the growth constant forC, such that

(
f (n)

n!
) 1

n → c as n → ∞.

Proof. We letg(n) := f (n)/(e2 · n!) for eachn�1. Let c = supn g(n)
1/n. Thenc < ∞

sinceC is small; andc > 0 sinceC is non-empty and sog(n) > 0 for somen. Denote by
fc(n) the number of connected graphs on the vertices 1, . . . , n which are inC. Note that
Theorem2.2(applied to the graphs inC with vertices 1, . . . , n) implies thatfc(n)�f (n)/e.
Now f (i + j)�

(
i+j
i

) · fc(i)fc(j) for all i, j ∈ N: this is clear ifi �= j , and if i = j we
could add an edge between the two components so that we do not need to divide by two.
We deduce that

g(i + j) = f (i + j)

e2(i + j)! �
1

e2 · i! · j ! · fc(i)fc(j)� f (i)

e2 · i! · f (j)

e2 · j ! = g(i) · g(j).

The theorem now follows from Lemma3.1. [Observe that by the definition ofc we also
havef (n)�e2cnn! for each positive integern.] �

Proof of Theorem 3.2. Clearly, the classP of all labelled planar graphs is addable. As
we saw in the introductory remarks, we have�(n)�n! · u(n)�n! · cn for an appropriate
constantc and all sufficiently largen. Hence,P is also small and the theorem thus follows
from Theorem3.3. �

Aswewill seeshortly, theexpectednumberIn of isolatedvertices inRn playsan important
role. Clearly,

In = n · Pr[vn is isolated inRn] = n · �(n − 1)

�(n)
.

From[5] we know that�(n)�(6n − 15)�(n − 1) for n�5, so that

In� n

6n − 15
for n�5.

In Theorem5.1below we show that

In��e−1 + o(1)

for an appropriate constant 0< � < 1. That is,In is contained in the interval[�e−1 −
�,1/6+ �] for all � > 0 andn sufficiently large. This prompts:

Conjecture 3.4(The labelled planar graph isolated vertices conjecture). In tends to a
limit asn → ∞.
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Note that, if this conjecture is true, then in fact the limit must be�−1
� , where�� is the

labelled planar graph growth constant, since

1

n

n∑
j=2

logIj = 1

n
log

n!
�(n)

→ − log��.

Thus an equivalent conjecture is that

In → �−1
� asn → ∞.

4. Degrees, faces, subgraphs

We turn now to questions such as, howmany vertices of degreek, or howmany triangular
faces does the random planar graphRn typically have (in some embedding)? We start by
proving a more general result.
Let H be a graph on the vertex set{1, . . . , h}, and letG be a graph on the vertex set

{1, . . . , n} wheren > h. LetW ⊂ V (G) with |W | = h, and let the ‘root’rW denote the
least element inW. We say thatH appearsatW in G if (a) the increasing bijection from
{1, . . . , h} toW gives an isomorphism betweenH and the induced subgraphG[W ] of G;
and (b) there is exactly one edge inGbetweenWand the rest ofG, and this edge is incident
with the rootrW . We letfH (G) be the number of appearances ofH inG, that is the number
of setsW ⊆ V (G) such thatH appears atW in G.

Theorem 4.1. LetC be a non-empty class of finite graphs which is addable and small,with
growth constant c. Let̃Rn = R̃n(C) be uniformly distributed over the graphs inC with
vertex set{1, . . . , n}. Let H be a connected graph on the vertex set{1, . . . , h} in C, and let
� = 1/(9e2ch(h + 2)h!). Then there existsn0 such that

Pr[fH (R̃n)��n] < e−�n for all n�n0. (3)

Before we prove this result, let us note that in particular it implies that there is a constant
� > 0 such that the probability thatRn fails to have a subgraphK4 isO(e−�n). This gives
rise to a fast expected-time colouring algorithm for planar graphs as follows. First we check
if there is a subgraphK4, in linear time, see[10]. If there is one we apply the quadratic time
algorithm to four-colour planar graphs, which follows from the proof of the four-colour
theorem, see[11], to colour the graph optimally. In the remaining cases, which happen with
probability at mostO(e−�n), we colour the graph optimally in subexponential timeO(c

√
n)

by using the
√
n-separator theorem. It follows that we can colour a random planar graph

optimally in quadratic expected time. This observation is due toAnusch Taraz and Michael
Krivelevich.

Proof of Theorem 4.1.We shall often writex instead of�x� or �x� to avoid cluttering up
formulae. This should cause the reader no problems. Let� = e2ch(h + 2)h!. Observe that
the bound on� implies that�� < 1 and we may therefore write(��)� = 1− 3�, where
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0< � < 1
3. Note that

1− �
(1− 3�)(1+ �)2

> 1. (4)

Letf (n) denote the number of graphs inC onn vertices. By Theorem3.3there is a positive
integern0 such that for eachn�n0 we have

(1− �)n · n! cn�f (n)�(1+ �)n · n! cn. (5)

Let � = �h and note that��1.
Assume that Eq. (3) does not hold for somen�n0. We intend to show that then

f ((1+ �)n) > (1+ �)(1+�)n · [(1+ �)n]! · c(1+�)n,

contradicting (5). In order to see this, we construct graphsG′ in C on vertex set{1, . . . , (1+
�)n} as follows. First we choose a subset of�n special vertices (

((1+�)n
�n

)
choices) and a

graphG ∈ C on the remainingn vertices that satisfiesfH (G)��n. By assumption there
are at least

e−�n · f (n)�e−�n(1− �)ncnn!
such graphsG. Next we consider the�n special vertices. We partition them into�n (un-
ordered) blocks of sizeh. On each blockB we put a copy ofH such that the increasing
bijection from{1, . . . , h} toB is an isomorphism betweenH and this copy. Call the lowest
numbered vertex inB the root rB of the block. For each blockB we choose a non-special
vertexvB and add the edgerBvB from the root to this vertex: observe thatH appears atB
in G′. This completes the construction ofG′ ∈ C. For each choice of special vertices, and
eachG ∈ C on the remainingn vertices, we construct(

�n
h · · ·h

)
· 1

(�n)! · n�n = (�n)!n�n

(h!)�n(�n)! �
(�n)!
(h!�)�n

graphsG′.
How often is the same graphG′ constructed? Call an oriented edgee = uv goodinG′ if

it is a cut-edge inG′, the component̃G ofG′ − e containingu hash nodes,u is the least of
these nodes, and the increasing map from{1, . . . , h} to V (G̃) is an isomorphism between
H andG̃. Observe that each added oriented edgerBvB is good. Indeed, there is exactly one
good oriented edge for each appearance ofH in G. We shall see thatG′ contains at most
(h + 2)�n good oriented edges. It will then follow that the number of times thatG′ can be
constructed is at most

(
(h+2)�n

�n

)
�((h + 2)e)�n.

Wemay bound the number of good edges inG′ as follows. (a) There are exactly�n added
oriented edgesrBvB . (b) There are at most�n good oriented edgese = uv in E(G) (that
is, such that the unoriented edge is inG): for in this case the entire component ofG′ − e

containingumust be contained inG (if it contained any other vertex it would have more
thanh vertices), and so the number of them is at mostfH (G). (c) There are at mosth�n
‘extra’ good oriented edges. To see this, consider a blockB, and letH̃ denote the connected
graph formed from the induced subgraphG′[B] (which is isomorphic toH) together with
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the vertexvB and the edgerBvB . Each ‘extra’ good oriented edge must be a cut edge in
such a graphH̃ oriented away fromvB , and in each graph̃H there are at mosth cut-edges.
We may put the above results together to obtain

f ((1+ �)n) �
(
(1+ �)n

�n

)
· e−�n(1− �)ncnn! · (�n)!

(h!�)�n · ((h + 2)e)−�n

= [(1+ �)n]! · c(1+�)n · (1− �)n ·
(
e2ch(h + 2)h!�

)−�n

(5)
� f ((1+ �)n) (1+ �)−(1+�)n · (1− �)n · (1− 3�)−n

� f ((1+ �)n)
(

1− �
(1− 3�)(1+ �)2

)n

(4)
> f ((1+ �)n),

yielding the desired contradiction.�

We shall use the last result withC as the classP of all labelled planar graphs, which we
have seen is addable and small. By choosing appropriate graphsH we are able to deduce
that with high probability, the random planar graphRn has (a) linearly many vertices of
each given degree, (b) for all embeddings linearly many faces of each given size, and (c)
exponentially many automorphisms. After that, we consider appearances of a givenplane
graph inRn.
Comment: We might be interested in a random connected graph inPn, or perhaps a

random connected or 2-vertex-connected graph inPn, and so on. For suitable definitions
of ‘addable’ and ‘appears’ there are corresponding versions of the last theorem: we do not
pursue such results here.

Theorem 4.2. For a graph G letdk(G) denote the number of vertices with degree equal
to k. There exists a constantd > 0 such that, for each positive integer k, if we set�k =
d/(�k�(k + 2)!), graph constant), then for all sufficiently large n

Pr[dk(Rn) < �kn]�e−�kn. (6)

Proof. Consider the case whenH is a star onk + 1 vertices. More precisely, letH be the
graph on vertices{1, . . . , k + 1} in which vertexk + 1 is connected to all other vertices.
Since the appearances ofH define distinct vertices of degreek, we havedk(G)�fH (G),
and so the result follows from Theorem4.1. �
Observe that ifh�2 andH is the star on vertices{1, . . . , h} in which (in contrast to

the above proof) vertex 1 is connected to each other vertex, and ifG is the star on vertices
{1, . . . , h + 1} in which vertex 1 is connected to each other vertex, thenH appearsh times
in G, each time centred at vertex 1, and so the appearances ofH are not vertex disjoint.
However, if the graphH is 2-edge-connected then the appearances ofH in any graphGhave
to be vertex disjoint.

Theorem 4.3. For a planar graph G letfk(G) denote the number of faces of size k,mini-
mized over all embeddings of G. There exists a constantd ′ > 0 such that, for each integer
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k�3, if we set�k = d ′/(�k�(k + 1)!), then for all sufficiently large n
Pr[fk(Rn) < �kn]�e−�kn. (7)

Proof. We again apply Theorem4.1. This time we choose ak-cycle on vertices{1, . . . , k}
as the graphH. SinceH is 2-edge-connected, the appearances ofH have to be vertex disjoint.
Also, in each embedding of the graphRn on the sphere, each appearance ofH corresponds to
ak-face of its component of the graph. Hence the number ofk-faces in any plane embedding
ofRn is at least the number of appearances ofH less twice the number�(Rn) of components.
But by Theorem2.1, Pr[�(Rn)�j ]�1/j !, and the theorem follows.�
Let us briefly consider large vertex degrees and face-sizes. It is not difficult to check that

Theorem4.1remains true if the orderh of the graphH depends onn, as long as it does not
grow too quickly. We obtain:

Proposition 4.4.With probability1−o(1) a randomplanar graphRn hasmaximumdegree
	(logn/ log logn), and has the property that every embedding contains a face of size
	(logn/ log logn).

We may easily obtain an upper bound of about log2 n on the maximum size of a face, to
pair with the second half of the above result.

Proposition 4.5. Let
(n) → ∞ asn → ∞,and let�(n) be the probability thatRn has an
embedding with a face of size at leastlog2 n+
(n).Thenlim inf n→∞ �(n) = 0,and if the
labelled planar graph isolated vertices conjecture,Conjecture3.4, holds then�(n) → 0as
n → ∞.

Proof. If f denotes log2 n + 
(n), then

�(n + 1)��(n)�(n) · 2f = �(n)�(n) n 
(n),

so that

�(n)
(n)� �(n + 1)

n�(n)
,

and the result follows. �
Now we consider graph automorphisms. We letaut (G) denote the number of automor-

phisms of a graphG.

Theorem 4.6. There are constants�,�, � > 0 such that

Pr[2�n�aut (Rn)�2�n] = 1− o(2−�n).

Proof. LetH be the graph on the vertex set{1,2,3} with the two edges{1,2} and{1,3}.
Then the number of automorphismsaut (G) is at least 2fH (G). Thus by Theorem4.1, there
are constants�, � > 0 such that

Pr[aut (Rn) < 2�n] = o(2−�n).
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Now consider the upper bound onaut (Rn). Let � > 0 satisfy 2�−� > �u/�l . The isomor-
phism class of a graphG in Pn (that is, the set of graphs inPn isomorphic toG) has size
n!/aut (G). Thus ifaut (G)�2�n then the isomorphism class ofG in Pn has size at most
n!/2�n. Hence

u(n)��(n)Pr[aut (Rn)�2�n] · 2�n/n!
and so

Pr[aut (Rn)�2�n]� u(n)

�(n)/n! 2
−�n =

(
�u
�l
2−� + o(1)

)n

= o(2−�n). �

From the lower bound on�� and the upper bound on�u in (2), we see that wemay choose
� = 0.31.

Corollary 4.7. The labelled planar graph growth constant�l and the unlabelled planar
graph growth constant�u satisfy�l < �u.

Proof. Again we use the observation that the isomorphism class of a graphG inPn has size
n!/aut (G). Thus by the last theorem, the number of such graphs which are in isomorphism
classes of size> 2−�nn! is at most 2−�n�(n), which is at most12�(n) for nsufficiently large.
But then

u(n)� 1
2�(n)/(2

−�nn!),
that is

�(n)/n!�21−�nu(n);
and it follows that�l �2−��u. �

Corollary 4.8. LetUn denote a graph sampled uniformly at random from the unlabelled
simple planar graphs on n vertices. There is a constant� > 0 such that

Pr[aut (Un)�2�n] = o(2−�n).

Proof. The last result showed that�l/�u < 1. Let � > 0 satisfy 2−2� > �l/�u. Observe
as before that ifG ∈ Pn satisfiesaut (G)�2�n then the isomorphism class ofG in Pn has
size at least 2−�nn!. Hence

�(n)�u(n)Pr[aut (Un)�2�n] · 2−�nn!
and so

Pr[aut (Un)�2�n]� �(n)/n!
u(n)

2�n =
(

�l
�u

2� + o(1)

)n

= o(2−�n). �

We now turn to copies inRn of a planegraphH, that is of a graphH embedded in the
plane. What does it mean forH to ‘appear’ inRn? LetH andG be two plane graphs. Let
us say thatH appearsin G at the vertex setW ⊆ V (G), if (a) the underlying graph of
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Fig. 1. Plane graphsH which cannot appear inall embeddings ofRn.

H appears atW in the underlying graph ofG, (b) there is a continuous deformation of the
plane takingH to the induced plane subgraphG[W ] ofG, and (c) if no vertex ofV (G) \W
is contained in an interior face ofG[W ].
Westartwithan illustrativeexample.Consider the twographsH inFig.1.Then, obviously,

for each planar graphG there does exist an embedding ofG in whichH does not appear.
(Just start from an arbitrary embedding and then flip the interior vertices/vertex into the
other face.) It is thus not possible to show that, for a given plane graphH, the random planar
graphRn contains linearly many copies ofH in eachembedding. On the other hand we
know from Theorem4.1 thatRn contains with high probability linearly many copies of
each fixed planar graph.
By arguing as in the proof of Theorem4.3we may obtain

Proposition 4.9. Let H be a connected plane graph. LetfH (G) denote the function which
counts for a planar graphG themaximumover all embeddings ofG of themaximumnumber
of pairwise vertex disjoint appearances of H. Then there exists a constant� > 0 such that

Pr[fH (Rn) < �n]�e−�n for all sufficiently largen.

If H is 3-connected then the claim remains true iffH (G) is defined byminimizingover all
embeddings of G.

To close this section, we return to considering vertex degrees.We show that the expected
number of vertices of degree 0, 1 or 2 in a random planar graphRn can be easily related to
other quantities of interest. Letd̄(n) denote the average degree ofRn: that is,

d̄(n) = 2


∑

G∈Pn

|E(G)|

 / (n �(n)) ,

where as beforePn denotes the collection of all simple planar graphs onn labelled vertices.
From the resultsnotedearlier on thenumberof edges inRnwemaysee that 3.7� d̄(n)�5.08
for n sufficiently large.

Theorem 4.10.Let Xi denote the number of vertices with degree i in a random planar
graphRn. Then

E [X0] = n · �(n − 1)

�(n)
= In,
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E [X1] = (n − 1) · E [X0] = (n − 1)In,

E [X2] = E [X1] · d̄(n − 1),

whered̄(n − 1) is the average degree ofRn−1.

Proof. Clearly,

E [X0] = n · Pr[vn has degree 0 inRn] = n · �(n − 1)

�(n)

and similarly,

E [X1] = n · Pr[vn has degree 1 inRn] = n · (n − 1)�(n − 1)

�(n)
.

To show the third claim we proceed as follows. LetPn denote, as above, the collection of
all simple labelled planar graphs onn vertices. Furthermore, we denote for a planar graph
G = (V ,E) by add(G) the number of edgese �∈ E such thatG + e is still planar.
Consider now the digraph with vertex setPn and directed edges(G,H) if and only if

H = G+ e for some edgee �∈ E(G). As the sum of all indegrees is equal to the sum of all
outdegrees, we deduce∑

G∈Pn

|E(G)| =
∑
G∈Pn

add(G).

Observe also that all graphs inPn in which vertexvn has degree exactly two can be obtained
from a graphG′ on the remaining vertices by joiningvn to both vertices of an edge inG′ or
to both vertices of an edgee′ that can be added toG′ without destroying planarity. Hence,

�(n) · Pr[vn has degree 2 inRn] =
∑

G′∈Pn−1

(|E(G′)| + add(G′)
)

= 2
∑

G′∈Pn−1

|E(G′)|

= (n − 1)�(n − 1)d̄(n − 1).

Hence,

E [X2] = n · Pr[vn has degree 2 inRn]
= n(n − 1)�(n − 1)

�(n)
· d̄(n − 1)

= E [X1] · d̄(n − 1). �

5. Connectivity II

In this final section, we first give a lower bound for the probability thatRn has an isolated
vertex, and more generally thatRn has a component isomorphic to a given planar graphH.
After that, we see that if we assume the truth of Conjecture3.4, the labelled planar graph
isolated vertices conjecture, thenwe can determine the limiting values of these probabilities,
and the limiting value of the probability thatRn is connected.



C. McDiarmid et al. / Journal of Combinatorial Theory, Series B 93 (2005) 187–205 201

Theorem 5.1. Let� > 0be such thatRn has at least�n vertices of degree1with probability
1− o(1) asn → ∞ (such an� exists by Theorem4.2). Then

Pr[Rn has an isolated vertex]��e−1 + o(1).

Proof. Let us denote bỹ�(n) the number of labelled planar graphs onn vertices which
contain at least�n vertices of degree 1, and bỹ�c(n) the number of connected labelled
planar graphs onn vertices which contain at least�n vertices of degree 1. Finally, let�s(n)
denote the number of labelled planar graphs onn vertices which contain an isolated vertex.
By Theorem2.1 we know that�c(n)�e−1 · �(n). By our choice of� we know that

�̃(n)�(1− �(n)) · �(n), where�(n) = o(1). Combining these inequalities we get

�̃c(n)�(e−1 − �(n)) · �(n).
Clearly, every graph with at least�n vertices of degree 1 can be used to construct�n

graphs with an isolated vertex by simply removing one of the edges incident to a vertex of
degree one. In addition, one easily observes that if we start fromconnectedgraphs only,
then every graph is generated at mostn−1 times. (Note that this corresponds to the number
of ways to reattach the isolated vertex.) Hence, we get

�s(n)�
�̃c(n) · �n
n − 1

�(1− e �(n)) · � · e−1 · �(n)

from which the claim of the theorem follows immediately.�
Actually, the proof of Theorem5.1 easily generalizes to (finite) components different

from isolated vertices. Recall thataut (H) denotes the size of the automorphism group of
a graphH.

Theorem 5.2. Let H be a(fixed) planar graph on k vertices. Then

Pr[Rn contains a component isomorphic to H ]�(1+ o(1)) · e−1�k/aut (H)

where� > 0 is a constant as in Theorem5.1.

Proof. We proceed as in the proof of Theorem5.1. Every graph with at least�n vertices
of degree 1 can be used to construct

(�n
k

) · k!
aut (H)

graphs with a component isomorphic
to H. Again the fact that we start with connected graphs only implies that every graph is
generated atmost(n−k)k times. Hence, we get that the number of graphswith a component
isomorphic toH is at least

�̃c(n) · (�n
k

) · k!
aut (H)

(n − k)k

from which the claim follows similarly as above.�
Next we see that if we assume the truth of Conjecture3.4, the labelled planar graph

isolated vertices conjecture, then the probability thatRn is connected tends to a limit and
we can determine this limit, and similarly for the probabilities appearing in the above
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two theorems. We start with some notation and two lemmas. As usual, letE [(X)k] =
E [X(X − 1) · · · (X − k + 1)] denote thekth factorial moment.

Lemma 5.3. Assume that Conjecture3.4holds. LetH1, . . . , Hm denote a fixed collection
of pairwise non-isomorphic connected planar graphs. Furthermore, let ni := |V (Hi)|; let
ai := aut (Hi), the number of automorphisms ofHi ; and letX

(i)
n denote a random variable

which counts the number of components isomorphic toHi in the random planar graphRn

on n vertices. Then

E [(X(1)
n )k1 · · · (X(m)

n )km ] →
(

1

a1 · �n1�

)k1

· · ·
(

1

am · �nm�

)km

as n → ∞

for everyk1, . . . , km ∈ N0, where�� is the labelled planar graph growth constant.

Proof. Consider some fixed constantsk1, . . . , km ∈ N0, and letK = ∑m
s=1 ksns . In the

following we assume without loss of generality thatki �1 for all 1� i�m. We construct a
planar graph onn vertices with at leastki components that are isomorphic toHi as follows.
First we choose the vertices of the components, then we insert appropriate copies ofHi on
the vertices of each component and choose a planar graph on the remaining vertices. This
can be done in exactly


 m∏

i=1

ki∏
j=1

(
n −∑i−1

s=1 ksns − (j − 1)ni
ni

)
· ni !
ai


 · �(n − K)

ways. Now let us deduce how often a specific planar graphG is constructed. Obviously, this
depends on the number of components ofG that are isomorphic to someHi . If G contains
ti components that are isomorphic toHi , thenG is constructed exactly

m∏
i=1

(ti · (ti − 1) · · · (ti − ki + 1))

times. Hence, if we denote by�(n; t1, . . . , tm) the number of planar graphs onn vertices
with exactlyti components that are isomorphic toHi , then the definition of the expectation
implies

E [(X(1)
n )k1 · · · (X(m)

n )km ]

=
∑

t1,...,tm �1

(
m∏
i=1

ti · (ti − 1) · · · (ti − ki + 1)

)
�(n; t1, . . . , tm)

�(n)

=

 m∏

i=1

ki∏
j=1

(
n −∑i−1

s=1 ksns − (j − 1)ni
ni

)
ni !
ai


 · �(n − K)

�(n)
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=
(

m∏
i=1

1

a
ki
i

)
·
(

K∏
i=1

(n − i + 1)

)
·
(

K∏
i=1

�(n − i)

�(n − i + 1)

)

=
(

m∏
i=1

1

a
ki
i

)
·
(

K∏
i=1

In−i+1

)
.

But now Conjecture3.4 (which is equivalent to limn→∞ In = �−1
� ) completes the proof,

sinceK is a constant. �
In order to apply Lemma5.3 the following lemma (see for example[7]) turns out to be

very useful.

Lemma 5.4. Let(X(1)
n , . . . , X

(m)
n ) bem-vectors of random variables,wherem�1 is fixed.

If �1, . . . , �m are such that, asn → ∞,

E [(X(1)
n )k1 · · · (X(m)

n )km ] → �k11 · · · �kmm
for everyk1, . . . , km ∈ N0, then(X

(1)
n , . . . , X

(m)
n )

d→ (Z1, . . . , Zd), whereZi ∈ Po(�i )
are independent.

With these two lemmasat handwe can nowdetermine the limiting value of the probability
thatRn is connected.

Theorem 5.5. Assume that Conjecture3.4holds. Enumerate the connected graphs inP1
thenP2 thenP3 and so on, asH1, H2, H3, . . .. Letni := |V (Hi)|, and letai := aut (Hi),
the number of automorphisms ofHi . j vertices, Then

Pr[Rn is connected] → e−∑∞
i=1 1/(ai�

ni
� ) as n → ∞.

Proof. For each positive integerk let

pk := e
−∑i:ni � k 1/(ai�

ni
� )
.

From Lemma5.3together with Lemma5.4 it follows that

Pr[Rn has no component of order�k] = pk + o(1)

asn → ∞. If X has the Poisson distribution with mean 1/(k + 1), then by Theorem2.5we
have

Pr[Rn has at most one component of order�k + 1]�Pr[X = 0] = e−1/(k+1).

Hence

Pr[Rn is disconnected]�1− e−1/(k+1) + 1− pk + o(1).

Thus

pk − (1− e−1/(k+1)) + o(1)�Pr[Rn is connected]�pk + o(1),
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so

|Pr[Rn is connected] − pk|�1− e−1/(k+1) + o(1),

and the theorem follows.�
Finally, we note that Lemmas5.3 and 5.4 also determine the limiting values of the

probabilities considered in Theorem5.2and thus in Theorem5.1.

Theorem 5.6. Assume that Conjecture3.4 holds. Let H be a fixed planar graph and let
aut (H) denote the number of automorphisms of H. Then the number of components of
Rn isomorphic to H is asymptotically Poisson distributed with parameter�, where�−1 :=
aut (H)�|V (H)|

� ; and so

Pr[Rn has a component isomorphic to H ]
→ 1− e−1/(aut (H)·�|V (H)|

� ) as n → ∞.

As a special case we obtain the limit of the probabilities thatRn contains an isolated
vertex.

Corollary 5.7. Assume that Conjecture3.4holds. Then the number of isolated vertices in
Rn is asymptotically Poisson distributed with parameter1/��; and so

Pr[Rn contains an isolated vertex] → 1− e−1/�� as n → ∞.
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