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In this study, polybrominated diphenyl ethers (PBDEs) and methoxylated polybrominated diphenyl
ethers (MeO-PBDEs) were analyzed in eleven freshwater fish species from Dianshan Lake, Shanghai,
China. The highest concentrations of PBDEs and MeO-PBDEs were found in snakehead, with mean values
of 38 ng g ! Iw and 4.2 ng g ! lw, respectively. BDE-47 was the predominant congener of PBDEs, fol-
lowed by BDE-154. Congener pattern variation of PBDEs was observed among different fish species,

implying differences in biotransformation potential among fish. Yellow catfish showed highest con-
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centrations of BDE-99, -153 and -183, suggesting that it is more resistant to debromination than any
other fish analyzed in the present study. Trophic magnification factors were in the range of 1.35—1.81 for
all the PBDE congeners, but not for 2’-MeO-BDE-68. Negative relationship was observed between PBDEs
concentration and sample size (length and weight), indicating fish size dilution effect.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Polybrominated diphenyl ethers (PBDEs) have been produced
since 1970s and widely used as an additive flame retardant in
textile, furniture, electronic circuitry and other materials (de Wit,
2002). PBDEs were first found in fish from Viskan River where
home to a number of textile industrial companies (Andersson and
Blomkvist, 1981). Since then, numerous studies have been carried
out on the environmental exposure, (eco)-toxicology, (bio)-trans-
formation and environmental fate of PBDEs (Covaci et al., 2003;
Darnerud et al., 2001; Sjodin et al., 2003). Commercially PBDEs
have been mainly produced in three technical products as Pen-
taBDE, OctaBDE and DecaBDE (WHO/ICPS, 1994). Among them,
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OctaBDEs was never manufactured in China (Ni et al., 2013). China
stopped PentaBDEs production in 2004, while the domestic pro-
duction of DecaBDEs increased from 26,000 metric tons (MTs) in
2,000—41,500 MTs in 2005 and decreased to 20,500 MTs in 2011 (Ni
et al., 2013). Due to the persistence, bioaccumulation, semi-
volatility and adverse effects to human and wildlife, PentaBDE
and OctaBDE have been regulated under the Stockholm Convention
since 2009 (UNEP, 2015).

Methoxylated polybrominated diphenyl ethers (MeO-PBDEs)
were first identified in seals and fish in the Baltic Sea (Haglund
et al,, 1997) and subsequently detected in various Baltic biota e.g.
cyanobacteria, blue mussel (Mytilus edulis), herring (Clupea hare-
ngus) and guillemot (Uria aalga) (Malmvarn, 2007). Two of the
major MeO-PBDEs, i.e. 6-MeO-BDE-47 and 2’-MeO-BDE-68 have
been identified as natural product in True's beaked whale (Meso-
plodon mirus) (Teuten et al., 2005). Increasing concerns have been
attracted to MeO-PBDEs, due to their structural similarity to PBDEs.

0269-7491/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
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Congener based concentrations (ng g~! lw) of polybrominated biphenyl ethers (PBDEs) and methoxylated polybrominated biphenyl ethers (MeO-PBDEs) in freshwater fish
collected from Dianshan Lake.

Number Silver carp (SVC) Bighead carp (BHC) Rosy bitterling (RBL) Stone moroko (STM) Bigmouth grenadier anchovy (BGA)
n=3 n=4 n(pool) =5 n(pool) =5 n(pool) =5

Lipid content (%) 0.57 (0.51-0.62) 0.76 (0.55—1.3) 4.7 (3.2-6.2) 3.4 (2.6—-3.7) 3.5(2.3-44)

BDE-28 1.6%/1.3" (1.2-2.2)° 2.8/3.0 (1.4-3.7) 1.2/1.3 (0.63—1.9) 2.2[2.1(1.8-2.7) 1.3/1.2(1.1-1.6)

BDE-47 1.6/1.9 (0.69-2.2) 0.54/0.34 (ND-1.5) 7.3/7.0 (4.5—-10) 12/11 (8.2—14) 8.2/8.1 (7.1-94)

BDE-99 ND¢ 0.062/ND (ND-0.25) 0.11/0.062 (ND-0.30) 0.11/0.11 (ND-0.20) 0.21/0.22 (ND-0.52)

BDE-100 0.15/ND (ND-0.45) 0.12/0.052 (<LOQ-0.36) 0.069/0.047 (ND-0.21) 0.19/0.20 (0.11-0.32) 1.3/1.8 (ND-2.5)

BDE-153 0.46/0.45 (0.43—-0.49) 0.25/0.23 (0.092—-0.46) 1.3/1.1 (0.61-1.8) 0.98/0.99 (0.39-1.6) 0.74/0.74 (0.63—0.81)

BDE-154 1.2/0.56 (0.30—-2.7) 0.26/0.098 (ND-0.82) 2.6/2.5(1.2-3.8) 4.9/5.2 (3.3-6.2) 4.8/4.6 (3.9-6.4)

BDE-183 0.10/0.15 (ND-0.16) 0.17/ND (ND-0.67) 0.19/0.11 (ND-0.43) ND ND

>"7PBDEs 5.0/4.3 4.2/3.7 13/12 20/20 17/17

6-MeO-BDE-47 0.53/0.65 (ND-0.94) 2.0/2.5 (ND-3.2) 0.57/0.46 (0.30—1.1) 0.51/0.54 (0.38—0.62) 1.7/1.9 (1.4-2.0)

2'-MeO-BDE-68 0.99/0.29 (ND-2.7) 0.16/ND (ND-0.62) 0.43/0.38 (0.18—0.80) 0.47/0.47 (0.39—-0.54) 0.78/0.89 (0.31—-0.98)

2 Mean.

b Median.

¢ Range (min-max).
4 Not detected.

Kim et al. (2015) suggested that MeO-PBDEs showed a greater
biomagnification potential than PBDEs in freshwater food web. In
addition, MeO-PBDEs might transform to hydroxylated poly-
brominated diphenyl ethers (OH-PBDEs) (Wan et al., 2009), a
family of chemicals having the potential to disrupt the thyroid
hormone system and oxidative phosphorylation (Legradi et al.,
2014; Meerts et al., 2000).

Once released into the aquatic environments, PBDEs and MeO-
PBDEs can be accumulated into the primary producers and bio-
magnified through the food chain into the top predator. The trophic
maghnification of PBDEs and MeO-PBDEs in marine food webs has
been well documented in several researches (Kobayashi et al., 2015;
Losada et al., 2009; Mizukawa et al., 2013; Shao et al., 2016),
whereas fewer studies have been focused on the trophic magnifi-
cation in freshwater lakes (Yu et al., 2012). Fish play an important
role in the aquatic system, covering a wide range of trophic level in
the food web. In particular, carnivorous fish occupy a high position
in the food web and are commonly consumed by humans (Cheung
et al., 2008). With respective to environmental monitoring, fish
(e.g. herring) has been selected as a good matrix, serving for early
warning of adverse effects due to the exposure of contaminants
(Airaksinen et al., 2014). However, the influences of biological pa-
rameters (e.g. fish size) on accumulation of PBDEs and MeO-PBDEs
have not been well understood.

Dianshan Lake (N 31°04’-31°12/, E 120°54'-121°01’), the biggest
freshwater lake in Shanghai, is located in the lower reaches of the
Yangtze River Basin with an area of 62 km? and an average depth of
2.1 m. Dianshan Lake is one of the important fish sources for the
local fish market. It is also one of the drinking water sources for
citizens in Shanghai with a population of 24 million. Over the years,
although more and more studies on PBDEs have been carried out in
the lower reaches of Yangtze River Basin, less study can be found for
Dianshan Lake. Pervious study showed that organochlorine pesti-
cides and polychlorinated biphenyls (PCBs) are extensively detec-
ted in hen eggs and duck eggs from Dianshan Lake (Xu et al., 2015).
However, the brominated compounds such as PBDEs and MeO-
PBDEs level in fish, as well as the biomagnication of such anthro-
pogenic and natural contaminants in food web of Dianshan Lake
have not been studied.

This study aimed to investigate the occurrence of PBDEs and
MeO-PBDEs in fresh water fish from Dianshan Lake, one of the most
important fishery and drinking water sources for Shanghai Mu-
nicipality. Specific objectives included: (1) analyze the

concentrations and congener patterns of PBDEs and MeO-PBDEs in
eleven fish species from Dianshan Lake; (2) explore the trophic
magnification of PBDEs and MeO-PBDEs in the aquatic food web of
Dianshan Lake; (3) elucidate the relationship between the con-
centration of contaminants and fish size.

2. Materials and methods
2.1. Samples and sampling

Eleven wild fish species were collected from Dianshan Lake
located in Shanghai, China, in September, 2014. The fish species
included grass carp (Ctenopharyngodon idella, GRC, n = 5), bighead
carp (Aristichthys nobilis, BHC, n = 4), silver carp (Hypo-
phthalmichthys molitrix, SVC, n = 3), crucian carp (Carassius auratus,
CCC, n = 11), common carp (Cyprinus carpio, CMC, n = 9), snake-
head (Channa argus, SNH, n = 16), predatory carp (Erythroculter
ilishaeformis, PDC, n = 18), yellow catfish (Pelteobagrus fulvidraco,
YCF, n = 23), rosy bitterling (Rhodeus sinensis, RBL, n = 100 in 5
pool), stone moroko (Pseudorasbora parva, STM, n = 100 in 5 pool)
and bigmouth grenadier anchovy (Coilia ectenes, BGA, n = 100 in 5
pool). All of them are common species in the freshwater ecosystem
in this region. Whole fish were directly placed on ice and trans-
ported to the laboratory where their individual body length (cm)
and weight (g) were measured immediately, then frozen and stored
at —80 °C before dissection. Rosy bitterling, stone moroko and
bigmouth grenadier anchovy, were analyzed as pool sample in
whole fish. Muscle tissue from other fish species for analysis was
taken from the dorsal portion. Further description of fish species
are given in Table S1.

2.2. Chemicals and standards

All solvents used were of pesticide analysis grade. Authentic
reference standards of PBDE congeners (BDE-28, 47, 99, 100, 153,
154 and 183) and MeO-PBDEs congeners (6-MeO-BDE-47 and 2'-
MeO-BDE-68) were purchased from Wellington Laboratories Inc.
(Guelph, Ontario, Canada) and AccuStandard (New Haven, USA),
respectively. BDE-138 and BDE-139 from AccuStandard (New Ha-
ven, USA) were used as internal standards. All solvents, acids and
salts used were of highest quality commercially available. Silica gel
(0.063—0.2 mm) purchased from Merck (Darmstadt, Germany) was
activated at 300 °C overnight prior to use.
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Grass carp (GRC)

Crucian carp (CCC)

Common carp (CMC)

Yellow catfish (YCF)

Snakehead (SNH)

Predatory carp (PDC)

n=>5

n=11

n=9

n=23

n=16

n=18

6.3 (4.0-7.6)

0.031/0.032 (<LOQ-0.041)
0.056/0.068 (ND-0.077)
0.021/0.011 (ND-0.049)
0.011/0.013 (ND-0.025)
0.028/0.032 (ND-0.040)
0.098/0.10 (<LOQ-0.11)

0.95 (0.39—1.5)
1.0/0.89 (ND-3.9)
2.8/3.1 (0.21-5.1)
ND

0.67/0.44 (ND-1.4)
0.044/ND (ND-0.13)
1.3/1.3 (0.55—2.0)

0.48 (0.36—0.63)
0.86/0.72 (ND-1.9)
6.5/6.8 (ND-23)

ND

0.87/0.29 (ND-3.9)
0.29/0.22 (ND-0.71)
2.4/2.4(0.19-4.5)

1.4 (0.83-3.1)
0.88/0.89 (ND-2.4)
6.1/5.8 (0.15-19)
2.7/2.3 (ND-7.6)
1.6/1.4 (ND-5.3)
2.4/1.6 (0.15-14)
3.3/3.2 (0.15-12)

0.74 (0.36—1.6)
3.9/3.9 (ND-9.9)
20/16 (<LOQ-68)
ND

4.3/3.0 (ND-14)
0.69/0.88 (ND-1.4)
9.4/9.6 (0.17—32)

0.51 (0.24—0.76)
0.32/0.23 (ND-1.6)
3.4/2.3 (ND-16)

ND

0.47/0.066 (ND-2.9)
0.53/0.21 (0.63—2.9)
2.7/2.2 (ND-7.9)

0.014/ND (ND-0.066) ND 0.36/ND (ND-1.1)
0.26/0.26 59/5.8 11/10

ND 0.48/0.43 (ND-1.1) 0.48/0.66 (ND-0.98)
ND 0.32/0.16 (ND-1.8) 0.35/ND (ND-1.7)

1.0/0.81 (ND-4.8) ND ND

18/16 38/33 7.5/5.0

1.8/0.77 (ND-6.6) 42/2.9 (1.7-8.6) 0.89/0.67 (0.17—3.6)
1.5/1.4 (<LOQ-4.2) 1.8/1.9 (ND-5.3) 0.70/0.61 (ND-2.4)

2.3. Extraction and clean up

Approximately 2 g (dry weight) of sample was homogenized
after lyophilization. Prior to Soxhlet extraction, surrogate standard
(BDE-139, 2 ng) was spiked. The extraction was performed with
200 mL acetone/hexane (1:1, v/v) for 24 h. After extraction, the lipid
content of each sample was determined gravimetrically. Lipids and
organic matters were removed using concentrated sulfuric acid
(98%), and further clean-up was carried out using a Pasteur pipette
packed with activated silica gel (0.1 g) and activated silica (0.9 g)
impregnated with concentrated sulfuric acid (2:1 w/w) on top. The
columns were conditioned with n-hexane (3 mL), the extract was
added and the analytes eluted with n-hexane:dichloromethane
(10 mL, 1:1, v/v). The volume was reduced and solvent was changed
to n-hexane (final volume 0.2 mL) by a gentle stream of nitrogen
gas. Prior to instrumental analysis, BDE-138 (2 ng) were added into
the samples as volumetric standard (VS).

2.4. Instrumental analysis

PBDEs and MeO-PBDEs were analyzed by Agilent 7890A gas
chromatography coupled to a 5975C mass spectrometry (GC-MS)
using chemical ionization (CI) and selective ion monitoring (SIM)
mode, scanning bromine ions (m/z 79 and 81). Automated 1 pL
injection was conducted on a DB-5MS column (15 m x 0.25 mm
i.d. x 0.10 um film thickness; Agilent J&W), with methane as re-
agent gas. The injector was operated at temperature of 280 °C.
Helium was used as carrier gas at a set constant flow of 1.4 mL/min.
The oven program was 80 °C for 2 min, 15°C/min to 300 °C, 2°C/min
to 310 °C and hold for 5 min. The ion source and transfer line
temperature were set at 200 °C and 290 °C, respectively.

2.5. Stable nitrogen and carbon isotope analysis and TMF
calculation

Samples were lyophilized and finely powdered. Approximately
1 mg dry weight of the ground samples were weighed in tin cap-
sules and analyzed using a Flash HT element analyzer interfaced
with a Thermo Scientific MAT 253 isotope ratio mass spectrometer.
Stable isotope ratios of samples were assessed against the reference
standards urea for 3'°N (0.4%0) and 3'3C (30.9%o). The isotope ratios
(3%o) were calculated using the following Formula (1):

BlsN and 613(: = [(Rsample/Rstandard) - 1} *1000 (1)

where R is °N/'N for >N and '3¢/"2C for 5'3C. The precision for
this technique is about 0.5%o (+standard deviation (S.D.)) for 3'°N

and 0.2%o (+S.D.) for 3'3C.
Trophic level (TL) was calculated for each individual sample by
applying Eq. (2) (Post, 2002):

TLconsumer = [(5]5Nconsumer - 515Nzooplanktonﬂ /3.4 +2 (2)

where 3.4 is the isotopic trophic enrichment factor according to
Fisk et al. (2001).

TMFs were calculated according to Tomy et al. (2004) and the
references therein using following equations:

Log concentration(lipid — normalized) = A + B*TL (3)

The slope B was used to calculate TMF values using Eq. (4):

TMF = 108 (4)

TMFs > 1 indicates that contaminants are biomagnifying
through the food chain, whereas negative values imply that con-
taminants are not taken up by the organism or that they are
metabolized (Fisk et al., 2001).

2.6. Quality assurance and quality control

One procedural solvent blank was analyzed in parallel with each
batch of five samples to assess any potential contamination during
laboratory work. Limit of detection (LOD) was set to three times the
background noise (S/N = 3). Limit of quantification (LOQ) was set to
10 times the background noise (S/N = 10). The detailed LOQ of each
PBDEs in each fish species is presented in Table S2. The range of
recoveries (mean =+ S.D.) of BDE-139 was 63—115% (95% + 5.1%).

2.7. Statistics

Statistical analysis was performed on SPSS (PASW Statistics 18).
Spearman rank correlation test was used to assess the correlation
between concentrations of analytes and fish size. The significant
level was set at 5% (o = 5%).

3. Results and discussion
3.1. Concentration and congener profile of contaminants

The concentrations of PBDEs are presented in Table 1 and
visualized in Figs. ST and S2. The highest mean concentration of
>~7PBDEs was observed in snakehead (38 ng ¢~ 1 Iw) whereas the
lowest concentration was observed in grass carp (0.26 ng g~ ! Iw).
Mean concentrations of PBDEs were in the following descending
order: snakehead > stone moroko = yellow catfish = bigmouth
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grenadier anchovy > rosy bitterling = common carp > predatory
carp = crucian carp = silver carp = bighead carp > grass carp. In
order to compare the > 7PBDEs level with other studies in terms of
the same species, the results are summarized and given in Table S3.
In general, the contaminant levels in fishes from Dianshan Lake
were in moderate to low range compared with other studies. The
>"7PBDEs level in silver carp (1.6 ng g~! lw), bighead carp
(4.2 ng g ! Iw), grass carp (0.26 ng g~ ! lw), crucian carp (1.3 ng g~
Iw) and snakehead (38 ng g~! Iw) in the present study were much
lower than those in southern China, including silver carp
(1600 ng g~ ! Iw) (Luo et al., 2007b), bighead carp (6300 ng g~ lw)
(Luo et al., 2007a), grass carp (19—31 ng g~ ! Iw) (Cheung et al.,
2008), crucian carp (1900 ng g’1 Iw) (Luo et al., 2007b) and
snakehead (19-960 ng g~ Iw) (Cheung et al., 2008). The >-7PBDEs
levels in silver carp (5.0 ng g~ ! lw), grass carp (0.26 ng g~ lw),
crucian carp (5.8 ng g~ ! Iw) and common carp (11 ng g~ ! Iw) were
one magnitude lower or comparable to those from Taihu lake,
including silver carp (13 ng g~ ! Iw), grass carp (3.8 ng g~ lw),
crucian carp (12 ng g~! lw) and common carp (14 ng g~ ! lw) (Yu
et al., 2012). Further, PBDEs contamination in common carp was
much less serious than the same species in Gila river (3600 ng g~!
lw) in USA, where the samples were collected before the com-
mercial PBDEs products ceased (Echols et al., 2013).

The congener profile of PBDEs in eleven fish species is shown in
Fig. 1. BDE-47 was the predominant congener, accounting for 43%
(with a range of 13—58%) of > 7PBDEs, followed by BDE-154 (24%),
BDE-28 (14%) and BDE-100 (6%). BDE-99 only contributed to 2.5% of
>~7PBDEs with a detection frequency of 36% (37/104). The average
ratio between BDE-99/BDE-100 in the fish was 0.58, which is much
lower than those in technical PentaBDE mixture (3.7—5.7) (La
Guardia et al.,, 2006). Zeng et al. (2012) feeded common carp with
commercial PentaBDE mixture in food and found the most abun-
dant congener BDE-99 degraded to BDE-47. However, BDE-100 was
resistant to debromination. This indicates the structure selection of
reductive debromination. In addition, Stapleton et al. (2004) found
that BDE-99 undergoes debromination to form BDE-47 in common
carp by removal of a meta-bromine atom. In the present study, BDE-
99 was not detected in common carp, predatory carp, crucian carp
and snakehead, however, the compositions of BDE-47 were rela-
tively high (i.e. 48% in common carp, 45% in predatory carp, 57% in
crucian carp and 53% in snakehead), indicating strong metabolism
of BDE-99 occurred in these species. Nevertheless, yellow catfish
showed highest concentration (2.7 ng g~ ' Iw) and congener profile

[ BDE183 ([ BDE153 ([ BDE154 E BDE99 ] BDE100
(28] 2-MeO-BDE47 [ 2-MeO-BDE6S XX BDE47 [/7Z) BDE28

sNH AN
ver N\
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Fig. 1. Congener profile of PBDEs and MeO-PBDEs in 11 freshwater fishes from Dia-
nshan Lake, including Bigmouth grenadier anchovy (BGA); Stone moroko (STM); Rosy
bitterling (RBL); Silver carp (SVC); Bighead carp (BHC); Grass carp (GRC); Predatory
carp (PDC); Common carp (CMC); Crucian carp (CCC); Yellow catfish (YCF) and
Snakehead (SNH).

contribution (13%) of BDE-99, indicating species specific in debro-
mination of BDE-99.

Further, the ratios between BDE-153/BDE-154 in fish were in the
range of 0.03—0.98, with a mean value of 0.33, which is reversed in
the technical PentaBDE mixture (1.2—8.1) (La Guardia et al., 2006).
Mizukawa et al. (2013) exposed five BDE congeners (BDE-47, -99,
-100, -153 and -154) to ureogenic goby (Mugilogobius abei) and
marbled sole (Pseudopleuronectes yokohamae), and found BDE-99
and BDE-153 had higher metabolic debromination potential than
BDE-100 and BDE-154. This could be explained by the fact that
BDE-99 and BDE-153 have one more bromine atom substituted in
meta-position than BDE-100 and BDE-154, respectively, and the
debromination primarily takes place in the meta-position. Another
explanation could be that BDE-154 can be formed by debromina-
tion of BDE-183 (Zeng et al., 2012).

Species specific PBDE congener profiles were observed among
the fish. For instance, snakehead showed highest concentration of
BDE-28, -47, -100 and -154 whereas yellow catfish showed highest
concentration of BDE-99, -153 and -183 (Fig. S2). Considering the
structure similarity discussed above, it is plausible that yellow
catfish is more resistant to debromination than any other fish
analyzed in the present study. Unfortunately, no PBDEs metabolism
study has been conducted on yellow catfish so far.

Table 1 and Fig. S2 present the concentration of two MeO-PBDEs
congeners (6-MeO-BDE-47 and 2’-MeO-BDE-68). Mean concen-
tration of 6-MeO-BDE-47 ranged from ND (in grass carp) to
4.2 ng g~ ! Iw (in snakehead) whereas 2/-MeO-BDE-68 varied from
ND (in grass carp) to 1.8 ng g~! lw (in snakehead). This is in
accordance with the level in mandarin fish from its upstream lake,
Tai Lake (Qiu et al., 2012) and in anchovy (Coilia sp.) from the
Yangtze River Delta region (Su et al,, 2010). However, such level
were one magnitude lower than those reported in ocean fish (Baron
et al,, 2013; Covaci et al., 2008; Dahlgren et al., 2016; Losada et al.,
2009). The major source of MeO-PBDE:s is naturally synthesized in
sea water in the presence of bromine, bromoperoxidase and
hydrogen peroxide (Malmvarn, 2007). However, limit data on MeO-
PBDEs in freshwater has been reported and the sources of MeO-
PBDEs is uncertain. In our previous study on fish in Tai Lake, it is
purposed that MeO-PBDEs was probably produced due to the algae
bloom (Qiu et al., 2012), which occurs annually. Su and co-workers
suggested that the source of MeO-PBDEs in anchovy is due to the
migration of fish to sea water (Su et al., 2010). It could also result
from the water flow exchange, i.e. saltwater intrusion.

No correlation was observed between BDE-47 and 6-MeO-BDE-
47. The mean ratio between 6-MeO-BDE-47 and BDE-47 in the
present study was 0.49. Fish showed much less oxidative metab-
olites of PBDEs (e.g. OH-PBDEs) than debromination products
(Roberts et al., 2011). Zeng et al. (2012) found the ratio of OH-PBDEs
to their PBDEs precursor was only 0.5—0.7% in common carp's
serum. Accordingly, it is plausible that the presence of MeO-PBDEs
in fish from Dianshan Lake was produced in natural process rather
than metabolism of PBDEs (i.e. hydroxylation followed by O-
methylation). However, further studies needs to be conducted to
get solid conclusion on this.

3.2. Trophic magnification

The stable carbon (3'3C) and nitrogen (3!°N) isotope ratio was
shown in Fig. S3. The variance of '3C was relatively large in some of
benthic fish species, such as snakehead, common carp and crucian
carp. It is indicated that the sources of carbon were not sole in
sediments, which would hinder the research on trophic magnifi-
cation. In particular, 8'3C value of snakehead is isolated from other
species, indicating a different food source (Fig. S3). Therefore,
snakehead was excluded when trophic magnification was assessed.
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Table 2

Trophic magnification factor (TMF) calculated as the regression coefficient of the
trophic level versus the logarithm of the concentration (ng g~ Iw) in fish. Log Koy of
PBDEs and MeO-PBDEs were measured by Yu et al. (2008).

Log Kow All individuals except snakehead (n = 89)

n p R Slope TMF
BDE-28 5.94 66 0.000** 0.500 0.201 1.59
BDE-47 6.81 71 0.000** 0.419 0.199 1.58
BDE-99 7.32 31 0.017* 0.414 0.257 1.81
BDE-100 7.24 59 0.067 0.240 0.129 1.35
BDE-153 7.90 64 0.002** 0.380 0.179 1.51
BDE-154 7.82 76 0.004** 0.327 0.150 141
BDE-183 8.27 29 0.010** 0470 0.238 1.73
6-MeO-BDE-47 6.44 65 0.103 0.204 0.104 1.27
2'-MeO-BDE-68 6.16 60 0.040* —0.265 -0.136 0.73

*Significant level at 5%; **Significant level at 1%.

TMFs for each PBDE and MeO-PBDE congeners together with
their Log K, were listed in Table 2. All of the PBDE congeners
showed trophic magnification potential (TMF > 1) in Dianshan
Lake. TMFs of seven PBDE congeners ranged from 1.35 to 1.81. This
was in line with the TMF value in food web in Bohai Bay
(>-13PBDEs = 2.29) (Shao et al., 2016) and Taihu Lake (1.5—2.9) (Yu
et al., 2012). The mean TMF of BDE-47 was 1.58 close to that in
Canadian Arctic marine food web (1.6) (Kelly et al., 2008) but lower
than that in Sydney harbor (4.1) (Losada et al., 2009). Such differ-
ences could be due to a number of factors (e.g. size of food chain,
species difference, contamination level). Ma et al. (2013) found the
TMF would increase accompanied by the enlargement in the food
chain. Hop et al. (2002) found TMF of halogenated compounds in
poikilotherms were lower than those in homeotherms, probably
due to the lower energy requirement of poikilotherms. Mizukawa
et al. (2013) found that PCBs were more biomagnified than PBDEs
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in both in vitro and field study. They concluded that selective
debromination at the meta position of PBDEs, in particular in high
trophic level fish species, was an important factor, while other
factors must be responsible for the lower biomagnification of
PBDEs in natural ecosystems.

MeO-PBDEs showed less or none trophic magnification poten-
tial than PBDEs. This was in contrast with previous studies (Kelly
et al, 2008; Kim et al., 2015). MeO-PBDEs have a relative long
half live than its PBDE precursor under transformation conditions
(4-MeO-BDE-17 t1/2 = 79 000s, BDE-17 t1/2 = 57 000s) (Moreira
Bastos et al., 2008). Recently, Dahlgren et al. (2016) studied bio-
accumulation and biomagnification of OH-PBDEs and MeO-PBDEs
in Baltic Sea food chain. They found MeO-PBDEs concentration
increased accordingly up to perch and then dropped dramatically.
The opposite trend was observed for OH-PBDEs, indicating the
conversion between MeO-PBDEs and OH-PBDEs. In addition, other
factors e.g. bio-dilution through the food web (Zhang et al., 2012)
and seasonal variation (Lofstrand et al., 2011) could influence the
accumulation of MeO-PBDEs in aquatic biota and further impact
the TMFs.

3.3. Influence of fish size on biomagnification

Fish size has been commonly used to assess the accumulation
effects of contaminants. In the present study, five species (preda-
tory carp, snakehead, crucian carp, common carp and yellow cat-
fish) due to the high length variation and large number of samples
(over 10), were used to discuss relationships between fish size and
PBDEs concentrations. Correlations between sample size and con-
centrations of PBDEs were significantly negative (p < 0.05) in
predatory carp, snakehead and crucian carp, indicating “fish size
dilution” (Fig. 2). A negative correlation has been reported in fishes
from Taihu Lake, China (Yu et al., 2012) and French estuaries, France
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Fig. 2. Relationship (Spearman rank correlation test) between PBDEs (ng g~ Iw) and fish size (length (cm) and weight (g)) in selected fish species from Dianshan Lake.
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(Bragigand et al., 2006). However, this was inconsistent with other
study (Olsson et al., 2000), which found concentration of organo-
chlorine substances positively correlated with size increase in
perch (Perca fluvatilis). These results imply a number of factors in-
fluence the accumulation of contaminants in different ways. On one
hand, organisms accumulate more contaminants with the increase
of exposure time. Larger fish also indicate their prey status in higher
trophic level in food web and accumulate more contaminants. In
addition, increased body size can lead to less efficient contaminants
clearance over the gills due to a reduced gill area to body volume
ratio or increased distance between HOC storage tissues and sites of
elimination (Burreau, 2001; LeBlanc, 1995; Yu et al., 2012). On the
other hand, compared with those top predatory in food web (e.g.
sharks, predator birds), the steady-state of contaminants can be
reached more rapidly in fish, as a consequence, the growth of size
would not increase the concentration (Gewurtz et al, 2011).
Another explanation could be the correlation between sample size
and PBDE concentration in Fig. 2 was assessed by concentration on
lipid weight base. It is commonly found that larger fish possess
more lipid content, and thus concentration reported on lipid
weight would be diluted by such high lipid content (Yu et al., 2012).
Nonetheless, it is noteworthy that fish dilution effect does not
indicate the decrease of trophic magnification. Fish in low trophic
level could show stronger dilution effect than those in high trophic
level, and as a result, trophic magnification still occurs.

4. Conclusion

The concentration and congener profile of PBDEs and MeO-
PBDEs in fresh water fish were reported in Dianshan Lake, one of
the main fishery and drinking water resources for Shanghai Mu-
nicipality. Snakehead showed highest concentration of PBDEs and
MeO-PBDEs. The contamination level of those natural and
anthropogenic brominated substances were in the moderate to low
range compared with other studies. Trophic magnification was
observed in freshwater fishes for all target PBDE congeners, but the
trophic magnification for MeO-PBDEs was negligible. Concentra-
tions of PBDEs decreased with length or weight in predatory carp,
snakehead and crucian carp, indicating fish size dilution effect in
these species. Future study can pay more attention to the rela-
tionship between physical biological parameters and organo-
halogen contaminants level. Moreover, other aquatic organisms
such as algae, bivalve, and water bird can be included to enlarge the
aquatic food web. It is noteworthy to point out that yellow catfish
showed a unique PBDEs pattern (with high composition of BDE-99,
-153 and -183) compared with other species. More efforts on the
metabolism and biotransformation mechanism in yellow catfish is
valuable.
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