An Extension of Carlson's Theorem for Analytic Functions

R. P. Boas and A. M. Trembinska
Department of Mathematics, Northwestern University, Evanston, Illinois 60201, and Department of Mathematics, John Jay College, City University of New York, New York, New York 10019

Received October 20, 1986

Let $f=u+i v$ be an entire function of exponential type less than π. If $u=0$ on two lines of lattice points $\{n\}$ and $\{n+i\}$, then $f(z) \equiv 0$ [1]. This result has been improved by Trembinska [6], who showed that if $\{f(n)\} \in l^{1}$, then $f(z) \equiv 0$ provided that either $u(n+i)=0,-\infty<n<\infty$, or $v(n+i)=0,-\infty<n<\infty$; in other words, the hypothesis that u vanishes at the integers can be replaced by the weaker condition that $\sum|f(n)|$ converges. Here we raise the question of finding complementary sequences M and N of integers with the property that if f, of exponential type less than π, satisfies $\{f(n)\} \in l^{1}$, then $f \equiv 0$ provided that $\operatorname{Re} f(n+i)=0$ when $n \in M$ and $\operatorname{Im} f(n+i)=0$ when $n \in N$.

We show here that, under the additional hypothesis that $\operatorname{Re} f(n)=0$, the pair $M=\{$ negative integers $\}, N=\{$ nonnegative integers $\}$ has the required property.

It was shown in [5] that if $f(z)=u(z)+i v(z)$ and $V(x)=$ $\sum_{n=-\infty}^{\infty} v(n) e^{i n x},-\pi<x<\pi$, then $\operatorname{Re} f(m+i)=u(m+i)$ is the m th Fourier coefficient of $i S(x) V(x)$, where $S(x)$ is the 2π-periodic continuation of $\sinh x,-\pi<x<\pi$, and $v(m+i)$ is the m th Fourier coefficient of $C(x) V(x)$, where $C(x)$ is the 2π-periodic continuation of $\cosh x$, $-\pi<x<\pi$. If, then, $u(m+i)=0$ for $m<0$ and $v(m+i)=0$ for $m \geqslant 0$, we have

$$
\begin{aligned}
& V(x) S(x)=\sum_{n=0}^{\infty} q_{n} e^{i n x}=B(x), \\
& V(x) C(x)=\sum_{n=-\infty}^{-1} p_{n} e^{i n x}=A(x) .
\end{aligned}
$$

Consequently $V(x) C(x)$ and $V(x) S(x)$ are the boundary functions of $A(z)$ and $B(z)$, which are analytic in the lower and upper half planes, respectively.

Now define $V(z)=A(z) / C(z)$ in the lower half plane and $V(z)=$ $B(z) / S(z)$ in the upper half plane. Then $A(z) / C(z)$ is analytic in the lower half plane except along the lines $x=k \pi(k= \pm 1, \pm 3, \ldots)$ and $x=\left(k+\frac{1}{2}\right) \pi$ $(k=0, \pm 1, \pm 2, \ldots)$, and $B(z) / S(z)$ is analytic in the upper half plane except along the lines $x=j \pi(j=0, \pm 1, \pm 2, \ldots)$. These functions coincide on the intervals $k \pi<x<(k+2) \pi, k= \pm 1, \pm 3, \ldots$, and are therefore analytic continuations of each other over these intervals. We now have $A(z)$ analytic in the lower half plane and $B(z)$ analytic in the lower half plane except along the lines $x=k \pi(k= \pm 1, \pm 3, \ldots)$ and $\left(k+\frac{1}{2}\right) \pi(k=0, \pm 1, \pm 2, \ldots)$.

We have $A(z)=C(z) B(z) / S(z)$ in the lower half plane. Now C has zeros at the points $-\left(k+\frac{1}{2}\right) \pi i+2 m \pi(k=0,1,2, \ldots ; m=0, \pm 1, \pm 2, \ldots)$. On the other hand, $S(z) \neq 0$ at these points, and therefore $A(z)=0$ at these points.

For $y<0$ we also have

$$
|A(z)| \leqslant \sum_{n=1}^{\infty}\left|p_{.-n} e^{-i n z}\right|=\sum_{n=1}^{\infty}\left|p_{-n}\right| e^{-n|y|}
$$

But since $A(x)=\sum_{n=}{ }^{1} \quad x p_{n} e^{i n x}$ is the product of $V(x)$ and $C(x)$, for $n<0$ we have

$$
\begin{aligned}
p_{n} & =\frac{\sinh \pi}{\pi} \sum_{k=-\infty}^{\infty}(-1)^{k} \frac{v(n-k)}{1+k^{2}} \\
\sum_{n=1}^{\infty}\left|p_{-n}\right| & \leqslant \frac{\sinh \pi}{\pi} \sum_{n=-\infty}^{-1} \sum_{k=-\infty}^{\infty} \frac{|v(n-k)|}{1+k^{2}} \\
& \leqslant \frac{\sinh \pi}{\pi} \sum_{k=-\infty}^{\infty} \frac{1}{1+k^{2}} \sum_{n=-\infty}^{-1}|v(n-k)| \\
& \leqslant C(0) \sum_{n=-\infty}^{\infty}|v(n)|<\infty .
\end{aligned}
$$

Hence A is bounded in the lower half plane. In each half strip $y<0$, $m \pi<x<(m+1) \pi$, the function A has zeros of imaginary part $-\left(k+\frac{1}{2}\right) \pi$. Such a function must vanish identically. Let us suppose the contrary.

If we apply Jensen's theorem $[4$, p. 125] to a disk Δ of radius R, centered at $z=-i R$, the number of zeros of A in Δ does not exceed

$$
\frac{1}{2 \pi} \int_{|z+i R|<R} \log \left|A\left(r e^{i \theta}\right)\right| d \theta-\log |A(-i R)|
$$

Since $|A(z)|$ is bounded in the lower half plane, we cannot have $R^{-1} \log |A(-i R)| \rightarrow-\infty$ as $R \rightarrow \infty$ [3, p. 169, Problem III 326]. Hence we have $\log |A(-i R)|>-\lambda R$ for some λ and $R=R_{n} \rightarrow \infty$. Applying Jensen's theorem with $R=R_{n}$, we see that if $|A(z)| \leqslant K(K>1)$, the num-
ber of zeros of A in Δ_{n} is $O\left(R_{n} \log K\right)$. This is impossible, for the number of zeros of A in A_{n} exceeds

$$
2\left[R_{n} /\left(2^{3 / 2} \pi\right)\right]\left[R_{n} \pi / 2^{1 / 2}\right]
$$

(where $[x]$ is the integral part of x). Since $[x]>x-1$, it follows that the number of zeros of A in Δ_{n} exceeds $\left(\pi^{-1} R_{n}-2\right)^{2}$. (The argument is the same as that of Gauss's proof that a disk of radius R contains $\pi R^{2}+O(R)$ lattice points [2, pp. 270-271].) Therefore $A(z) \equiv 0$, all $v(n)=0$, and finally $f(z) \equiv 0$.

References

1. R. P. Boas, A uniqueness theorem for harmonic functions, J. Approx. Theory 5 (1972), 425-427.
2. G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers," 3rd ed., Oxford Univ. Press, London/New York, 1954.
3. G. Pólya and G. Szegö, "Problems and Theorems in Analysis," Vol. 1, Springer-Verlag, New York/Heidelberg/Berlin, 1972.
4. E. C. Titchmarsh, "The Theory of Functions," Oxford Univ. Press, London/New York, 1932.
5. A. M. Trembinska, Uniqueness theorems for entire functions of exponential type, J. Approx. Theory 42 (1984), 64-69.
6. A. M. Trembinska, Carlson's theorem for harmonic functions, J. Approx. Theory, in press.
