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a b s t r a c t

In the present article, we apply the variational iteration method to obtain the numerical
solution of the functional integral equations. This method does not need to be dependent
on linearization, weak nonlinearity assumptions or perturbation theory. Application of this
method in finding the approximate solution of some examples confirms its validity. The
results seem to show that the method is very effective and convenient for solving such
equations.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The variational iteration method [1–3] has proved to be one of the useful techniques in solving numerous linear and
nonlinear differential equations. For instance, see [1–6] and the references therein. An important advantage of the method
is that it uses the initial conditions only and does not require the specific transformations for nonlinear terms as required
by some existing techniques. Furthermore, we can apply the method directly needing no linearization, discretization or
perturbation. The method also gives the exact solution of rapidly convergent successive approximations if such a solution
exists. For concrete problems, we can use a few approximations for numerical purposes with a high degree of accuracy.

In this work, we aim to investigate the Fredholm functional integral equations of the second kind in the general form

y(x) + p(x)y (h(x)) +

∫ b

a
k (x, t) y(t)dt = g(x), a ≤ x ≤ b, (1)

and also, the Volterra type integral equations of the second kind in the form of

y(x) + p(x)y (h(x)) +

∫ x

a
k (x, t) y(t) dt = g(x), a ≤ x ≤ b, (2)

where p(x), h(x) and g(x) are analytical known functions.
Since the integral equations appear frequently in modeling of physical phenomena, they have a major role in the fields

of science and engineering, and a considerable amount of research work has been done in studying them. Some examples of
this kind include Taylor series [7], Chebyshev polynomials [8], homotopy perturbation method [9], expansion method [10],
and Lagrange interpolation [11].
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In the present study, we aim to employ the variational iterationmethod (VIM) to obtain the approximate solutions to the
integral equations. The method is reliable and capable of providing analytic treatment for the functional integral equations.
Unlike the Adomian decomposition method [12], where specific algorithms are normally used to determine the so-called
Adomian polynomials, the VIM handles linear and nonlinear terms in a similar manner without any additional requirement
or restriction. Another important advantage is that the VIM method is capable of greatly reducing the size of calculations
while still maintaining high accuracy of the numerical solution.

This paper has been organized as follows: In Section 2, we illustrate the main idea of the variational iteration method.
In Section 3, the variational iteration method is applied to the functional integral equations. Some numerical examples and
comparisons between the results obtained in this work and the ones obtained in [10,11] are given in Section 4. Finally,
conclusions are stated in the last section.

2. He’s variational iteration method

Consider the following general nonlinear differential equation:

Lu(x) + Nu(x) = g(x), (3)

where L is a linear operator, N is a nonlinear operator and g(x) is a known analytical function. According to the variational
iteration method, a correction functional can be constructed as

yn+1(x) = yn(x) +

∫ x

0
λ(ξ)


Lyn (ξ) + Nŷn (ξ) − g (ξ)


dξ, (4)

where λ is a general Lagrange multiplier and the term ŷn is considered as a restricted variation, i.e. δŷn = 0. Making the
above correction functional stationary, we obtain

δyn+1(x) = δyn(x) + δ

∫ x

0
λ(ξ)


Lyn (ξ) + Nŷn (ξ) − g (ξ)


dξ . (5)

In order to identify the Lagrange multiplier, from Eq. (5) we have

δyn+1(x) = δyn(x) + δ

∫ x

0
λ(ξ) [Lyn (ξ) − g (ξ)] dξ . (6)

In general, the Lagrange multiplier λ, can be readily identified by imposing the stationary condition δyn+1(x) = 0 on the
correction functional (6). After determining the Lagrange multiplier λ and selecting an appropriate initial function y0, the
successive approximations yn of the solution y can be readily obtained.

Consequently, the solution of Eq. (3) is given by

y(x) = lim
n→∞

yn(x).

In other words, the correction functional (4) will give successive approximations, and therefore the exact solution is
obtained as the limit of the resulting successive approximations.

3. Analysis of the method

To apply the variational iteration method, let us differentiate Eqs. (1), (2) with respect to x, as follows, respectively:

y′(x) = g ′(x) −


p′(x)y (h(x)) + p(x)h′(x)y′ (h(x)) +

∫ b

a

∂k (x, t)
∂x

y(t) dt


y′(x) = g ′(x) −


p′(x)y (h(x)) + p(x)h′(x)y′ (h(x)) +

∫ x

a

∂k (x, t)
∂x

y(t) dt + k(x, x)y(x)


.

According to the variational iteration method, we can construct the following correction functionals as

yn+1(x) = yn(x) +

∫ x

0
λ (ξ)


y′

n (ξ) − g ′ (ξ) + p′ (ξ) yn (h (ξ)) + p (ξ) h′ (ξ) y′

n (h (ξ)) +

∫ b

a

∂k (ξ , t)
∂ξ

yn(t) dt


dξ

yn+1(x) = yn(x) +

∫ x

0
λ (ξ)


y′ (ξ) − g ′ (ξ) + p′ (ξ) y (h (ξ)) + p (ξ) h′ (ξ) y′ (h (ξ))

+

∫ ξ

a

∂k (ξ , t)
∂ξ

y(t) dt + k (ξ , ξ) y (ξ)


dξ .



J. Biazar et al. / Journal of Computational and Applied Mathematics 235 (2011) 2581–2585 2583

Making the above correction functionals stationary, we obtain

δyn+1(x) = δyn(x) + δ

∫ x

0
λ (ξ)


y′

n (ξ) − g ′ (ξ) + p′ (ξ) ỹn (h (ξ)) + p (ξ) h′ (ξ) ỹ′

n (h (ξ))

+

∫ b

a

∂k (ξ , t)
∂ξ

ỹn(t) dt


dξ

δyn+1(x) = δyn(x) + δ

∫ x

0
λ (ξ)


y′

n (ξ) − g ′ (ξ) + p′ (ξ) ỹn (h (ξ)) + p (ξ) h′ (ξ) ỹ′

n (h (ξ))

+

∫ ξ

a

∂k (ξ , t)
∂ξ

ỹn(t) dt + k (ξ , ξ) ỹn (ξ)


dξ .

Since ỹn is considered as a restricted variation, i.e. δỹn = 0, these correction functionals can be written as

δyn+1(x) = δyn(x) + δ

∫ x

0
λ(ξ)y′

n (ξ) dξ,

or equivalently

δyn+1(x) = δyn(x) + λ (ξ) δyn (ξ) |ξ=x −

∫ x

0
δyn (ξ) λ′ (ξ) dξ .

This yields the following stationary conditions:

1 + λ (ξ) |ξ=x = 0,
λ′ (ξ) = 0.

Therefore, the Lagrange multiplier can be easily identified as

λ (ξ) = −1.

Consequently, we obtain the iteration formula

yn+1(x) = yn(x) −

∫ x

0


y′

n (ξ) − g ′ (ξ) + p′ (ξ) yn (h (ξ)) + p (ξ) h′ (ξ) y′

n (h (ξ)) +

∫ b

a

∂k (ξ , t)
∂ξ

yn(t) dt


dξ, (7)

in the case of Fredholm functional integral equations (1) and

yn+1(x) = yn(x) −

∫ x

0


y′

n (ξ) − g ′ (ξ) + p′ (ξ) yn (h (ξ)) + p (ξ) h′ (ξ) y′

n (h (ξ))

+
d
dξ

∫ ξ

a

∂k (ξ , t)
∂ξ

yn(t) dt


dξ, (8)

in the case of Volterra functional integral equations (2).
Starting with initial approximation y0 in (7) and (8), successive approximations yn will be easily obtained.

4. Numerical examples and comparison discussions

In this section, we present a selection of examples to illustrate the efficiency of the VIM. For the sake of comparing
purposes, we consider the same examples as used in [10,11]. In this paper, we also use the same computed error σn as was
defined in [10,11]

σn =


1
n

n−
j=0

e2n(xj)

0.5

where

en(xj) = yexact(xj) − yappr(xj),

and

xj = a +


b − a
n


j, j = 0, . . . , n,

also yexact is the exact solution of the problem and yappr is the obtained approximate solution from VIM.
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Table 1
Comparison of the absolute errors for Example 4.1.

n h(x) = x2/2 h(x) = 0.8x
VIM NM [8] VIM NM [8]

2 1.4e−03 5.2e−02 0.1e−02 6.1e−02
3 7.9e−03 3.8e−02 8.6e−03 3.1e−02
4 2.5e−04 5.7e−03 3.2e−04 9.2e−03
5 6.3e−05 5.1e−04 4.8e−05 3.2e−04

Table 2
Comparison of the absolute errors for Example 4.2.

n h(x) = x/2 h(x) = x ln(x + 2.0)
VIM NM [7] VIM NM [7]

2 3.7e−03 3.9e−03 3.8e−04 6.4e−03
3 4.6e−04 2.2e−04 5.5e−05 8.2e−04
4 7.3e−07 9.2e−06 8.9e−06 7.6e−05
5 1.1e−07 4.1e−07 1.1e−06 5.8e−06

Example 4.1. Let us first consider the following Fredholm integral equation of the second kind [10]

y(x) + e−xy (h(x)) +

∫ b

a
ex−ty(t) dt = g(x), a ≤ x ≤ b, (9)

where

g(x) = ex + eh(x)−x
+ (b − a) ex, a = 0, b = 1.1.

It can be easily verified that the exact solution of (9) reads as y(x) = ex.
Using (7), the iteration scheme for this example is

yn+1(x) = yn(x) −

∫ x

0


y′

n (ξ) − eξ
−

h′ (ξ) − 1


eh(ξ)−ξ

− 1.1eξ
− e−ξyn (h (ξ)) + e−ξ [yn (h (ξ))]′

+

∫ 1.1

0
eξ−tyn(t) dt


dξ . (10)

Starting with y0 = 1 + x +
x2
2 in (10), with the help of symbolic computations performed by Maple package the

approximate solution of (9) can be obtained.
Table 1 compares the computed errors σn of the nth-order approximation of VIM with those of a numerical approach

reported in [10] for different cases of h(x) in Example 4.1.

Example 4.2. Consider the following functional Volterra integral equation of the second kind [11]

y(x) + xe−xy (h(x)) +

∫ x

a
ex−ty(t) dt = g(x), a ≤ x ≤ b, (11)

where

g(x) = ex + xeh(x)−x
+ ex (x − a) , a = 0, b = 1.1,

and the exact solution reads as y(x) = ex.

Applying VIM and from (8), the iteration scheme for this example is obtained as:

yn+1(x) = yn(x) −

∫ x

0


y′

n (ξ) − 2eξ
−

1 + ξ


h′ (ξ) − 1


eh(ξ)−ξ

− ξeξ
+

e−ξ

− ξe−ξ

yn (h (ξ))

+ ξe−ξy′

n (h (ξ)) +
d
dξ

∫ ξ

0
eξ−tyn(t) dt


dξ . (12)

Starting with y0 = 1 + x in iterative scheme (12), the approximate solution of (11) will be obtained.
In Table 2, we compare the computed errors σn of the nth-order approximation of VIM with those obtained in [11] for

some cases of h(x) in Example 4.2.
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Table 3
Comparison of the absolute errors for Example 4.3.

n h(x) = x2 h(x) = x/2
VIM NM [7] VIM NM [7]

2 1.8e−15 3.5e−16 1.7e−14 3.9e−16
3 4.7e−16 5.4e−16 6.4 e−15 2.9 e−16
4 5.5e−17 9.3e−16 8.7 e−16 4.0 e−16
5 1.1e−17 1.1e−15 1.4 e−16 3.2 e−16

Example 4.3. We now consider the following Volterra integral equation of the second kind

y(x) +

∫ x

a
ex−h(t)y (h(t)) dt = g(x),

where

g(x) = ex + (x − a)ex, a = 0, b = 1.1.

The exact solution of this example was found to be [11]
y(x) = ex.

The iteration scheme for this example, using (8), reads as

yn+1(x) = yn(x) −

∫ x

0


y′

n (ξ) − eξ
− λeξ

− λξeξ
+ λ

d
dξ

∫ ξ

0
eξ−h(t)yn (h(t)) dt


dξ . (13)

We startwith an initial approximation y0(x) = 1+x; by the iteration formula (13),we can obtain the next approximations
of the solution.

In Table 3, we present the comparisons made between the computed errors σn of the nth-order approximation of VIM
and those of a numerical approach proposed in [11] for different cases of h(x) in Example 4.3.

It is noteworthy to be mentioned that in Examples 4.1–4.3, the subsequent components of yn’s were too long to be
mentioned.

5. Conclusion

An efficient algorithm based on the variational iteration method has been successfully applied to the second order
functional integral equations. As can be seen from Tables 1–3, by implementing only a few steps in the variational iteration
method, the approximate analytical solutions with high accuracy can be obtained.

It can be concluded that the variational iteration method is a powerful and promising tool for solving such kinds of
functional integral equations. This method can also be extended to the functional differential equations of the form

A1(x)y′′ (h(x)) + A2(x)y′′(x) + B1(x)y′ (h(x)) + B2(x)y′(x) + C1(x)y (h(x)) + C2(x)y(x) = g(x),
y(a) = α, y′(a) = β

which are under study in our research group.
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