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a b s t r a c t

In this paper, we study rings with the annihilator condition (a.c.) and rings whose space of
minimal prime ideals, Min(R), is compact. We begin by extending the definition of (a.c.) to
noncommutative rings. We then show that several extensions over semiprime rings have
(a.c.). Moreover, we investigate the annihilator condition under the formation of matrix
rings and classical quotient rings. Finally, we prove that if R is a reduced ring then: the
classical right quotient ring Q (R) is strongly regular if and only if R has a Property (A) and
Min(R) is compact, if and only if R has (a.c.) and Min(R) is compact. This extends several
results about commutative rings with (a.c.) to the noncommutative setting.

© 2009 Elsevier B.V. All rights reserved.

Throughout this paper, R denotes an associative ring with identity. For a nonempty subset S ⊆ R, `R(S) and rR(S) denote
the left annihilator and the right annihilator of S in R, respectively. We use Zl(R) (respectively, Zr(R)) for the set of left
(respectively, right) zero-divisors of R. We also write Spec(R) (respectively, Min(R)) for the space of all (minimal) prime
ideals of R.
Henriksen and Jerison [1] originally defined the annihilator condition for commutative reduced rings, giving an example

of a reduced ring not possessing the annihilator condition. In 1986, Lucas [2] extended it as follows: a commutative ring R
has the annihilator condition (briefly, (a.c.)) if for each finitely generated ideal I of R, there exists an element b ∈ R whose
annihilator equals the annihilator of I . The class of commutative ringswith (a.c.) is very large. For example, this class includes
the polynomial rings over any reduced ring [3], Bezout rings (finitely generated ideals are principal), and every subdirect
sum of totally ordered integral domains. We recommend [2] for further examples.
On the other hand, a commutative ring R has Property (A) if every finitely generated ideal of R consisting entirely of zero-

divisors has a nonzero annihilator. This property was introduced by Huckaba and Keller [3], and has been called Condition
(C) by Quentel. The class of commutative rings with Property (A) is also quite large. It includes Noetherian rings [4, p. 56],
rings whose prime ideals are maximal, polynomial rings, and rings whose total quotient rings are von Neumann regular [5].
A number of authors have studied commutative rings with Property (A) (for example, see [2–6]), and their results provide
useful machinery in the study of commutative rings with zero-divisors.
For any a ∈ R, define supp(a) = {P ∈ Spec(R) | a 6∈ P}. Shin [7, Lemma 3.1] proved that for any ring R, {supp(a) | a ∈ R}

forms a basis of open sets on Spec(R). We viewMin(R) as a subspace. This topology is called the hull-kernel topology (or, for
commutative rings, the Zariski topology). The hull-kernel topologies on Spec(R) and Min(R) have been studied extensively
when R is a commutative ring, as in [1,3,5,8–11, etc.]. It is well known that if a ring R has an identity, then Spec(R) is compact.
However, in general Min(R) is not compact even if R is a commutative reduced ring with identity by [10, Proposition 3.4].
The compactness of minimal prime ideal spaces plays a special role in the case of rings of continuous functions [1]. In the
case of a commutative reduced ring R, Henriksen and Jerison, [1, Theorem 3.4] proved that R has the annihilator condition
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andMin(R) is compact if and only if for each a ∈ R, rR(a) = rR(rR(b)) for some b ∈ R. Quentel [11, Proposition 9] proved that
R has a Property (A) and Min(R) is compact if and only if the total quotient ring T (R) of R is von Neumann regular. Huckaba
and Keller [3, TheoremB] proved that R has a Property (A) andMin(R) is compact if and only if R has the annihilator condition
and Min(R) is compact, if and only if the total quotient ring T (R) of R is von Neumann regular. Shin [7, Theorem 4.9] asserts
that the results of Henriksen and Jerison also hold in the case that R is a noncommutative reduced ring. More results on
hull-kernel topologies for prime ideal spaces over noncommutative rings can be found in [7,12–15].
Rings with (a.c.) are closely connected with those having Property (A). For example, a commutative reduced Noetherian

ring has both (a.c.) and Property (A). Also, Property (A) and (a.c.) are equivalent conditions when R is a reduced ring with
compact Min(R), or when R is a reduced coherent ring, by [3]. However, Lucas [2] showed that Property (A) and (a.c.) are
not always equivalent.
Recently, Hong et al. [16] defined Property (A) for noncommutative rings. A ring R has right Property (A) if for every

finitely generated two-sided ideal I ⊆ Zl(R) there exists a nonzero element a ∈ R such that Ia = 0, and one similarly defines
left Property (A). A ring R has Property (A) if R has both right and left Property (A). In [16], several extensions of rings with
Property (A) were studied, including matrix rings, polynomial rings, and classical quotient rings. Furthermore, the authors
characterized when the space of minimal prime ideals for rings with Property (A) is compact.
In this paper we study rings with the annihilator condition (a.c.) and rings where Min(R) is compact. We begin by

extending the definition of (a.c.) to noncommutative rings. We then show that several extensions over semiprime rings
have (a.c.). Moreover, we investigate the annihilator condition under the formation of matrix rings and classical quotient
rings. Finally, we prove that if R is a reduced ring then: the classical right quotient ring Q (R) is strongly regular if and only
if R has a Property (A) and Min(R) is compact, if and only if R has (a.c.) and Min(R) is compact. This extends several results
about commutative rings with (a.c.) to the noncommutative setting.
The usefulness and significance of the annihilator condition stems from the fact that the class of rings with (a.c.) is

very large. Most notably, right Bezout rings (hence von Neumann regular rings), quasi-Baer rings (hence prime rings),
reduced p.p.-rings, and semiprime rings satisfying the ascending chain condition on annihilators all have (a.c.). Therefore
the annihilator condition can be a useful tool when characterizing common properties of these rings. Moreover, by studying
the relationships between the strong regularity of the classical right quotient ring Q (R), the compactness of Min(R), and R
possessing the annihilator condition, one arrives at a better understanding of von Neumann regular rings, biregular rings,
and coherent reduced rings. These results have applications in the study ofmaximal quotient rings of noncommutative rings,
and questions about the von Neumann regularity of such extensions.

1. Definition and examples of rings with the annihilator condition

We begin with the following definition.

Definition 1.1. A ring R is said to have the right annihilator condition, or (right (a.c.)), if for any finitely generated two-sided
ideal I of R, there exists c ∈ R such that rR(I) = rR(RcR). Rings with left (a.c.) are defined similarly, and we say R has (a.c.) if
R has left and right (a.c.).

Remark 1. (1) Recall the basic facts that rR(aR) = rR(RaR) and rR(aR+ bR) = rR(aR)∩ rR(bR) for a, b ∈ R. We will use these
facts throughout, without further mention.
(2) A ring R has right (a.c.) if and only if for a 2-generated ideal I = RaR+ RbR of R, rR(I) = rR(RcR) for some c ∈ R, if and

only if for a 2-generated right ideal J = aR+ bR of R, rR(J) = rR(cR) for some c ∈ R.
(3) Suppose R is a reduced ring. Then R has right (a.c.) if and only if for any a, b ∈ R, rR({a, b}) = rR(c) for some c ∈ R.
(4) If R is semiprime, then the annihilator condition is left-right symmetric.

The following example shows that the annihilator condition is, in general, not left-right symmetric. Recall that for a ring
R with a ring endomorphism σ and a σ -derivation δ, the Ore extension R[x; σ , δ] of R is the ring of polynomials in x over R,
written with coefficients on the left, with the usual addition and multiplication subject to the rule xa = σ(a)x + δ(a) for
any a ∈ R. If δ = 0, then R[x; σ ] is called the skew polynomial ring over R.

Example 1.2. Let Z2 be the ring of integers modulo 2 and Z2[x, y] the polynomial ring over Z2 in commutating
indeterminates x and y. Consider the ring R = Z2[x, y]/〈x2, y2〉 = {a1+a2x+a3y+a4xy | a1, a2, a3, a4 ∈ Z2}, where 〈x2, y2〉
is the ideal of Z2[x, y] generated by x2 and y2. By [2, Example 3.13], R does not have (a.c.). Now let σ be the homomorphism
of R defined by σ(f (x, y)) = f (0, 0), and S = R[z; σ ] be the skew polynomial ring over R.

Claim 1. S has left (a.c.).

For f (z) =
∑m
i=0 αiz

i and g(z) =
∑n
j=0 βjz

j
∈ S, let h(z) = f (z)+g(z)zm+1. We claim that `S(Sf (z)+Sg(z)) = `S(Sh(z)).

One inclusion is trivial since Sh(z)S ⊆ Sf (z)S+Sg(z)S. For the other inclusionwe have two cases. Case 1: If Sh(z)∩Z2[z] 6= 0,
then 0 = `S(Sh(z)) ⊇ `S(Sf (z) + Sg(z)) hence `S(Sh(z)) = 0 = `S(Sf (z) + Sg(z)). Case 2: If Sh(z) ∩ Z2[z] = 0, then
σ(αi) = σ(βj) = 0 for all i, j, since zh(z) ∈ Sh(z) ∩ Z2[z] = 0. Let k(z) ∈ `S(Sh(z)). Since σ(αi) = σ(βj) = 0 for all i, j,
k(0)Sh(z) = 0. This implies k(0)Sαi = 0 and k(0)Sβj = 0 for all i, j, and so k(0)Sf (z) = 0 and k(0)Sg(z) = 0. Equivalently,
k(z) ∈ `S(Sf (z)+ Sg(z)). Therefore S has left (a.c.).
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Claim 2. S does not have right (a.c.).

For x, y ∈ S, suppose that rS(xS+ yS) = rS(k(z)S), where k(z) ∈ S. Set k(0) = k0. If r ∈ R then either r is a unit or zr = 0.
Thus, rS(xS+ yS)∩R = rR(xR+ yR) and similarly rS(k(z)S)∩R = rR(k0R). Thus rR(xR+ yR) = rR(k0R). A quick computation,
as in [2, Example 3.13], shows this is impossible. Therefore S does not have right (a.c.).

The class of rings with (a.c.) is very large. For example, right Bezout rings (hence von Neumann regular rings), quasi-
Baer rings (hence prime rings), and reduced p.p.-rings all have (a.c.). Moreover, we here provide more examples of rings
with (a.c.).
In [1, Example 3.3], the authors showed that there exists a commutative reduced ring which does not have (a.c.). Thus

semiprime rings do not, in general, have right (a.c.) and therefore a subdirect product of prime rings does not have right
(a.c.) in general. However, we have the following (using the definition of fully ordered in given in [17]):

Proposition 1.3. Every subdirect product of fully ordered semiprime rings has (a.c.).

Proof. Suppose R is a subdirect product of fully ordered semiprime rings Ri. Let α, β ∈ Rwith α = (ai), β = (bi) ∈
∏
i∈I Ri.

For any i ∈ I and positive integer k, define the set Nk(Ri) = {a ∈ Ri | ak = 0}. By [17, Lemma, p.130], Nk(Ri) is an ideal of Ri
such that (Nk(Ri))k = 0. Since Ri is semiprime, Nk(Ri) = 0 for any positive integer k. Thus Ri is a domain by [17, Theorem 6,
p.130]. Consequently, R is a subdirect product of fully ordered domains Ri. Wewill show that rR(αR+βR) = rR((α2+β2)R).
Let γ = (ci) ∈ rR((α2 + β2)R). Then (α2 + β2)Rγ = 0 and so (a2i + b

2
i )(ri)(ci) = 0 for any (ri) ∈

∏
i∈I Ri. This

implies a2i rici = −b
2
i rici, and so by [17, Theorem 1, p.105] a

2
i rici = 0 = b

2
i rici. Thus, independent of ai and bi, we have

airici = 0 = birici. This implies (αR + βR)γ = 0 and so rR(αR + βR) ⊆ rR((α2 + β2)R). The reverse inclusion is clear.
Therefore R has right (a.c.). By symmetry R also has left (a.c.). �

Theorem 1.4. If R is a semiprime ring with finitely many minimal prime ideals, then R has (a.c.).

Proof. We first suppose that |Min(R)| = n. Fix a, b ∈ R and let I = RaR + RbR. Then rR(I) = ∩{P ∈ Min(R) | I 6⊆ P}
by [18, Lemma 11.40]. Also, by [18, Theorem 11.41], P = rR(U) for some uniform ideal U of R and it is also a maximal
right annihilator. Moreover, by [18, Theorem 11.43], the uniform dimension u.dim(RRR) = n. So there exist uniform ideals
U1,U2, . . . ,Un such that U1⊕U1⊕· · ·⊕Un is essential in R. We claim that rR(Ui) 6= rR(Uj) for any i 6= j. To see this, suppose
rR(Ui) = rR(Uj) for some i 6= j. Since UiUj = 0, Ui ⊆ rR(Uj) = rR(Ui). So U2i = 0 and hence Ui = 0, a contradiction. Now,
after relabeling the Ui, we may assume rR(I) = ∩P = ∩kj=1 rR(Uj), where 1 ≤ k ≤ n. For each j fix an element 0 6= uj ∈ Uj.
Then, for each j, we have the equality rR(Uj) = rR(ujR) because rR(Uj) is maximal annihilator in R. We can also choose uj so
that there exists vj ∈ Uj with ujvj 6= 0. Note that rR((u1 + u2 + · · · + uk)vjR) = rR(ujvjR) = rR(Uj). Thus we have

rR(I) =
k⋂
j=1

rR(ujR) = rR(u1R⊕ u2R⊕ · · · ⊕ ukR) = rR((u1 + u2 + · · · + uk)R).

Therefore R has right (a.c.). �

In a semiprime ring, we note that there are multiple characterizations for R having only finitely many minimal prime
ideals. For example, using [18, Theorem 11.43] we obtain:

Corollary 1.5. Let R be a semiprime ring with a.c.c. on annihilators. Then R has (a.c.).

Recall that a ring R is called biregular if every principal ideal of R is generated by central idempotent of R. By [16,
Proposition 1.11], biregular rings have Property (A). We also have the following result.

Proposition 1.6. If R is a biregular ring, then R has (a.c.).

Proof. Fix a, b ∈ R and let I = RaR + RbR. By hypothesis, RaR = eR for some central idempotent e of R. Note that
I = eR ⊕ I(1 − e). Then I(1 − e) = Rb(1 − e)R = fR for some central idempotent f of R. Thus I = eR ⊕ fR = (e + f )R.
Therefore R has right (a.c.). By symmetry, R has (a.c.). �

From Proposition 1.6, [13, Theorem 6], and [13, Remark 2, p.4101], we have the following:

Corollary 1.7. If R is a reduced ring whose prime ideals are maximal, then R has (a.c.).

Remark 2. Note that if a ring R is right Noetherian right self-injective (i.e., a QF-ring) then R has Property (A) by [16, p.616].
However, Z2[x, y]/〈x2, y2〉 is a QF-ring by [18, Example 3.15B], but does not have (a.c.).

Huckaba and Keller [3, Corollary 1] proved that the polynomial ring over any commutative ring has Property (A). They
also proved that commutative reduced nontrivial graded rings have (a.c.) [3, Theorem 4]. Thus the polynomial rings over
commutative reduced rings have (a.c.). However, the following example shows that the polynomial ring over a commutative
ring does not necessarily have (a.c.), and also that the reducedness condition is not superfluous.



C.Y. Hong et al. / Journal of Pure and Applied Algebra 213 (2009) 1478–1488 1481

Example 1.8. Let R = Z2[x, y]/〈x2, y2〉 be the ring in [2, Example 3.13]. Then R is a commutative non-reduced Noetherian
ring which does not have (a.c.). Nowwe consider the polynomial ring R[z] over R. We claim rR[z]({x, y}) 6= rR[z](g(z)) for any
g(z) ∈ R[z]. Suppose f (z) =

∑m
i=0 fiz

i
∈ rR[z]({x, y}) = rR[z](x) ∩ rR[z](y), where fi ∈ R for each i. We then have f (z)x = 0

and so fix = 0 for all i. Similarly, fiy = 0 for all i. Thus fi ∈ rR({x, y}) = {0, xy} for all i. Hence

rR[z]({x, y}) = xyR[z].

Suppose by way of contradiction that rR[z]({x, y}) = rR[z](g(z)) for some g(z) ∈ R[z]. Put g(z) = g0 + g1z + · · · + gnzn,
where gj ∈ R for each j. Notice that g(z)xy = 0, hence gj ∈ J(R) for each j, and in particular g2j = 0. Then

g(z)2 = g20 + g
2
1 z
2
+ · · · + g2n z

2n
+ 2(g0g1z + · · · + gn−1gnz2n−1) = 0

since the characteristic of R is 2. Thus g(z) ∈ rR[z](g(z)) = rR[z]({x, y}) = xyR[z]. Hence g(z)x = 0, and so x ∈ rR[z](g(z)),
contradicting the fact that x 6∈ rR[z]({x, y}).

We nowextendmany of the known results for commutative polynomial rings to noncommutative polynomial extensions
such as Ore extensions, skew monoid rings, and so forth. This provides many useful examples of rings with (a.c.).

Lemma 1.9 ([19, Lemma1.5]). Let R be a semiprime ringwith an automorphismσ and aσ -derivation δ. If, for some fixed a, b ∈ R,
we have aRσ n(b) = 0 for all integers n ≥ 0, then aR(σ n1δm1 · · · σ nt δmt )(b) = 0 for all integers mi, nj ≥ 0.

We invite the reader to compare the following theorem with Examples 1.2 and 1.8.

Theorem 1.10. If R is a semiprime ring with an automorphism σ and a σ -derivation δ, then R[x; σ , δ] has (a.c.).
Proof. Let S = R[x; σ , δ] and I = Sf (x)S + Sg(x)S, where f (x) = a0 + a1x+ · · · + amxm, g(x) = b0 + b1x+ · · · + bnxn ∈ S.
Note that for any r ∈ R,

rx = xσ−1(r)− δ(σ−1(r)).

Using this equation repeatedly, we can rewrite left polynomials as right polynomials, so take f (x) = c0+xc1+· · ·+xmcm and
g(x) = d0+ xd1+ · · ·+ xndn. Let h(x) = f (x)+ xm+1g(x). We claim that rS(I) = rS(h(x)S). Since h(x) ∈ I , rS(I) ⊆ rS(h(x)S).
Let k(x) = e0 + e1x+ · · · + ekxk ∈ rS(h(x)S). Then h(x)Sk(x) = 0, or equivalently,

(c0 + xc1 + · · · + xmcm + xm+1d0 + xm+2d1 + · · · + xm+n+1dn)Rxt(e0 + e1x+ · · · + ekxk) = 0

for any integer t ≥ 0. Then dnRσ t(ek) = 0 for any integer t ≥ 0. By Lemma 1.9, dnR(σ n1δm1 · · · σ nt δmt )(ek) = 0 for all
integersmu, nv ≥ 0. This implies that

dnrσ t(ek−1)+ dn−1rσ t(ek) = 0. (∗)

If wemultiply by Rσ t(ek) = 0 on the right side of Eq. (∗), then dn−1Rσ t(ek)Rσ t(ek) = 0. Since R is semiprime, dn−1Rσ t(ek) =
0 and hence dn−1Rσ t(ek) = 0. Continuing this process, we have djRσ t(es) = 0 and also ciRσ t(es) = 0 for any integer t ≥ 0,
0 ≤ i ≤ m, 0 ≤ j ≤ n and 0 ≤ s ≤ k. Thus f (x)Sk(x) = 0 and g(x)Sk(x) = 0. Hence k(x) ∈ rS(I), and therefore S has
right (a.c.).
Similarly, let h′(x) = f (x) + g(x)xm, written as left polynomials. Then h′(x) ∈ I and so `S(I) ⊆ `S(Sh′(x)). Let

k′(x) ∈ `S(Sh′(x)). We can write k′(x) as a left polynomial, using the argument in the previous paragraph; so take
k′(x) = e′0 + xe

′

1 + · · · + x
ke′k. Then k

′(x)Sh′(x) = 0 and so we have e′sRσ
t(ai) = 0 and e′sRσ

t(bj) = 0 for all t ≥ 0,
again by the argument in the preceding paragraph. Thus k′(x) ∈ `S(Sf (x)) ∩ `S(Sg(x)) = `S(I). Therefore S has left (a.c.).

�

Theorem 1.10 shows that Property (A) and (a.c.) behave quite differently in noncommutative rings, as there exists a
polynomial ring over a semiprime ring which does not have either left or right Property (A) by [16, Example 2.7].

Recall that a monoid G is called a unique product monoid (simply, u.p.-monoid) if for any two nonempty finite subsets
A, B ⊆ G there exists some element c ∈ G which is uniquely presented in the form ab where a ∈ A and b ∈ B. The class of
u.p.-monoids is quite large and important (see [20,21] for details). For example, this class includes the right or left ordered
monoids, submonoids of a free group, and torsion-free nilpotent groups.
Let R be a ring and G a u.p.-monoid. Assume that G acts on R bymeans of a homomorphism into the automorphism group

of R. We denote by σg(r) the image of r ∈ R under g ∈ G. The skew monoid ring R ∗ G is a ring which as a left R-module is
free with basis G and multiplication defined by the rule gr = σg(r)g .

Lemma 1.11. If G is a u.p.-monoid with |G| ≥ 2, then |G| = ∞.
Proof. Assume |G| < ∞. Take g 6= 1G, where g ∈ G and 1G is the identity of G. Eventually the sequence g, g2, . . . repeats.
Thus gm = gn for some positive integers m > n, and so gm−n = 1G by [20, Lemma 1, p.119]. Hence there exists a smallest
positive integer k such that gk = 1G. We now take A = B = G. For h 6= 1G, since h1G = 1Gh = h, we see that h does not
have a unique representation as a product in AB. Therefore 1G must be the element which has a unique representation; but
1G = 1G1G = ggk−1, a contradiction. �
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Lemma 1.12 ([19, Theorem 1.1]). Let R be a semiprime ring and G a u.p.-monoid. Then (a0g0+a1g1+· · ·+amgm)(R∗G)(b0h0+
b1h1+ · · · + bnhn) = 0with ai, bj ∈ R, gi, hj ∈ G if and only if aiRσgi(σg(bj)) = 0 for any g ∈ G and 0 ≤ i ≤ m and 0 ≤ j ≤ n.

Theorem 1.13. If R is a semiprime ring and G is a u.p.-monoid with |G| ≥ 2, then R ∗ G has (a.c.).

Proof. Let R ∗ G = S and I = SgS + ShS, where g = a0g0 + a1g1 + · · · + amgm and h = b0h0 + b1h1 + · · · + bnhn ∈ S with
ai, bj ∈ R, gi, hj ∈ G. Then by Lemma 1.11, we can put

k = a0k0 + a1k1 + · · · + amkm + b0km+1 + · · · + bnkm+n+1 ∈ S,

where ki 6= kj for i 6= j. We first claim that `S(I) = `S(Sk). Let t = c0t0 + c1t1 + · · · + csts ∈ `S(I). Then tSg = tSh = 0, and
so cuRσtu(σp(ai)) = 0 and cuRσtu(σp(bj)) = 0 for any p ∈ G and 0 ≤ u ≤ s, 0 ≤ i ≤ m, 0 ≤ j ≤ n by Lemma 1.12. Hence
t ∈ `S(Sk). By the same method as above, the reverse inclusion also holds. Therefore S has left (a.c.). Since G acts on R by
means of a homomorphism into the automorphism group of R, we have rg = gσ−1g (r). So, by symmetry considerations, S
has right (a.c.). �

We mention here some standard constructions using skew monoid rings. For example, the skew Laurent polynomial ring
R[x, x−1; σ ] with an automorphism σ over R is the skew monoid ring R ∗ G with G = {. . . , x−2, x−1, 1, x, x2, . . .} and
σxn(r) = σ n(r) for each n ∈ Z and any r ∈ R. We can also remove the skew conditions by setting σg = id for all g ∈ G. The
(non-skew) monoid ring is denoted R[G]. One can similarly define (skew, Laurent) power-series rings.

Corollary 1.14. If R is a semiprime ring with an automorphism σ and G is a u.p.-monoid with |G| ≥ 2, then R[G], R[x, x−1; σ ],
R[[x, x−1; σ ]] and R[[x; σ ]] have (a.c.).

Proof. We only need to prove that R[[x; σ ]] has (a.c.). Given f (x) =
∑
∞

i=0 aix
i and g(x) =

∑
∞

i=0 bix
i
∈ R[[x, ; σ ]] we set

h(x) = f (x2)+ g(x2)x =
∑
∞

i=0(ai + bix)x
2i. Then the result follows by [19, Remark 2] (which is the power-series version of

Lemma 1.12) and the same method as in the proofs of Theorems 1.10 and 1.13. �

Remark 3. If σ is not an automorphism, we can still form the rings R[x; σ ] and R[[x; σ ]]. In the case that R is a semiprime
ring and σ is an epimorphism then we claim, leaving the proof to the interested reader, that the results above still hold for
left (a.c.), by the same method of proof.

Proposition 1.15. A direct product of rings
∏
i∈I Ri has right (a.c.) if and only if each Ri has right (a.c.).

Proof. Assume each Ri has right (a.c.). Let α = 〈ai〉, β = 〈bj〉 ∈ S =
∏
i∈I Ri. For each i ∈ I , rRi(aiRi + biRi) = rRi(ciRi) for

some ci ∈ Ri. Then we note that rS(αS + βS) = rS(γ S), where γ = 〈ck〉.
Conversely, suppose S =

∏
i∈I Ri has right (a.c.). Fix i ∈ I and elements ai, bi ∈ Ri. Let α = 〈aj〉, where aj = 0 if j 6= i, and

β = 〈bj〉, where bj = 0 if j 6= i. Since S has right (a.c.), rS(αS + βS) = rS(γ S) for some γ = 〈ck〉 ∈ S. Then we note that
rRi(aiRi + biRi) = rRi(ciRi). �

Corollary 1.16. Let G be a finite abelian group with |G| = n and K a field such that ch(K) does not divide n and it contains a
primitive n-th root of 1. If a K-algebra R has right (a.c.), then the group ring R[G] has right (a.c.).

Proof. Since we have R[G] ∼= R⊗K K [G] ∼= R⊗K K n ∼= Rn, the result follows from Proposition 1.15. �

We denote the n× n full matrix ring over a ring R byMn(R).

Proposition 1.17. Let R be a finite ring with |R| = n. ThenMm(R) has (a.c.) for any m ≥ n.

Proof. Let J be a finitely generated ideal of S = Mm(R). Then J = Mm(I) for some ideal I of R. Since |R| = n, I =
Ra1R + · · · + RakR for 1 ≤ k ≤ n. Note that rS(J) = rS(AS), where A = a1e11 + a2e12 + · · · + ake1k since SAS = J .
Therefore S has right (a.c.). By symmetry, S has left (a.c.). �

2. Extensions of rings with (a.c.)

In this section, we study the extensions of rings with (a.c.). We first study several types of matrix rings over rings with
(a.c.). Throughout, we let eij denote the matrix units ofMn(R).

Theorem 2.1. If a ring R has right (a.c.), thenMn(R) has right (a.c.) for any integer n ≥ 2.
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Proof. Suppose that R has right (a.c.) and put S = Mn(R). Fix matrices A1, A2 ∈ S and suppose X = SA1S + SA2S. Write the
(i, j)-th entry of Ak as akij. Let J =

∑
i,j,k Ra

k
ijR. Since R has right (a.c.), rR(J) = rR(cR) for some nonzero c ∈ R. We compute

akijIn =
n∑
l=1

akijell =
n∑
l=1

eli(akijeij)ejl ∈ X

for all i, j, k. Hence

rS(X) = rS({akijInS}) = rS(cInS).

ThereforeMn(R) has right (a.c.). �

The converse of Theorem 2.1 is not true in general by the next example. Moreover, this example demonstrates that rings
with right (a.c.) are not Morita invariant.

Example 2.2. (1) Consider the ring R = Z2[x, y]/〈x2, y2〉, which does not have (a.c.). However, by Proposition 1.17,Mn(R)
has right (a.c.) for any n ≥ 16 since |R| = 16. Actually, we can show that Mn(R) has right (a.c.) for any n ≥ 2. Let I be a
nonzero proper ideal of R. Then I ⊆ {bx+ cy+ dxy | b, c, d ∈ Z2} because (1+ bx+ cy+ dxy)2 = 1. Put I = a1R+· · ·+ atR
for some nonzero elements a1, . . . , at ∈ R. It suffices to show that I is an ideal of R generated by at most two elements, since
then the proof of Proposition 1.17 applies. Now for any i, ai ∈ {x, y, xy, x + y, x + xy, y + xy, x + y + xy}. It is easy to see
then that xyR ⊆ aiR, so we may assume aiR ∈ {xR, yR, (x+ y)R, xyR}. Thus, if I is not a principal ideal then I = xR+ yR.
(2)We claim that (a.c.) does not pass to corner rings. By (1), S = M2(R) has right (a.c.). Let e = e11. Then note that SeS = S

and eSe ∼= R. Therefore eSe does not have right (a.c.).

We write UMn(R) to denote the n× n upper triangular matrix ring over a ring R.

Theorem 2.3. Fix n ≥ 2. A ring R has right (a.c.) if and only if UMn(R) has right (a.c.).

Proof. Suppose that R has right (a.c.). Let U = UMn(R) and A = (aij), B = (bij) ∈ U . Let Xj =
∑j
i=1

(∑j
k=i aikR+ bikR

)
.

These are exactly the elements which may appear as linear combinations of elements of the jth column of some matrix in
AU + BU . We leave it to the reader to check that the right annihilator of AU + BU is the same as the right annihilator of XU
where X =

∑n
j=1 Xjejj. Since R has right (a.c.), there exist c1, c2, . . . , cn ∈ R such that rR(Xj) = rR(cjR). One computes that

M ∈ rU(XU) if and only if ejkM annihilates Xjejj, for each j. Thus, if we set C =
∑n
i=1 cieii we have rU(X) = rU(CU). Therefore

U has right (a.c.).
Conversely, let a, b ∈ R, again set U = UMn(R), and now suppose U has right (a.c.). By hypothesis, rU(aekkU + bekkU) =

rU(CU) for some C ∈ U . If we set c = Ckk then rU(aekkU + bekkU) = rU(CekkU) = rU(cekkU). Trivially, rR(aR+ bR) = rR(cR),
so R has right (a.c.). �

Note that in the previous two results we can replace the word ‘‘right’’ with ‘‘left’’ and the theorems remain true due to
symmetry considerations.
In the following, we consider subrings of UMn(R). Let

Un(R) =

{
M ∈ UMn(R)

∣∣∣∣∣M = n∑
i=1

aeii +
∑

1≤i<j≤n

aijeij

}
,

denote the set of upper-triangular matrices with constant main diagonal and let

Vn(R) =

{
M ∈ Un(R)

∣∣∣∣∣M = ∑
1≤i≤j≤n

aijeij, where aij = a(i+1)(j+1)

}
be the set of upper-triangular matrices whose diagonals are each constant. Following [22], let RA = {rA : r ∈ R} for any
A ∈ Mn(R), and for n ≥ 0 let V =

∑n−1
i=1 ei(i+1), where the eij’s are the matrix units. Then note that for any integer n ≥ 1,

Vn(R) = RIn + RV + · · · + RV n−1.

Defineρ : Vn(R)→ R[x]/〈xn〉 byρ(a0In+a1V+· · ·+an−1V n−1) =
∑n−1
i=0 aix

i
+〈xn〉. One checks thatρ is a ring isomorphism.

We then have the following:

Example 2.4. The ring R = Z2[y]/〈y2〉 has (a.c.). However R[x]/〈x2〉 ∼= V2(R) ∼= U2(R) does not. Hence the analog of
Theorem 2.3 does not hold for these subrings. In particular, the trivial extension T (R, R) =

{(
a b
0 a

)∣∣∣ a, b ∈ R} need not
have (a.c.).
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By Theorem 2.3, a ring R has right (a.c.) if and only if UM2(R) has right (a.c.). However, for a ring Awith right (a.c.) and an
(A, A)-bimodule B, the upper matrix ring

(
A B
0 A

)
does not necessarily have right (a.c.) by the following example.

Example 2.5. Let A = C[x, y] and let B =
∏
i∈I A/Mi, where {Mi}i∈I is the set of maximal ideals of A. Note that B is an

(A, A)-bimodule, and A is a domain, hence clearly has right (a.c.). Let R =
(
A B
0 A

)
.

Suppose by way of contradiction that R does have right (a.c.). Then for
(
x 0
0 x

)
,
(
y 0
0 y

)
∈ R,

rR

((
x 0
0 x

)
R+

(
y 0
0 y

)
R
)
= rR

((
a (n̄i)
0 b

)
R
)

for some
(
a (n̄i)
0 b

)
∈ R. We now compute rR

((
x 0
0 x

)
R+

(
y 0
0 y

)
R
)
. If(

r (m̄i)
0 s

)
∈ rR

((
x 0
0 x

)
R+

(
y 0
0 y

)
R
)
,

then r = s = 0, and 0 = x(m̄i) = (xm̄i) and 0 = y(m̄i) = (ym̄i). Thus xmi, ymi ∈ Mi for each i ∈ I . This implies x, y ∈ Mi or
mi ∈ Mi. This exactly characterizes the right annihilator.
Now, consider(

0 (0, . . . , 0, 1+ 〈x, y〉, 0, . . .)
0 0

)
∈ rR

((
x 0
0 x

)
R+

(
y 0
0 y

)
R
)
= rR

((
a (n̄i)
0 b

)
R
)
.

We then conclude a ∈ 〈x, y〉. If a = 0, then
(
0 (q̄i)
0 0

)
∈ rR

((
a (n̄i)
0 b

)
R
)
for any (q̄i) ∈ B, contradicting our earlier

computation. Thus a 6= 0, and since a ∈ 〈x, y〉, we may write a = a(x, y) = xf (x, y) + yg(x, y) for some elements
f (x, y), g(x, y) ∈ C[x, y]. We claim that there exists a maximal ideal M containing a, but M 6= 〈x, y〉. If y|a then take
M = 〈x − 1, y〉. If y - a then since a(x, y) 6= 0, there exists a nonzero k ∈ C such that a(x, k) is not a constant polynomial.
Thus a(x, k) = c(x − c1) · · · (x − ct) for some c, c1, . . . , ct ∈ C since C is algebraically closed. Then a(c1, k) = 0 and
so a = a(x, y) ∈ 〈x − c1, y − k〉 = M , which proves our claim. Now

(
a (n̄i)
0 b

)
R
(
0 (0, . . . , 0, 1+M, 0, . . .)
0 0

)
= 0 and

so
(
0 (0, . . . , 0, 1+M, 0, . . .)
0 0

)
∈ rR

((
a (n̄i)
0 b

)
R
)
again contradicting our previous computation. Therefore R does not have

right (a.c.).

We may conjecture that the homomorphic image of a ring with right (a.c.) has right (a.c.), and that for an ideal I of a ring
R, if R/I has right (a.c.) and I has right (a.c.) as a ring (possibly without 1), then R has right (a.c.). However, the following
example erases these possibilities.

Example 2.6. Let A = Z2[x, y] and I = 〈x2, y2〉. Then R = A/I does not have (a.c.). Let J = x̄R, where x̄ ∈ R. Then
R/J ∼= Z2[y]/〈y2〉, and we note that R/J has (a.c.). Moreover, since J = {ax̄ + bx̄ȳ | a, b ∈ Z2}, rJ(S) = J for any S ⊆ J .
Hence J has (a.c.) as a non-unital ring.

Proposition 2.7. If R has right (a.c.) and I is an ideal of R, then R/`R(I) has right (a.c.).
Proof. For elements ā, b̄ ∈ R̄ = R/`R(I), let J̄ = R̄āR̄ + R̄b̄R̄. Since R has right (a.c.), rR(aR + bR) = rR(cR) for some c ∈ R.
We now claim that rR̄(J̄) = rR̄(c̄R̄). Let d̄ ∈ rR̄(J̄). Then aRdI = 0 and bRdI = 0, and so dI ⊆ rR(aR + bR) = rR(cR). Hence
d̄ ∈ rR̄(c̄R̄), whichmeans rR̄(J̄) ⊆ rR̄(c̄R̄). The reverse inclusion is obtained similarly, by reversing the implications. Therefore
R/`R(I) has right (a.c.). �

Finally, we consider the question of whether the classical right quotient ring Q (R) has right (a.c.) when R has right (a.c.).
This result plays an important role when studying the compactness of the space of minimal prime ideals in Section 3.

Proposition 2.8. Suppose R has its classical right quotient ring Q (R). If R has right (a.c.), then Q (R) has right (a.c.). Moreover,
the converse holds if R is reduced.
Proof. Let Q = Q (R) and I = Qa1b−1Q + Qa2b−1Q for a1b−1, a2b−1 ∈ Q . By hypothesis, rR(a1R + a2R) = rR(a3R) for
some a3 ∈ R. Note that rQ (I) = rQ (a1Q + a2Q ) since b−1Q = Q . We will show that rQ (a1Q + a2Q ) = rQ (a3Q ). Suppose
cd−1 ∈ rQ (a1Q + a2Q ). Then a1Qc = 0 and a2Qc = 0; hence for every u−1 ∈ Q , a1Ru−1c = 0 and a2Ru−1c = 0. Let
u−1c = c1u−11 for some c1u

−1
1 ∈ Q . Then a1Rc1 = 0 and a2Rc1 = 0, and so a3Rc1 = 0. It then follows that

0 = a3Rc1u−11 = a3Ru
−1c ⇒ 0 = a3Qcd−1,

hence we obtain rQ (a1Q + a2Q ) ⊆ rQ (a3Q ). The reverse inclusion is obtained by reversing all the implications above.
Therefore Q has right (a.c.).
Moreover, a ring R is reduced if and only if Q is reduced by [23, Theorem 16]. We can then prove that the converse holds

by the same method as above. �
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3. Compact spaces of minimal prime ideals

Recall that for any a ∈ R, we defined supp(a) = {P ∈ Spec(R) | a 6∈ P}. Shin [7, Lemma 3.1] proved that for any
ring R, {supp(a) | a ∈ R} forms a basis (for open sets) on Spec(R). This topology is called the hull-kernel topology. We
regard Min(R) as a subspace of Spec(R). Also we will adopt the notations: s(a) = supp(a) ∩ Min(R) for any a ∈ R and
S(q) = supp(q) ∩Min(Q (R)) for any q ∈ Q (R).
Huckaba and Keller [3, Theorem B], citing Quentel [11, Proposition 9], proved that for a commutative reduced ring R, the

total quotient ring T (R) of R is von Neumann regular if and only if R has (a.c.) and Min(R) is compact, if and only if R has
Property (A) and Min(R) is compact. In [16, Theorem 3.3] it is proven that the classical right quotient ring Q (R) is biregular
if and only if R has Property (A) and Min(R) is compact, when R has a right maximal quotient ring which is reduced and R
has the two-sided classical quotient ring Q (R).
In this section we will extend the result of Huckaba and Keller [3, Theorem B] and Quentel [11, Proposition 9] to

noncommutative rings, which is also a significant extension of [16, Theorem 3.3] as mentioned above. For notational
convenience we let Z(R) (respectively, Zl(R) and Zr(R)) denote the set of (left, right) zero-divisors. Note that in a reduced
ring, these sets agree.

Lemma 3.1. Let R be a reduced ring. Then we have the following:

(1) Let J be a finitely generated ideal of R. The inclusion J ⊆ P holds for some P ∈ Min(R) if and only if rR(J) 6= 0.
(2) A prime ideal P of R is minimal if and only if for all a ∈ P, rR(a) 6⊆ P.
(3) Z(R) =

⋃
P∈Min(R) P.

(4) If Min(R) is compact, then for each a ∈ R, there exists a finitely generated ideal J ⊆ rR(a) with rR(J + aR) = 0.

Proof. (1) By [16, Lemma 3.1]. (2) By [24, Corollary 1.4].
(3) If a ∈ Z(R), then rR(a) 6= 0. By (1), a ∈ P for some P ∈ Min(R). Conversely, let b ∈

⋃
P∈Min(R) P . Then b ∈ P for some

P . By (2), bc = 0 for some c ∈ R \ P , and therefore b ∈ Z(R).
(4) We refer the reader to the proof of [9, Proposition 1.16]. One needs only minor modifications for our case. �

Lemma 3.2. Let R be a reduced ring with its classical right quotient ring Q (R). Then:

(1) Min(R) = {M ∩ R | M ∈ Min(Q (R))}.
(2) Min(R) is compact if and only if Min(Q (R)) is compact.

Proof. (1) Let P ∈ Min(R). We first claim that P = PQ (R)∩R. To prove this, note that if a ∈ PQ (R)∩R, then ab ∈ P for some
non-zero-divisor b ∈ R. Since P is completely prime and b 6∈ P by Lemma 3.1(3), a ∈ P . We next show that PQ (R) is a two-
sided ideal of Q (R). For any rs−1 ∈ Q (R) and ab−1 ∈ PQ (R)with a ∈ P , s−1a = a1s−11 and hence sa1 = as1 ∈ P . Since s 6∈ P ,
a1 ∈ P and so rs−1ab−1 = ra1s−11 b

−1
∈ PQ (R). Obviously, PQ (R) 6= Q (R). Moreover, PQ (R) is prime inQ (R), for if A and B are

ideals of Q (R)with AB ⊆ PQ (R), then we have (A∩ R)(B∩ R) ⊆ P and so, say, A∩ R ⊆ P . Hence A = (A∩ R)Q (R) ⊆ PQ (R),
and therefore PQ (R) is a prime ideal of Q (R).
Next, for aminimal primeM ofQ (R), we claim thatM∩R isminimal prime in R. To see this, if P isminimal prime in Rwith

P ⊆ M∩R, then PQ (R) = M sinceM isminimal. Thus P = PQ (R)∩R = M∩R. ThereforeMin(R) ⊇ {M∩R | M ∈ Min(Q (R))}.
Also, given P ∈ Min(R) and a minimal prime idealM ⊆ PQ (R) of Q (R), then

P = PQ (R) ∩ R ⊇ M ∩ R

and by minimality P = M ∩ R. This yields the reverse inclusion.
(2) We only prove sufficiency because the other implication can be proved by the same method. Suppose that Min(R) is

compact and Min(Q (R)) = ∪i∈I S(aib−1i ). We claim that Min(R) = ∪i∈I s(ai). If we let P ∈ Min(R), then by (1), P = M ∩ R
for some minimal prime ideal M of Q (R). Since M ∈ ∪i∈I S(aib−1i ), M ∈ S(aib

−1
i ) for some i ∈ I . Hence aib

−1
i 6∈ M and

so ai 6∈ M ∩ R = P . Thus P ∈ s(ai) and therefore Min(R) = ∪i∈I s(ai). By hypothesis, Min(R) = ∪ni=1 s(ai). Letting
N ∈ Min(Q (R)), then by (1), N ∩ R ∈ Min(R). Thus N ∩ R ∈ s(aj) for some 1 ≤ j ≤ n and so ajb−1j 6∈ N . It follows
that N ∈ S(ajb−1j ) for some 1 ≤ j ≤ n. Therefore Min(Q (R)) = ∪

n
i=1 S(aib

−1
i ). �

It is a well known fact that strongly regular rings are reduced and biregular. But the converse is not true in general. For
an example take the first Weyl algebra over a field of characteristic zero. Also, by [13, Theorem 6], reduced biregular rings
are reduced p.p.-ring (recall, a ring is right p.p. if every principal right ideal is projective). But the converse is not true. For
example, take a polynomial ring over a division ring. However, we have the following:

Lemma 3.3. Let R be a ring with its classical right quotient ring Q (R). The following statements are equivalent:

(1) Q (R) is a reduced biregular ring;
(2) Q (R) is a reduced p.p.-ring;
(3) Q (R) is a strongly regular ring.
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Proof. (1) ⇔ (2): This follows from [13, Theorem 6]. (3) ⇒ (1): Obvious. (1) ⇒ (3): Suppose that Q (R) is a reduced
p.p.-ring. For any ab−1 ∈ Q (R), we have rQ (R)(ab−1) = ef −1Q (R) for some central idempotent ef −1 ∈ Q (R), and so
ab−1Q (R) ∩ ef −1Q (R) = 0. Now we claim that a + e is a non-zero-divisor in R. Assume that (a + e)c = 0 for some
c ∈ R. Then ac = −ec and so ab−1bc = −ef −1fc ∈ ab−1Q (R) ∩ ef −1Q (R) = 0. Thus bc ∈ rQ (R)(ab−1) = ef −1Q (R) whence
bc = ef −1rs−1 for some rs−1 ∈ Q (R). Recall that ef −1 is a central idempotent, hence we have

bc = ef −1bc = bcef −1 ⇒ c = cef −1 ⇒ fc = fcef −1 = ef −1fc = 0⇒ c = 0

because b and f are non-zero-divisors in R. Therefore a + e is not a zero-divisor in R. Let u = ab−1 ∈ Q (R). Then we note
that ab−1e = 0 and hence

uQ (R) = ab−1Q (R) = ab−1(a+ e)Q (R) = ab−1aQ (R) = ab−1ab−1Q (R) = u2Q (R).

Consequently, Q (R) is strongly regular. �

We are ready to prove our main result of this section.

Theorem 3.4. Let R be a reduced ring with its classical right quotient ring Q (R). Then the following statements are equivalent:

(1) Q (R) is a strongly regular ring;
(2) R has (a.c.) andMin(R) is compact;
(3) R has Property (A) andMin(R) is compact.

Proof. (1)⇒ (2): Ifwe suppose thatQ (R) is strongly regular, thenQ (R)has (a.c.) and sodoesRbyProposition 2.8.Moreover,
by [25, Proposition 4.1], every prime ideal of Q (R) is maximal and so Min(Q (R)) = Spec(Q (R)) is compact. Therefore, by
Lemma 3.2, Min(R) is compact.
(2)⇒ (3): We partially adapt the method in the proof of [1, Lemma 3.8]. Let I be a finitely generated ideal of R such that

I ⊆ Zl(R). LetM be the set of all non-zero-divisors in R. ThenM is anm-systemdisjoint from I . Hence I is contained in a prime
ideal P that is disjoint from M . We now claim that P is minimal. Let a ∈ P . By [7, Theorem 4.9], rR(a) = rR(rR(b)) for some
b ∈ R. Assume (by way of contradiction) that a, b ∈ Q for some Q ∈ Min(R). By Lemma 3.1(2), rR(a) 6⊆ Q and rR(b) 6⊆ Q
and also rR(a) = rR(rR(b)) ⊆ Q , contradicting the fact that rR(a) 6⊆ Q . Assume now (again, by way of contradiction) that
a, b 6∈ Q for some Q ∈ Min(R). Then b ∈ rR(a) ⊆ Q , which is also a contradiction. Consequently, a ∈ Q if and only if b 6∈ Q
for any Q ∈ Min(R). Note that rR(a+ b) = 0. If not, then a+ b ∈ T for some T ∈ Min(R) by Lemma 3.1(3), which is absurd
by the preceding argument. Thus a+ b is not a zero-divisor. This implies that a+ b 6∈ P and so b 6∈ P . Thus we have for any
a ∈ P , ab = 0 for some b 6∈ P . Hence by Lemma 3.1(2), P is minimal, and therefore by Lemma 3.1(1), rR(I) 6= 0.
(3)⇒ (1): By Lemma 3.3 and [25, Theorem 4.5], it suffices to prove that every prime ideal of Q (R) is maximal. Assume

that P ( Q are prime ideals in Q (R) with P minimal. Choose a ∈ Q \ P . Since Min(R) is compact, Min(Q (R)) is compact
by Lemma 3.2. Since Q (R) is reduced, there exists a finitely generated ideal J ⊆ rQ (R)(a) with rQ (R)(J + aQ (R)) = 0 by
Lemma3.1(4). However,wenote that rQ (R)(a) ⊆ P ( Q since aQ (R)rQ (R)(a) = 0, a 6∈ P , and P is prime. Thus J+aQ (R) ⊆ Q . If
J+aQ (R) 6⊆ Zl(Q (R)), then J+aQ (R) contains a non-zero-divisor and soQ (R) = J+aQ (R) ⊆ Q , which is a contradiction. On
the other hand, if J+aQ (r) ⊆ Zl(Q (R)) then since Q (R) has Property (A), rQ (R)(J+aQ (R)) 6= 0, which is also a contradiction.
Therefore every prime ideal of Q (R) is maximal. �

In view of Theorem 3.4 we may raise several questions about the possible redundancy of our hypotheses, which we
answer in the following remark.

Remark 4. (1) In Theorem 3.4, the condition ‘‘R is reduced’’ is not superfluous. For example, let R be the ring of all sequences
of 2× 2 matrices over a field F which are eventually diagonal. Then R is von Neumann regular and all primes are maximal
by [12, p.1865]. Thus R = Q (R) is von Neumann regular, R has (a.c.) and Min(R) is compact. But, R = Q (R) is not strongly
regular.
(2) There exists a commutative reduced ring R with Min(R) compact, but the total quotient ring T (R) is not strongly

regular [11]. Thus the statements about (a.c.) and Property (A) in Theorem 3.4 are not redundant.
(3) In Theorem 3.4, we cannot replace ‘‘Q (R) is strongly regular’’ by ‘‘R is strongly regular’’. For example, let R be the ring

of integers. Then R has (a.c.) and Property (A). Moreover, Min(R) is compact. But R is not strongly regular, though its classical
quotient ring is strongly regular.
(4) By [25, Proposition 4.1], if a ring R is biregular then every prime ideal of R is maximal. Note that if every prime ideal is

maximal then Min(R) = Spec(R) is compact. Thus if R is biregular then Min(R) is compact. But there exists a von Neumann
regular ring R inwhichMin(R) is not compact by [14, Example 8.28]. Actually, the example is a unit-regular ringwith general
comparability.
(5) Note that if R is a von Neumann regular ring with general comparability, then R is biregular if and only if every

prime ideal is maximal [14, Corollary 8.24]. Then we may conjecture that if R is a von Neumann regular ring with general
comparability andMin(R) is compact, then R (or Q (R)) is biregular. Unfortunately, this is not true by the following example.
Let D be a division ring and V be a right vector space over D with countably infinite basis. Let R = EndD(V ) be the
endomorphism ring of V , thinking of V as a right R-module. Then R = Q (R) is von Neumann regular and right self-injective.
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Thus by [14, Corollary 9.15], R satisfies general comparability. Moreover, since R is a prime ring, R has (a.c.) and Min(R) is
compact. But R = Q (R) is not biregular since the zero ideal is not maximal.
(6) In Theorem 3.4, canwe replace ‘‘R is a reduced ring’’ by ‘‘R is right Noetherian’’? Note that if R is right Noetherian, then

Min(R) is compact. Thus the question is equivalent to asking: if R is right Noetherian and has right (a.c.) (or right Property
(A)), is Q (R) biregular (or von Neumann regular)? The answer is no, due to the following example. Let S = Z2[x, y]/〈x2, y2〉.
By Example 2.2, R = M2(S) has right (a.c.). Since S is commutative and Noetherian, S has Property (A). Then by [16, Theorem
2.1], R has Property (A). Obviously, Min(R) is compact. But Q (R) is neither biregular nor von Neumann regular. Assume that
Q (R) is biregular. ThenQ (R)(xye11+xye22)Q (R) = EQ (R) for some central idempotent E ∈ Q (R). Since xye11+xye22 is central
in R, it is also central in Q (R). Then (xye11 + xye22)Q (R) = EQ (R) and so E = (xye11 + xye22)A for some A ∈ Q (R). It follows
that E = E2 = (xye11 + xye22)A(xye11 + xye22)A = (xye11 + xye22)2A2 = 0, contradicting the fact (xye11 + xye22)Q (R) 6= 0.
Hence Q (R) is not biregular. Moreover, (xye11 + xye22)B(xye11 + xye22) 6= xye11 + xye22 for any B ∈ Q (R), and therefore
Q (R) is also not von Neumann regular.

A ring R is called right coherent if every finitely generated right ideal of R is finitely presented. A right coherent ring has
the property that for any a ∈ R, rR(a) is a finitely generated right ideal of R by [18, Corollary 4.60]. Huckaba and Keller [3,
Theorem 3] proved that for a commutative reduced coherent ring R, R has Property (A) if and only if R has (a.c.), if and only
if T (R) is von Neumann regular. We prove that this fact is also true for noncommutative rings.

Proposition 3.5. Let R be a reduced right coherent ring with its classical right quotient ring Q (R). Then the following statements
are equivalent:

(1) Q (R) is strongly regular;
(2) R has (a.c.);
(3) R has Property (A).

Proof. (1) ⇒ (2) and (1) ⇒ (3) follow from Theorem 3.4. (2) ⇒ (1): We first claim that Spec(Q (R)) = Min(Q (R)). Let
P ∈ Spec(Q (R)) and ab−1 ∈ P . Then a ∈ P and rR(a) is a finitely generated ideal of R by hypothesis. Since R has (a.c.),
`R(rR(a)) = `R(c) for some c ∈ R. Thus we have rR(a) = rR(`R(c)). By the same argument as in the proof that (2) implies
(3) of Theorem 3.4, P ∈ Min(Q (R)). Thus Min(Q (R)) is compact and so is Min(R) by Lemma 3.2. Therefore Q (R) is strongly
regular by Theorem 3.4.
(3) ⇒ (1): Again, it suffices to prove that every prime ideal of Q (R) is maximal. Assume that P ( Q are prime ideals

Q (R) with P minimal. Choose ab−1 ∈ Q \ P . Note that rQ (R)(ab−1) = rQ (R)(a) = rR(a)Q (R). Now rR(a) =
∑n
i=1 xiR for

some xi ∈ R by hypothesis. Since Q (R) is reduced, rQ (R)(a) is an ideal of Q (R) and hence rQ (R)(a) =
∑n
i=1 Q (R)xiQ (R).

Let
∑n
i=1 Q (R)xiQ (R) = J . Then J = rQ (R)(a) = rQ (R)(ab

−1) ⊆ P by Lemma 3.1(2), and so J + Q (R)ab−1Q (R) ⊆ Q . We
note that J + Q (R)ab−1Q (R) ⊆ Zl(Q (R)). Since R has Property (A), rQ (R)(J + Q (R)ab−1Q (R)) 6= 0 and so by Lemma 3.1(1),
J + Q (R)ab−1Q (R) ⊆ T for some T ∈ Min(Q (R)). This contradicts the fact that J + Q (R)ab−1Q (R) is not contained in any
minimal prime ideal since J = rQ (R)(ab−1). Hence every prime ideal of Q (R) is maximal. �

Remark 5. In Proposition 3.5, the conditions ‘‘reduced’’ and ‘‘right coherent’’ are not superfluous. First, we note that right
Noetherian rings are right coherent by [18, Example 4.46(a)]. Thus we can use the example in Remark 4(6) to show that the
hypothesis that R is reduced is needed. Next, let R = Q[x1, x2, . . .] be the polynomial ring over the field of rational numbers
Q with commuting indeterminates x1, x2, . . . with relations given by xixj = 0 for all i 6= j. By [26, Ex. 13.17], R is reduced,
Q (R) is not strongly regular and Min(R) is not compact. Obviously R has Property (A). Since rR(x1) =

∑
i6=1 xiR, R is not

coherent. Now we claim that R has (a.c.). Actually, for any α, β ∈ R, rR(α, β) = rR(α2 + β2) because the indeterminates
appearing in α and β coincide with those appearing in α2 + β2.

We finally raise the following questions.

Question 1. If R has right (a.c.), then does R[x] (or R[[x]]) have right (a.c.)?

We note that if R is a commutative reduced left coherent ring then Min(R) is compact by [8, Corollary 4.2.16].

Question 2. Is Min(R) compact if R is a reduced left coherent ring?
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