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Abstract

In this paper we determine all the bijective linear maps on the space of bounded observables

which preserve a fixed moment or the variance. Nonlinear versions of the corresponding

results are also presented.
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1. Introduction and statements of the results

In the Hilbert space formalism of quantum mechanics there are several structures
of linear operators which play distinguished role in the theory. These are, among
others, the following. The Jordan algebra BsðHÞ of all self-adjoint bounded linear
operators on the Hilbert space H which are called bounded observables, the lattice
PðHÞ of all projections (i.e., self-adjoint idempotents) on H called quantum events,
the convex set SðHÞ of all positive trace-class operators on H with trace 1 called
(mixed) states, and the so-called effect algebra EðHÞ of all positive bounded linear
operators which are majorized by the identity I : These structures play essential role
in the probabilistic aspects of quantum theory.

Just as in the case of any algebraic structure in mathematics in general, the
study of the automorphisms of the above-mentioned structures is of remarkable
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importance. One can find an interesting unified treatment of those automor-
phisms in [7]. In our recent papers [1,16] we presented some results on the local
behaviour of the automorphisms in question, while in [17–19] we have started
to study how these automorphisms can be characterized by their preserving
properties.

The systematic study of preserver problems (more precisely, linear preserver
problems, so-called LPPs) constitutes a part of matrix theory. In fact, this area
represents one of the most active research fields in matrix theory (we refer only to
two survey papers [13,14]). In the last decades considerable attention has also been
paid to the infinite-dimensional case as well, i.e., to linear preserver problems
concerning algebras of linear operators on general Hilbert spaces or Banach spaces
(once again, we only refer to a survey paper [6]). From the point of view of the
present paper, the most important point is that the solutions of linear preserver
problems provide, in most of the cases, important new information on the
automorphisms of the underlying algebras (matrix algebras, or more generally,
operator algebras) as they show how those automorphisms are determined by their
various preserving properties. These properties mainly concern a certain important
numerical quantity or a set of them corresponding to operators (e.g., norm,
spectrum), or they concern a distinguished set of operators (e.g., the set of
projections), or they concern an important relation among operators (e.g.,
commutativity). This kind of results may help to better understand the behaviour
of the automorphisms of the underlying algebras.

In our above-mentioned papers [17–19] we have started to study the auto-
morphisms of Hilbert space effect algebras and those of the Jordan algebra of
bounded observables from a similar, preserver point of view. There we have
considered transformations which preserve quantities, or relations, or properties
that all have physical meaning. For example, as for observables, in [18] we
determined all bijective transformations (no linearity was assumed) of BsðHÞ
that preserve the order (which is just the usual order among self-adjoint operators).
In [19] we described the general form of those bijections of BsðHÞ which pre-
serve commutativity (in quantum theory the expression compatibility is used
in the place of commutativity) and are multiplicative on commuting pairs of
operators.

We now turn to the content of the present paper. In classical probability theory
the mean value (or, more generally, the moments) and the variance are among the
most important characteristics of a random variable. Therefore, it is not surprising
that the same is true for the quantum mechanical variables, i.e., for the observables.
The main aim of this paper is to show that the preservation of any of those quantities
more or less completely characterizes the automorphisms among the linear
transformations of BsðHÞ:

In what follows, let H be a complex Hilbert space. Let AABsðHÞ and pick a unit
vector jAH: The mean value mðA;jÞ of the observable A in the (pure) state
represented by j is defined as

mðA;jÞ ¼ /Aj;jS:
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So, unlike in classical probability, in quantum theory there is a set of mean values
of a single variable. We intend to determine all the bijective linear transformations f
of BsðHÞ which preserve this set in the sense that

fmðfðAÞ;jÞ : jAH; jjjjj ¼ 1g ¼f/fðAÞj;jS: jAH; jjjjj ¼ 1g

¼f/Aj;jS: jAH; jjjjj ¼ 1g

¼fmðA;jÞ: jAH; jjjjj ¼ 1g

holds for every AABsðHÞ: Clearly, the set of all mean values of an observable
AABsðHÞ is equal to the numerical range of the operator A: So, the above problem
can be reformulated as the linear preserver problem concerning the numerical range
on BsðHÞ: Obviously, it is a more general problem to preserve the numerical radius
wð:Þ instead of the numerical range. It is well-known that for a self-adjoint operator
A this former quantity wðAÞ is equal to the operator norm jjAjj: Hence, we easily
arrive at the problem of describing the surjective linear isometries of BsðHÞ: The
solution of this problem is well known in the literature. For example, one can consult
the paper [8]. The corresponding result reads as follows.

Theorem 1. Let f : BsðHÞ-BsðHÞ be a bijective linear map which preserves the

operator norm, that is, suppose that

jjfðAÞjj ¼ jjAjj ðAABsðHÞÞ:

Then there is an either unitary or antiunitary operator U on H such that f is either of

the form

fðAÞ ¼ UAU� ðAABsðHÞÞ ð1Þ

or of the form

fðAÞ ¼ �UAU� ðAABsðHÞÞ: ð2Þ

(By an antiunitary operator we mean a norm preserving conjugate-linear bijection
of the underlying Hilbert space H:) Although this is not a new result, in Section 2 we
present the sketch of a short proof that applies preserver techniques.

Observe that the above statement is a self-adjoint analogue of a well-known result
of Kadison [12] on the surjective isometries of C�-algebras and also that of a result of
Brešar and Šemrl [5] describing the form of all bijective linear maps of the algebra of
all bounded linear operators on a Banach space which preserve the spectral radius
(recall that the norm of a self-adjoint operator is equal to its spectral radius).
However, there is no doubt, those results are much deeper than the one we have
formulated above.

With the help of Theorem 1 we can describe the bijective linear maps of BsðHÞ
which preserve the set of mean values. In fact, as the second possibility (2) can be
excluded, we obtain that the maps in question are exactly the automorphisms of the
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Jordan algebra BsðHÞ (cf. [7]). Moreover, observe that using the same result
Theorem 1 we can solve also the problem of preserving a fixed moment of bounded
observables. For any nAN; the nth moment of an observable AABsðHÞ is the set

fmðAn;jÞ : jAH; jjjjj ¼ 1g ¼ f/Anj;jS: jAH; jjjjj ¼ 1g:

Now, the solution of the mentioned problem immediately follows as one can refer to
the equality

supfj/Anj;jSj : jAH; jjjjj ¼ 1g ¼ wðAnÞ ¼ jjAnjj ¼ jjAjjn

which holds for every self-adjoint operator A on H:
Beside moments, the other very important probabilistic character of an observable

is its variance. Just as with mean values, we have variance with respect to every
(pure) state. Let AABsðHÞ and jAH; jjjjj ¼ 1: The variance varðA;jÞ of A in the
state j is defined by

varðA;jÞ ¼mððA � mðA;jÞIÞ2;jÞ

¼/ðA �/Aj;jSIÞ2j;jS

¼/A2j;jS�/Aj;jS2:

We intend to determine all bijective linear maps on BsðHÞ which preserve the set
of variances of observables. It is obvious that every linear map f on BsðHÞ which
preserves this set, i.e., which satisfies

fvarðfðAÞ;jÞ : jAH; jjjjj ¼ 1g ¼ fvarðA;jÞ : jAH; jjjjj ¼ 1g

for every AABsðHÞ; also preserves the quantity

jjAjjv ¼ sup
jjjjj¼1

varðA;jÞ1=2; ð3Þ

i.e., satisfies

jjfðAÞjjv ¼ jjAjjv

for every AABsðHÞ: The quantity jjAjjv is called the maximal deviation of the

observable AABsðHÞ: In its definition (3) we have used the square root of the
variances since, as it will be clear from Lemma 1, the so-obtained quantity is a semi-
norm on BsðHÞ which is quite convenient to handle.

Observe that every automorphism of BsðHÞ (see [7]) as well as its negative
preserves the maximal deviation and that perturbations by scalar operators also do
not change this quantity. Our result that follows (which can be considered as the
main result of the paper) states that from these two types of transformations we
can construct all the linear preservers under consideration.
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Theorem 2. Let f : BsðHÞ-BsðHÞ be a bijective linear map which preserves the

maximal deviation, that is, suppose that

jjfðAÞjjv ¼ jjAjjv ðAABsðHÞÞ:

Then there exist an either unitary or antiunitary operator U on H and a linear

functional f : BsðHÞ-R such that f is either of the form

fðAÞ ¼ UAU� þ f ðAÞI ðAABsðHÞÞ ð4Þ

or of the form

fðAÞ ¼ �UAU� þ f ðAÞI ðAABsðHÞÞ: ð5Þ

Unlike with the transformations preserving the set of mean values, for the bijective
linear maps on BsðHÞ which preserve the set of variances, the second possibility (5)
above can obviously occur. Hence, we obtain that every such preserver is ‘‘an
automorphism of BsðHÞ or its negative perturbed by a scalar operator valued linear
transformation’’.

Since, from the physical point of view, to assume the linearity of the considered
transformations on the space of observables sometimes seems to be a strong
assumption that can be quite difficult to check in the particular cases, in the
remaining results we formulate nonlinear versions of Theorems 1 and 2 as follows.
First observe that

dmðA;BÞ ¼ sup
jjjjj¼1

jmðA � B;jÞj ¼ jjA � Bjj ðA;BABsðHÞÞ

defines a metric on BsðHÞ; while

dvðA;BÞ ¼ sup
jjjjj¼1

varðA � B;jÞ1=2 ¼ jjA � Bjjv ðA;BABsðHÞÞ

defines a semi-metric on BsðHÞ: Both dm and dv represent certain stochastic distances
between bounded observables. Using the first two results and the celebrated Mazur–
Ulam theorem on surjective nonlinear isometries of normed spaces [15], we can
prove the following statements which show how close the stochastic isometries with
respect to either dm or dv are to the automorphisms of the Jordan algebra BsðHÞ:

Theorem 3. Let f : BsðHÞ-BsðHÞ be a bijective transformation (linearity is not

assumed) with the property that

dmðfðAÞ;fðBÞÞ ¼ dmðA;BÞ ðAABsðHÞÞ:

Then there is an either unitary or antiunitary operator U on H and a fixed operator

XABsðHÞ such that f is either of the form

fðAÞ ¼ UAU� þ X ðAABsðHÞÞ

ARTICLE IN PRESS
L. Moln !ar, M. Barczy / Journal of Functional Analysis 205 (2003) 380–400384



or of the form

fðAÞ ¼ �UAU� þ X ðAABsðHÞÞ:

The last result of the paper describes the form of all ‘‘stochastic isometries’’ with
respect to the semi-metric dv:

Theorem 4. Let f : BsðHÞ-BsðHÞ be a bijective transformation (linearity is not

assumed ) with the property that

dvðfðAÞ;fðBÞÞ ¼ dvðA;BÞ ðAABsðHÞÞ:

Then there exist an either unitary or antiunitary operator U on H, a fixed operator

XABsðHÞ; and a functional f : BsðHÞ-R (not linear in general) such that f is either of

the form

fðAÞ ¼ UAU� þ X þ f ðAÞI ðAABsðHÞÞ

or of the form

fðAÞ ¼ �UAU� þ X þ f ðAÞI ðAABsðHÞÞ:

2. Proofs

We first remark that in what follows, whenever we speak about the preservation of
an object or relation we always mean that this is preserved in both directions.

We now present a short proof of Theorem 1.

Sketch of the proof of Theorem 1. Let f : BsðHÞ-BsðHÞ be a surjective linear
isometry. Clearly, f preserves the extreme points of the unit ball of BsðHÞ which are
well-known (and easily seen) to be exactly the self-adjoint unitaries, i.e., the
operators of the form 2P � I where P is a projection. Now, one can readily prove
that among those extreme points, I and �I are distinguished by the following
property. The extreme point U is either I or �I if and only if we have jjU �
V jjAf0; 2g for every extreme point V : Therefore, we get fðfI ;�IgÞ ¼ fI ;�Ig:
Clearly, we can suppose without loss of generality that fðIÞ ¼ I : In that case we
obtain that f preserves the projections. This gives us that f is a Jordan
automorphism of BsðHÞ; that is, it satisfies the equality fðAB þ BAÞ ¼ fðAÞfðBÞ þ
fðBÞfðAÞ for every A;BABsðHÞ (cf. [3] or [6]). Therefore, we have that f is of the
form

fðAÞ ¼ UAU� ðAABsðHÞÞ

with some unitary or antiunitary operator U on H (see, for example, [7]). &
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The proof of Theorem 2 is much more difficult than the one given above and is
based on the following series of lemmas. Our first observation below will prove to be
fundamental from the viewpoint of the proof of Theorem 2 that we are going to
present. It states that the maximal deviation of an operator T is equal to the so-
called factor norm of T in the factor Banach space BsðHÞ=RI : (In particular, this

result implies that the function T/jjT jjv is a semi-norm on BsðHÞ:) Denote by T the

equivalence class of T in BsðHÞ=RI : The factor norm jjT jj of T is defined by

jjT jj ¼ inf
lAR

jjT þ lI jj:

As the spectral radius and the operator norm of a self-adjoint operator are the same,

it easily follows that jjT jj is equal to the half of the diameter of the spectrum sðTÞ
of T :

Lemma 1. For all TABsðHÞ we have jjT jjv ¼ jjT jj ¼ diamðsðTÞÞ=2:

Proof. As we have already verified that jjT jj ¼ diamðsðTÞÞ=2; we have to prove only

the first equality. For a scalar operator T ; both quantities jjT jjv and jjT jj are 0.

Otherwise, we can assume that 0pTpI and that f0; 1gCsðTÞC½0; 1�: This is
because the factor norm and the maximal deviation of T are invariant under adding

scalar operators and they are absolute homogeneous. In this case we have jjT jj ¼ 1
2
:

First we prove the easier inequality jjT jjvpjjT jj: For any lAR we have

jjT jj2v ¼ jjT þ lI jj2v ¼ sup
jjjjj¼1

ð/ðT þ lIÞ2j;jS�/ðT þ lIÞj;jS2Þ

p sup
jjjjj¼1

/ðT þ lIÞ2j;jS ¼ jjðT þ lIÞ2jj ¼ jjT þ lI jj2:

This yields jjT jjvpjjT þ lI jj for all lAR which implies that jjT jjvpjjT jj:
Now, we turn to the less obvious inequality 1

2
¼ jjT jjpjjT jjv: Let ET be the spectral

measure corresponding to T : Since 0 and 1 are in the spectrum of T ; it follows that

for any 0odp1
2
; the measures of � � d; d½-sðTÞ and �1� d; 1þ d½-sðTÞ under ET

are mutually orthogonal nonzero projections. At this stage d is not fixed, we shall
specify it later. Denote these projections by P0 and P1; respectively.

Let x be a unit vector in the range of P0 and y be a unit vector in the range of P1:

Define j ¼ ðx þ yÞ=
ffiffiffi
2

p
: Then jAH is a unit vector and we assert that the following

inequality holds:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/T2j;jS�/Tj;jS2

q
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2dÞ2

2
� ð1þ 2dÞ2

4

s
: ð6Þ
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To see this, first observe that Tx ¼ TP0x and Ty ¼ TP1y: Since

TP0 ¼
Z
��d;d½-sðTÞ

t d ETðtÞ;

we deduce jjTP0jjpd: This yields that

jjTxjjpd:

A similar argument shows that jjTy � yjj ¼ jjTP1y � P1yjjpd: Since jjyjj ¼ 1; this
gives us that

1� dpjjTyjjp1þ d:

Now, to prove (6) we estimate /T2j;jS ¼ jjTjjj2 from below and /Tj;jS2 from

above. Since Tj ¼ ðTx þ TyÞ=
ffiffiffi
2

p
; we have

jjTjjjX�jjTxjj þ jjTyjjffiffiffi
2

p X
�dþ 1� dffiffiffi

2
p

and thus we get

/T2j;jS ¼ jjTjjj2Xð1� 2dÞ2

2
: ð7Þ

Using the equality TP0 ¼ P0T and the fact that P0 and P1 are mutually
orthogonal projections, we have

/Tx; yS ¼ /TP0x;P1yS ¼ /P0Tx;P1yS ¼ /Tx;P0P1yS ¼ 0:

This also implies that /Ty; xS ¼ 0: Therefore, we infer

/Tj;jS ¼ 1

2
ð/Tx; xSþ/Ty; ySÞ:

Since j/Tx; xSjpjjTxjjpd and j/Ty; ySjpjjTyjjp1þ d; we obtain

/Tj;jS2p
ð1þ 2dÞ2

4
:

This inequality together with (7) gives (6).
Now, for an arbitrary e40; choosing d such that it satisfiesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� 2dÞ2

2
� ð1þ 2dÞ2

4

s
X
1

2
� e;
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it follows from what we have already proved that we can pick a unit vector jAH

for which

jjT jjvX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/T2j;jS�/Tj;jS2

q
X
1

2
� e:

This gives us that jjT jjvX1
2
¼ jjT jj which completes the proof of the lemma. &

Remark 1. As we have seen, the quantity jjT jjv ¼ jjT jj is exactly the half of the

diameter of the spectrum of T : Therefore, if TX0 and 0AsðTÞ; then jjT jjv ¼ jjT jjp1
2

if and only if 0pTpI :

This observation will be used in the proof of our next lemma which determines the

extreme points of the (closed) 1
2
-ball of the Banach space BsðHÞ=RI :

Lemma 2. The extreme points of the ball fAABsðHÞ=RI : jjAjjp1
2
g are the classes of

nontrivial projections, that is, the elements PABsðHÞ=RI ; where P is a nontrivial

projection (Pa0; I) on H.

Proof. The point in the proof is to reduce the problem concerning classes of
operators to a problem concerning single operators.

First, we check that the classes of nontrivial projections are extreme points of the
ball in question. Suppose that P is a nontrivial projection and

P ¼ mT þ ð1� mÞS;

where 0omo1; jjT jjp1
2; jjSjjp1

2; T ;SABsðHÞ: Adding scalar operators if necessary,

we can suppose that T ;SX0; 0AsðTÞ; 0AsðSÞ: Clearly,

P ¼ mT þ ð1� mÞS þ lI

holds for some lAR:
We claim that l ¼ 0: If jAH is a unit vector in the kernel of P; we infer that

0 ¼ /Pj;jS ¼ m/Tj;jSþ ð1� mÞ/Sj;jSþ l:

Since /Tj;jSX0 and /Sj;jSX0; the above equality yields lp0:

It follows from sðPÞ ¼ f0; 1g that jjPjj ¼ 1
2
: We compute

1

2
¼ jjPjj ¼ jjmT þ ð1� mÞSjjpmjjT jj þ ð1� mÞjjSjjpðmþ 1� mÞ 1

2
¼ 1

2
;
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from which we deduce that jjT jj ¼ jjSjj ¼ 1
2
: Using Remark 1 we get 0pT ;SpI : So,

if j is a unit vector in the range of P; then we have

1 ¼ /Pj;jS ¼ m/Tj;jSþ ð1� mÞ/Sj;jSþ lpmþ ð1� mÞ þ l;

which gives us that lX0: Therefore, it follows that l ¼ 0 as we have claimed.
Consequently, we have P ¼ mT þ ð1� mÞS: This means that P is a nontrivial

convex combination of two elements of the operator interval ½0; I �: However, it is
well-known that the extreme points of this operator interval are exactly the
projections. Hence, we get P ¼ T ¼ S: This proves that the classes of nontrivial
projections are really extreme points.

It remains to prove that these classes are the only extreme points. In order to see

this, let B be a self-adjoint operator with jjBjj ¼ 1
2
which is not a nontrivial

projection. We show that B is not an extreme point of the ball in question. Clearly,
just as above, we can assume that BX0 and 0AsðBÞ: Then we have 0pBpI : As

jjBjj ¼ 1
2
; it also follows that 1AsðBÞ: We are going to show that there exist two

operators B1;B2 in the operator interval ½0; I � such that B ¼ ðB1 þ B2Þ=2 and

BaB1;B2: In the present situation this will imply that BaB1;B2: Then, as B ¼
ðB1 þ B2Þ=2; jjB1jj; jjB2jjp1

2
(see Lemma 1), we can infer that B is not an extreme

point. So, in order to construct such operators B1;B2; choose l0AsðBÞ-�0; 1½: (The
existence of such a l0 follows from the facts that B is not a nontrivial projection and

that jjBjja0:) Now, one can easily find continuous real valued functions f1; f2 :
½0; 1�-½0; 1� such that ð f1 þ f2Þ=2 is the identity on ½0; 1� and f1ðl0Þal0af2ðl0Þ:
Defining B1 ¼ f1ðBÞ;B2 ¼ f2ðBÞ; it follows from the properties of the continuous
function calculus that we obtain operators with the desired properties. This
completes the proof of the lemma. &

In what follows, we intend to characterize the unitary equivalence of nontrivial

projections P;Q by means of some correspondence between the classes P and Q that
can be expressed in terms of the metric induced by the factor norm. The first step in
this direction is made in the following lemma.

Lemma 3. Let P and Q be projections on H. Suppose that P is nontrivial and jjP �
Qjjo1

2
: Then P is unitarily equivalent to Q.

Proof. First observe that Qa0; I : In fact, in the opposite case we would have

jjPjjo1=2: But this means that the diameter of sðPÞ is less than 1, which gives us that
P is a trivial projection, a contradiction.

Because of the definition of the factor norm there exists a mAR such that jjP �
ðQ þ mIÞjjo1

2
: Let R be a projection of rank at most 2 whose range contains a unit

vector from the range of P and a unit vector from the range of Q; respectively. The
operators RPR and RðQ þ mIÞR are of finite rank, 1 is the largest eigenvalue of RPR

and 1þ m is the largest eigenvalue of RðQ þ mIÞR: Indeed, to prove for example this
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last statement, observe that

RðQ þ mIÞRpRðI þ mIÞR ¼ ð1þ mÞRpð1þ mÞI :

This shows that the spectrum of RðQ þ mIÞR is a subset of the interval � �N; 1þ m�:
On the other hand, 1þ m is an eigenvalue of the operator RðQ þ mIÞR since the
range of R contains a unit vector from the range of Q:

By Weyl’s perturbation theorem (see, for example, [2, Corollary III.2.6]) we
deduce

jmj ¼ j1� ð1þ mÞjpjjRPR � RðQ þ mIÞRjj

p jjRjj jjP � ðQ þ mIÞjj jjRjjo1

2
;

and so we have

jjP � QjjpjjP � ðQ þ mIÞjj þ jmjo1

2
þ 1

2
¼ 1:

But it is a well-known result that if the distance between two projections in the
operator norm is less than 1, then they are unitarily equivalent. This completes the
proof of the lemma. &

A useful solution of the problem mentioned before Lemma 3 is given in the next
result.

Lemma 4. Let P and Q be projections on H and suppose that P is nontrivial. Then P

is unitarily equivalent to Q if and only if there exists a continuous function

j : ½0; 1�-PðHÞ such that jð0Þ ¼ P and jð1Þ ¼ Q:

(Here PðHÞ denotes the set of classes in BsðHÞ=RI which correspond to
projections.)

Proof. The necessity is easy to see. Indeed, this follows from the well-known fact
that if P;Q are equivalent projections then they can be connected by a continuous
curve (continuity is meant in the operator norm topology) in the set of projections
and from the fact that the operator norm majorizes the factor norm.

Now, conversely, suppose that there exists a continuous mapping j : ½0; 1�-PðHÞ
such that jð0Þ ¼ P and jð1Þ ¼ Q: As j is defined on a compact set, it is uniformly
continuous. Hence, we can choose a positive d such that

jjjðtÞ � jðsÞjjo1

2
if js � tjod; s; tA½0; 1�:
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It follows that there exist projections P1;y;Pn with the property that

jjP � P1jjo
1

2
;y; jjPn � Qjjo1

2
:

By Lemma 3, we obtain that P and P1 are unitarily equivalent (and, consequently,
P1 is nontrivial). Using this argument again and again we can conclude that P is
unitarily equivalent to Q: &

The meaning of our last lemma which follows is a metric characterization of the
equality of nontrivial projections in BsðHÞ with respect to the semi-norm jj:jjv:
Denote by FsðHÞ the set of all finite rank elements in BsðHÞ:

Lemma 5. Let P and Q be nontrivial projections on H such that

jjP þ Ajjv ¼ jjQ þ Ajjv

holds for all AAFsðHÞ: Then we have P ¼ Q:

Proof. 1 Let R be a rank-1 subprojection of the projection P: Then the diameter of
the spectrum of P þ R is 2, so by Lemma 1 we have

1 ¼ jjP þ Rjjv ¼ jjQ þ Rjjv;

that is, the diameter of sðQ þ RÞ is also equal to 2. Since 0pQ þ Rp2I ; thus
sðQ þ RÞ is a subset of the closed interval ½0; 2�: Therefore, we have 0; 2AsðQ þ RÞ:

It is well-known that the spectrum of any normal operator coincides with its
approximate point spectrum. Consequently, we can find unit vectors xn in H ðnANÞ
such that

jjQxn þ Rxn � 2xnjj-0 as n-N:

This yields that

jjQxn þ Rxnjj-2: ð8Þ

Denote un ¼ Qxn and vn ¼ Rxn: We have jjunjjp1; jjvnjjp1: Since vn is in the range
of R which is one dimensional, there must exist a convergent subsequence of ðvnÞ:
Without any loss of generality, we can assume that this subsequence is ðvnÞ itself. So,
there exists a vector v in the range of R such that jjvn � vjj-0: Since

j jjun þ vjj � jjun þ vnjj jpjjv � vnjj-0
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and jjun þ vnjj-2; we have jjun þ vjj-2: On the other hand, by the parallelogram
identity we obtain

jjun � vjj2 ¼ 2jjunjj2 þ 2jjvjj2 � jjun þ vjj2:

Therefore, we have

lim sup
n-N

jjun � vjj2p2þ 2� 4 ¼ 0;

which implies that jjun � vjj-0: So, both ðunÞ; ðvnÞ converge to v: Taking (8) into
account, it is clear that va0:

Since the sequence ðunÞ is in the range of Q which is a closed subspace, it follows
that its limit v also belongs to this range. But v generates the range of R and hence
R is a subprojection of Q: So, we have proved the following: every rank-1
subprojection of P is a subprojection of Q: Therefore, P is a subprojection of Q:
Changing the role of P and Q; we get that Q is also a subprojection of P and hence
we obtain P ¼ Q: &

Now, we are in a position to prove our main result.

Proof of Theorem 2. The brief summary of the proof is as follows. Our
transformation f which preserves the maximal deviation induces a surjective linear
isometry F on the factor space BsðHÞ=RI : This F necessarily preserves the extreme

points of the 1
2
-ball which points are well characterized in Lemma 2. This implies a

certain preserving property of the original transformation f: Namely, we obtain that
f preserves the operators of the form ‘‘nontrivial projectionþ scalar 
 I ’’. This will
imply that f preserves the commutativity on FsðHÞ þ RI : Extending f from this set
to its complex linear span FðHÞ þ CI (FðHÞ stands for the set of all finite rank
bounded linear operators on H), we obtain a complex-linear transformation which
preserves normal operators. Applying the technique of the proof of a nice result of
Brešar and Šemrl given in [4], we can conclude the proof in the case when dim HX3:
If dim H ¼ 2; then rather surprisingly we can reduce our problem quite easily to
Wigner’s classical unitary–antiunitary theorem. So, this is the plan what we now
carry out.

Define a map F : BsðHÞ=RI-BsðHÞ=RI in the following way

FðAÞ ¼ fðAÞ ðAABsðHÞÞ:

The transformation f is a linear bijection of BsðHÞ which preserves the maximal
deviation. By Lemma 1, we easily obtain that f preserves the scalar operators and
then that F is a well-defined linear bijection on BsðHÞ=RI which preserves the factor

norm. It follows that F preserves all closed balls around 0 as well as their extreme
points. Therefore, by Lemma 2, we deduce that f preserves the set of all operators of
the form P þ lI ; where P is a nontrivial projection and lAR:
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We shall show that f preserves the commutativity on FsðHÞ þ RI : Let P0 and Q0

be mutually orthogonal projections. We known that there exist projections P;Q;R

and real numbers l1; l2; l3 such that

fðP0Þ ¼P þ l1I ;

fðQ0Þ ¼Q þ l2I ;

fðP0 þ Q0Þ ¼R þ l3I :

By the linearity of f this implies that P þ Q ¼ R þ tI for some real number t (in fact,
t ¼ l3 � l1 � l2). We assert that P and Q are either commuting or the projections
P;Q;R are unitarily equivalent to each other.

In order to prove this, we distinguish the following cases.
Case I: Suppose that R is scalar. Then P þ Q is also scalar which implies that P;Q

commute.
Case II: Suppose that R is not scalar, that is, R is a nontrivial projection. Consider

the orthogonal decomposition of H induced by the range and the kernel of R: Every
operator has a matrix representation with respect to this decomposition. As for
P þ Q; we can write

P þ Q ¼ R þ tI ¼
ð1þ tÞI 0

0 tI

� �
: ð9Þ

The inequality 0pP þ Qp2I implies that 0ptp1: According to the possible values
of t we have the following sub-cases.

Case II/1: Suppose that t ¼ 0: Then P þ Q ¼ R is a projection and hence ðP þ
QÞ2 ¼ P þ Q: From this equality we easily deduce PQ ¼ QP ¼ 0 which implies that
P;Q commute.

Case II/2: Suppose that t ¼ 1: Then P þ Q ¼ R þ I ; which implies that R þ ðI �
QÞ ¼ P is a projection. Just as above, we obtain that R; I � Q are commuting
projections. This implies that R;Q commute and, finally, it follows from the equality
R þ ðI � QÞ ¼ P that P;Q also commute.

Case II/3:2 Suppose that 0oto1: In this case we use the result that any two
projections in generic position (i.e., with no common eigenvectors) are unitarily
equivalent (see [9,11]). As the spectrum of P þ Q ¼ R þ tI is contained in ft; 1þ tg;
the numbers 0,1,2 are not in the spectrum of P þ Q: This implies that P;Q are in a
generic position and hence they are unitarily equivalent. Similarly, as the spectrum of
R � P is contained in f�t; 1� tg which does not contain -1,0,1, we infer that P;R are
in a generic position and hence they are unitarily equivalent. It follows that the
projections P;Q;R are pairwise unitarily equivalent. What does this mean for our
original projections P0;Q0? Obviously, in the present case P;Q;R are nontrivial.
Using Lemma 4 and the isometric property of F with respect to the factor norm,
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we obtain that the projections P0;Q0;P0 þ Q0 are pairwise unitarily equivalent. But if
P0;Q0 are nonzero mutually orthogonal finite rank projections, then this cannot
happen.

Therefore, we have proved that for any finite rank projections P0;Q0 with P0Q0 ¼
Q0P0 ¼ 0 it follows that fðP0ÞfðQ0Þ ¼ fðQ0ÞfðP0Þ: If we pick operators A;BAFsðHÞ
which commute, then they can be diagonalized simultaneously. Using the just proved
property of f one can easily deduce that fðAÞ;fðBÞ also commute.

We show that

fðFsðHÞ þ RIÞ ¼ FsðHÞ þ RI :

If dim HoN; this is obvious. So, let H be infinite dimensional. Pick a nonzero finite
rank projection P0: Then fðP0Þ ¼ P þ lI holds for some nontrivial projection P and
real number l: If P is of finite rank or of finite corank, then we obtain
fðP0ÞAFsðHÞ þ RI : So, let us see what happens if P is of infinite rank and infinite
corank.

First suppose that dim rng Ppdim rng P>: Then we can find nontrivial projections
P1 and P2 such that P ¼ P1 þ P2 and P;P1;P2 are mutually unitarily equivalent.
Now, referring to Lemma 4, there are nontrivial projections P0

1;P0
2 such that

P0 þ mI ¼ P0
1 þ P0

2

holds for some mAR and the projections P0;P0
1;P0

2 are mutually unitarily equivalent.

So, the projections P0
1;P0

2 are of finite rank and we see that on the right-hand side of

the equality above there is a finite rank operator. This gives us that m must be zero
and then we have P0 ¼ P0

1 þ P0
2: Like in the argument given in Case II/1, we obtain

that P0
1;P0

2 are mutually orthogonal projections. We now conclude that, because

of unitary equivalence and orthogonality, the equality P0 ¼ P0
1 þ P0

2 is untenable

which is a contradiction.

Next, suppose that dim rng PXdim rng P>: Then we can apply the argument

above for P> to find nontrivial projections P1 and P2 such that P> ¼ P1 þ P2 and

P>;P1;P2 are mutually unitarily equivalent. This implies that there are nontrivial
projections P0

1;P0
2 such that

P0> þ nI ¼ P0
1 þ P0

2 ð10Þ

holds for some nAR and the projections P0>;P0
1;P0

2 are mutually unitarily

equivalent. (Observe that, as FðP0Þ ¼ P; we have FðP0>Þ ¼ P>:) It follows that
the projections P0

1;P0
2 are of finite corank and hence their ranges have nonempty

intersection. Therefore, we obtain that 2 belongs to the spectrum of the oper-
ator P0

1 þ P0
2; and by (10) this implies that n ¼ 1: Now, Eq. (10) can be rewritten in

the form

P0 ¼ ðI � P0
1Þ þ ðI � P0

2Þ ¼ P0>
1 þ P0>

2 ;
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where the nontrivial projections P0;P0>
1 ;P0>

2 are pairwise unitarily equivalent. Just as

in the previous paragraph we arrive at a contradiction.
Therefore, we have fðP0ÞAFsðHÞ þ RI for every finite rank projection P0:

Applying the spectral theorem for self-adjoint finite rank operators, it follows that

fðFsðHÞ þ RIÞCFsðHÞ þ RI : As f�1 has the same properties as f; considering the

above relation for f�1 in the place of f; we conclude that

fðFsðHÞ þ RIÞ ¼ FsðHÞ þ RI :

To sum up what we have already proved, it has turned out that f when restricted
onto FsðHÞ þ RI is a bijective linear map which preserves commutativity. Consider
the complex unital algebra FðHÞ þ CI : As the real and imaginary parts of an
operator in FðHÞ þ CI belong to FsðHÞ þ RI ; one can readily verify that the mapeff : FðHÞ þ CI-FðHÞ þ CI defined by

effðA þ iBÞ ¼ fðAÞ þ ifðBÞ ðA;BAFsðHÞ þ RIÞ

is a bijective complex-linear transformation. It is an elementary fact that a bounded
linear operator is normal if and only if its real and imaginary parts are commuting.
As f preserves commutativity between self-adjoint finite rank operators, it follows

that eff preserves normality. If dim HX3; then this latter preserving property is strong

enough to imply that eff is of a certain particular form. In fact, there is a nice result of
Brešar and Šemrl [4, Theorem 2] which, in the case when dim HX3; characterizes the
bijective linear mappings on BðHÞ that preserve normal operators. Although the

algebra on which our transformation eff is defined differs from BðHÞ in general, it is
not hard to see that the technique used in [4] can be applied to our present situation

as well. This gives us the following two possibilities for the form of eff:
(i) there exist a unitary operator U on H; a linear functional f : FðHÞ þ CI-C and

a scalar cAC such that

effðTÞ ¼ cUTU� þ f ðTÞI ðTAFðHÞ þ CIÞ;

(ii) there exist an antiunitary operator U on H; a linear functional f : FðHÞ þ
CI-C and a scalar cAC such that

effðTÞ ¼ cUT�U� þ f ðTÞI ðTAFðHÞ þ CIÞ:

Concerning f; this means that there is an either unitary or antiunitary operator
U on H; a real-linear function f : FsðHÞ þ RI-C; and a constant cAC such that

fðAÞ ¼ cUAU� þ f ðAÞI ðAAFsðHÞ þ RIÞ:

As fðAÞ is self-adjoint, we have

cUAU� þ f ðAÞI ¼ cUAU� þ f ðAÞI ð11Þ
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for every AAFsðHÞ þ RI : If A is not a scalar operator, then it follows from this
equality that c ¼ c: Next, we obtain from (11) that f is real valued. As f preserves
maximal deviation, we obtain that jcj ¼ 1: Therefore, c ¼ 71 and we have the
desired form for our transformation f on FsðHÞ þ RI : It remains to show that the
same formula holds also on the whole space BsðHÞ:

In order to see this, observe that composing f by the transformation A/cU�AU ;
we can assume without loss of generality that

fðAÞ ¼ A þ lðAÞI

holds for every AAFsðHÞ þ RI ; where l : FsðHÞ þ RI-R is a linear functional. Let P

be a nontrivial projection on H: We know that fðPÞ ¼ Q þ mI for some nontrivial
projection Q and real number m: Pick an arbitrary AAFsðHÞ: Since fðAÞ is a scalar
perturbation of A; we have

jjQ þ Ajjv ¼ jjfðPÞ þ Ajjv ¼ jjfðPÞ þ fðAÞjjv ¼ jjfðP þ AÞjjv ¼ jjP þ Ajjv:

Since this holds true for every self-adjoint finite rank operator A; it follows from
Lemma 5 that Q ¼ P: This gives us that fðPÞ � PARI which holds also in the case

when P is trivial. So, we have FðPÞ ¼ P for every projection P: Since the linear

transformations A/FðAÞ and A/A are continuous (on BsðHÞ we consider the
operator norm while BsðHÞ=RI is equipped with the factor norm), they are equal on
the projections, it follows from the spectral theorem of self-adjoint operators and

from the properties of the spectral integral that we have FðAÞ ¼ A for every
AABsðHÞ: This gives us that

fðAÞ � AARI ðAABsðHÞÞ

which obviously implies that there is a linear functional h : BsðHÞ-R such that

fðAÞ ¼ A þ hðAÞI ðAABsðHÞÞ:

This completes the proof in the case when dim HX3:
As the statement of the theorem is trivial for dim H ¼ 1; it remains to consider the

case when dim H ¼ 2: In this case the nontrivial projections are exactly the rank-one
projections. Pick a rank-one projection P: We know that there is a rank-one
projection P0 such that fðPÞ is equal to the sum of P0 and a scalar operator. It is easy
to see that this P0 is unique. (In fact, one can prove independently from the
dimension of H that in the class of every nontrivial projection there is only one
projection.) Therefore, we can denote P0 ¼ cðPÞ and obtain a bijective transforma-
tion c on the set of all rank-one projections. We assert that c has the property that

tr PQ ¼ tr cðPÞcðQÞ ð12Þ

holds for arbitrary rank-one projections P;Q on H: Here tr denotes the usual trace
functional. As f preserves the maximal deviation, this will clearly follow from
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the equality

jjP � Qjjv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tr PQ

p
ð13Þ

that we are going to prove now. In fact, observe that the maximal deviation and the
trace functional are invariant under the transformations A/VAV �; where V is any
unitary operator. Therefore, we can assume that

P ¼
1 0

0 0

� �
while Q is an arbitrary self-adjoint idempotent 2 by 2 matrix. It is easy to check that
Q is of the form

Q ¼
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ

p
eiyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

að1� aÞ
p

e�iy 1� a

" #
;

where a; y are real numbers and 0pap1: We have that the eigenvalues of P � Q are

7
ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
and hence obtain that jjP � Qjjv ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
: On the other hand, it is trivial

to check that tr PQ ¼ a: This results in the desired equality (13).
So, we have a bijective transformation c on the set of all rank-one projections

which satisfies (12). Wigner’s classical theorem on quantum mechanical symmetries
(the so-called unitary–antiunitary theorem) describes the form of exactly such
transformations in the case of general Hilbert spaces. We obtain that there exists an
either unitary or antiunitary operator U on H such that

cðPÞ ¼ UPU�

holds for every rank-one projection P: As fðPÞ differs from cðPÞ only by a scalar
operator, we obtain that fðPÞ � UPU�ARI : By linearity this gives us that fðAÞ �
UAU� is a scalar operator for every AABsðHÞ: Now, one can easily complete the
proof in the case when dim H ¼ 2: &

Remark 2. As it is seen, preserving commutativity has played important role in our
proof above. In fact, preserver problems of this kind are among the most
fundamental ones in the theory of LPPs. To mention one of the most well-known
results of this type which concerns operator algebras, we refer to [20].

Proof of Theorem 3. This follows immediately from Theorem 1 using the following
important result of Mazur and Ulam [15]. If V is a real normed vector space and
T :V-V is a bijective map which preserves the distance on V (i.e., T satisfies
jjTðxÞ � TðyÞjj ¼ jjx � yjj ðx; yAVÞ), then T can be written in the form TðxÞ ¼
LðxÞ þ x0 ðxAVÞ; where L :V-V is a bijective linear isometry and x0AV is a fixed
vector. &
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As for the proof of Theorem 4, we have to work more than in the previous proof
as jj:jjv is only a semi-norm.

Proof of Theorem 4. Considering the map A/fðAÞ � fð0Þ; it is obvious that we
can assume that f sends 0 to 0. In what follows we use this assumption.

Consider the linear functional lI/l on RI : Extend it to a linear functional l of
the whole vector space BsðHÞ: (We do not need any kind of continuity of l; so no
need to use Hahn–Banach theorem.) Define the transformation f1 : BsðHÞ-BsðHÞ
in the following way:

f1ðAÞ ¼ fðAÞ � lðfðAÞÞI þ lðAÞI ðAABsðHÞÞ:

We assert that f1 : BsðHÞ-BsðHÞ is a bijective linear map, it preserves the distance
(with respect to the semi-metric dv) and for every AABsðHÞ; fðAÞ and f1ðAÞ differs
only in a scalar operator. If this is really the case, then we can apply Theorem 2 for
f1 and we are done. So, it remains to prove that f1 has the mentioned properties. As
the last two ones are obvious from the definition, we have to prove only that f1 is
linear and bijective. We begin with the linearity. As f preserves the distance with
respect to dv and we have supposed that fð0Þ ¼ 0; it follows that f preserves the
scalar operators (in fact, scalar operators can be characterized by the equality
jjAjjv ¼ 0; see Lemma 1). Next, it is easy to show that the formula

FðAÞ ¼ fðAÞ ðAABsðHÞÞ

defines a bijective isometry (distance preserving map) on BsðHÞ=RI with respect to
the factor norm. We only prove the isometric property. Indeed,

jjFðAÞ � FðBÞjj ¼ jjfðAÞ � fðBÞjjv ¼ jjA � Bjjv ¼ jjA � Bjj

holds for every A;BABsðHÞ: Since Fð0Þ ¼ fð0Þ ¼ 0; by Mazur–Ulam theorem we
obtain that F is linear. Thus, for any A;BABsðHÞ we have

FðA þ BÞ ¼ FðAÞ þ FðBÞ;

that is

fðA þ BÞ ¼ fðAÞ þ fðBÞ:

This gives us that fðA þ BÞ � ðfðAÞ þ fðBÞÞ is a scalar operator, say

fðA þ BÞ � ðfðAÞ þ fðBÞÞ ¼ lI :

We compute

fðA þ BÞ � ðfðAÞ þ fðBÞÞ ¼ lI ¼ lðlIÞI ¼ lðfðA þ BÞ � ðfðAÞ þ fðBÞÞÞI :
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This implies that

fðA þ BÞ � lðfðA þ BÞÞI ¼ fðAÞ � lðfðAÞÞI þ fðBÞ � lðfðBÞÞI :

Adding lðA þ BÞI ¼ lðAÞI þ lðBÞI to this equality, we obtain the additivity of f1:
The homogeneity can be proved in a similar way.

We next show that f1 is injective. Suppose that

0 ¼ f1ðAÞ ¼ fðAÞ � lðfðAÞÞI þ lðAÞI

holds for some AABsðHÞ: Then fðAÞ is a scalar operator, say fðAÞ ¼ lI ; and this
implies that A is also scalar, say A ¼ mI : It follows from the above equation that

0 ¼ lI � lðlIÞI þ lðmIÞI ¼ ðl� lþ mÞI

which yields m ¼ 0; i.e., we have A ¼ 0: This proves the injectivity of f1:
Finally, we prove that f1 is surjective. To show this, first observe that, by the

definition of f1 and the surjectivity of f; the range of f1 and RI generate the whole
space BsðHÞ: So, if f1 is not surjective, then we have rng f1-RI ¼ f0g: This means
that the only scalar operator in the range of f1 is 0. Now, as fðIÞ is a scalar
operator, it follows that f1ðIÞ is also scalar. As f1ðIÞArng f1; we obtain that
f1ðIÞ ¼ 0; which, by the injectivity of f1 implies that I ¼ 0; a contradiction.
Therefore, f1 must be surjective. So, we have proved all the asserted properties of
f1 and hence the proof of the theorem is complete. &

3. An open problem

To conclude the paper we give another interpretation of our main result Theorem
2. Namely, in view of Lemma 1, our theorem describes the form of all bijective linear
transformations of BsðHÞ which preserve the diameter of the spectrum. This result is
in a close connection with the result of our paper [10] where we have determined all
the linear bijections of CðXÞ (the algebra of all continuous complex valued functions
on the first countable compact Hausdorff space X ) which preserve the diameter of
the range of functions. In fact, in CðXÞ the spectrum of an element f is exactly its
range. As the result in [10] seems to attract considerable interest among some
researchers in the field of function algebras, and there is so much interest in preserver
problems on operator algebras which concern the spectrum, we would like to pose
the following open problem.

Problem. Determine all the bijective linear transformations on BðHÞ; the algebra of
all bounded linear operators on the Hilbert space H; which preserve the diameter of
the spectrum.

Observe that our result Theorem 2 solves the corresponding problem for BsðHÞ:
Regarding the mentioned facts, we believe that this is a prosperous and quite deep
problem which deserves some attention.
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[6] M. Brešar, P. Šemrl, Linear preservers on BðXÞ; Banach Cent. Publ. 38 (1997) 49–58.

[7] G. Cassinelli, E. De Vito, P. Lahti, A. Levrero, Symmetry groups in quantum mechanics and the

theorem of Wigner on the symmetry transformations, Rev. Math. Phys. 8 (1997) 921–941.

[8] T. Dang, Y. Friedman, B. Russo, Affine geometric proofs of the Banach Stone theorems of Kadison

and Kaup, Rocky Mountain J. Math. 20 (1990) 409–428.

[9] C. Davis, Separation of two linear subspaces, Acta Sci. Math. (Szeged) 19 (1958) 172–187.

[10] M. Gy +ory, L. Molnár, Diameter preserving linear bijections of CðXÞ; Arch. Math. 71 (1998) 301–310.

[11] P.R. Halmos, Two subspaces, Trans. Amer. Math. Soc. 144 (1969) 381–389.

[12] R.V. Kadison, Isometries of operator algebras, Ann. Math. 54 (1951) 325–338.

[13] C.K. Li, S. Pierce, Linear preserver problems, Amer. Math. Monthly 108 (2001) 591–605.

[14] C.K. Li, N.K. Tsing, Linear preserver problems: a brief introduction and some special techniques,

Linear Algebra Appl. 162–164 (1992) 217–235.

[15] S. Mazur, S.M. Ulam, Sur les transformations isemétriques des espaces vectoriels normés, C.R. Acad.

Sci. Paris 194 (1932) 946–948.

[16] L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58

(2001) 91–100.

[17] L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Comm. Math.

Phys. 223 (2001) 437–450.

[18] L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001)

5904–5909.

[19] L. Molnár, Conditionally multiplicative maps on the set of all bounded observables preserving

compatibility, Linear Algebra Appl. 349 (2002) 197–201.
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