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Let f = u + io be an entire function of exponential type less than 7~. If 
u = 0 on two lines of lattice points {n) and {n + i), then f(z) = 0 [ 11. This 
result has been improved by Trembinska [6], who showed that if 
(f(n)) E (I, then f(z) = 0 provided that either u(n + i) = 0, - rc, < n < co, or 
u(n + i) = 0, - cc <n < co; in other words, the hypothesis that u vanishes at 
the integers can be replaced by the weaker condition that C (f(fz)l 
converges. Here we raise the question of finding complementary sequences 
M and N of integers with the property that if A of exponential type less 
than 71, satisfies {f(n)} Al’, then f = 0 provided that Re f(n + i) = 0 when 
ncM and Imf(n+i)=O when HEN. 

We show here that, under the additional hypothesis that Re f(n) = 0, the 
pair M= {negative integers}, N = {nonnegative integers} has the required 
property. 

It was shown in [5] that if f(z)= u(z)+ iu(z) and V(x)= 
C,‘= ~ ~ u(n) ein.r, -z < x < n, then Re f (m + i) = u(m + i) is the mth Fourier 
coefficient of S(x) V(x), where S(x) is the 2z-periodic continuation of 
sinh x, -lTII<X<lC, and u(m + i) is the mth Fourier coefficient of 
C(x) V*x), where C(x) is the Zn-periodic continuation of cash x, 
--n<x<rc. If, then, u(m+i)=O for m<O and u(m+i)=O for m>O, we 
have 

V(x) S(x) = f qn em.‘= B(x), 
R = 0 

V(x) C(x) = f pn einx = A(x). 

Consequently V(x) C(x) and V(X) S( x are the boundary functions of ) 
A(z) and B(z), which are analytic in the lower and upper half planes, 
respectively. 
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Now define V(z)= ,4(2)/C(z) in the lower half plane and I’(z) = 
B(z)/S(z) in the upper half plane. Then A(z)/C(z) is analytic in the lower 
half plane except along the lines x = kn (k = -t 1, f 3,...) and x = (k + f)~ 
(k = 0, + 1, +2,...), and B(z)/S(z) is analytic in the upper half plane except 
along the lines x = jrr (j= 0, f 1, &2,...). These functions coincide on the 
intervals kn < x < (k + 2)x, k = f 1, + 3 ,..., and are therefore analytic con- 
tinuations of each other over these intervals. We now have ,4(z) analytic in 
the lower half piane and B(z) analytic in the lower half plane except along 
the lines x=kn (k= fl, +3 ,...) and (k++)n (k=O, fl, +2 ,... ). 

We have A(z) = C(z) B(z)/S(z) in the lower half plane. Now C has zeros 
at the points -(k + j)nri+ 2mn (k=O, 1, 2 ,...; m =O, rt 1, +2 ,... ). On the 
other hand, S(z) # 0 at these points, and therefore A(z) = 0 at these points. 

For y < 0 we also have 

But since A(x) = I,,’ x pI1 e “lr is the product of V(x) and C(x), for IZ < 0 
we have 

d C(0) f Iu(n)I -=z CfJ. 
n= -x 

Hence A is bounded in the lower half plane. In each half strip y ~0, 
mn < x < (m + 1 )n, the function A has zeros of imaginary part -(k + t)n. 
Such a function must vanish identically. Let us suppose the contrary. 

If we apply Jensen’s theorem [4, p. 1251 to a disk A of radius R, 
centered at z = -iR. the number of zeros of A in A does not exceed 

log IA(reie)l de--log JA( -iR)I. 

Since IA(z)1 is bounded in the lower half plane, we cannot have 
R-’ log lA( -iR)I + -co as R + co [3, p. 169, Problem III 3261. Hence 
we have logIA(--iR)J>--AR for some I and R=R,,+ax. Applying 
Jensen’s theorem with R = R,, we see that if IA(z)1 <K (K > l), the num- 
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ber of zeros of A in A,, is 0( R, log K). This is impossible, for the number of 
zeros of A in A, exceeds 

(where [x] is the integral part of x). Since [x] > x - 1, it follows that the 
number of zeros of A in A, exceeds (n ~ ‘R, - 2)*. (The argument is the 
same as that of Gauss’s proof that a disk of radius R contains rcR* + O(R) 
lattice points [2, pp. 27CL271 I.) Therefore A(z) FE 0, all u(n) = 0, and finally 
.f(z) = 0. 
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