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1. Introduction

Let X be an n-element set, and let PX denote the set of all subsets of X. We call a family G Cc PX
a k-generator for X if every x C X can be expressed as a union of at most k disjoint sets in G. For
example, let (Vi){.‘:] be a partition of X into k classes of sizes as equal as possible; then

k
Fai=JP\ (#)

i=1
is a k-generator for X. We call a k-generator of this form canonical. If n =gk + r, where 0 <r <k,
then
|Fagel =k —1)(27=1) + (29" = 1) = (k +1)29 — k.

Frein, Lévéque and Sebd [8] conjectured that for any k < n, this is the smallest possible size of
a k-generator for X.
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Conjecture 1 (Frein, Lévéque, Sebé). If X is an n-element set, k <n, and G C PX is a k-generator for X, then
|G| > | Fnkl. If n > 2k, equality holds only if G is a canonical k-generator for X.

They proved this for k < n < 3k, but their methods do not seem to work for larger n.

For k = 2, Conjecture 1 is a weakening of a conjecture of Erdés. We call a family G C PX a k-base
for X if every x C X can be expressed as a union of at most k (not necessarily disjoint) sets in G.
Erdoés (see [9]) made the following

Conjecture 2 (Erdés). If X is an n-element set, and G C P X is a 2-base for X, then |G| > | Fn 2|
In fact, Frein, Lévéque and Sebd [8] made the analogous conjecture for all k.

Conjecture 3 (Frein, Lévéque, Sebd). If X is an n-element set, k <n, and G C PX is a k-base for X, then
|G| > | Fnkl. If n > 2k, equality holds only if G is a canonical k-generator for X.

Again, they were able to prove this for k <n < 3k.
In this paper, we study k-generators when n is large compared to k. Our main results are as
follows.

Theorem 4. If n is sufficiently large, X is an n-element set, and G C PX is a 2-generator for X, then
|G| > |Fn,2|. Equality holds only if G is of the form F ».

Theorem 5. If k € N, n is a sufficiently large multiple of k, X is an n-element set, and G is a k-generator for X,
then |G| > | Fp k|. Equality holds only if G is of the form F .

In other words, we prove Conjecture 1 for all sufficiently large n when k =2, and for n a suffi-
ciently large multiple of k when k > 3. We use some ideas of Alon and Frankl [1], and also techniques
of the first author from [5], in which asymptotic results were obtained.

As noted in [8], if G C PX is a k-generator (or even a k-base) for X, then the number of ways of
choosing at most k sets from G is clearly at least the number of subsets of X. Therefore |G| > 2",
which immediately gives

1G] > 2"k,
Moreover, if |G| =m, then

k

m n
;(i>>z. (1)

Crudely, we have

k—1

Z (”:) <2m* 1,

i=0
SO
k m m
2 (7)< (k) +2
. i k
i=0

Hence, if k is fixed, then

(1+ 0(1/m))<’l?> >,
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SO
1G1 > (k)2 (1 —o(D)). (2)
Observe that if n =qk +r, where 0 <r <k, then
| Pkl = (k+1)29 —k < (k +1)29 = k2% (1 +1/k)27/% < cok2™¥, (3)
where
2

Co:= 21/l0g219g 2

Now for some preliminaries, we use the following standard notation. For n € N, [n] will denote the
set {1,2,...,n}. If x and y are disjoint sets, we will sometimes write their union as xU y, rather than
x Uy, to emphasize the fact that the sets are disjoint.

If ke N, and G is a graph, Ki(G) will denote the number of k-cliques in G. Let Ts(n) denote
the s-partite Turan graph (the complete s-partite graph on n vertices with parts of sizes as equal as
possible), and let ts(n) =e(Ts(n)). For [ € N, C; will denote the cycle of length I.

If F is a (labelled) graph on f vertices, with vertex-set {vi,..., vy} say, and t=(t,...,tf) € N/,
we define the t-blow-up of F, F ® t, to be the graph obtained by replacing v; with an independent
set V; of size t;, and joining each vertex of V; to each vertex of V; whenever v;v; is an edge of F.
With slight abuse of notation, we will write F ® t for the symmetric blow-up F ® (t,...,t).

If F and G are graphs, we write cg(G) for the number of injective graph homomorphisms from F
to G, meaning injections from V (F) to V (G) which take edges of F to edges of G. The density of F in
G is defined to be

=1.061 (to3d.p.).

cr(G)
IGI(GI = 1)~ (IG| = |F|+ 1)’
i.e. the probability that a uniform random injective map from V (F) to V(G) is a graph homomor-
phism from F to G. Hence, when F = Kj, the density of Ki’s in an n-vertex graph G is simply

K (G)/ (i)

Althg)kl)lgh we will be interested in the density dr(G), it will sometimes be more convenient to work
with the following closely related quantity, which behaves very nicely when we take blow-ups. We
write Homp(G) for the number of homomorphisms from F to G, and we define the homomorphism
density of Fin G to be

Homp(G)
|G|IFI

i.e. the probability that a uniform random map from V (F) to V(G) is a graph homomorphism from
F to G.

Observe that if F is a graph on f vertices, and G is a graph on n vertices, then the number of
homomorphisms from F to G which are not injections is clearly at most

()

do(F) >

dr(G) =

he(G) =

)

he(Fynf — ($)nf=1
nn—-1)---m—f+1)
if f is fixed. In the other direction,

>h¢(F) — 0(1/n), 4)

nf
m—1)--(—f+1)

if f is fixed. Hence, when working inside large graphs, we can pass freely between the density of a
fixed graph F and its homomorphism density, with an ‘error’ of only O (1/n).

dr (6) < -~ he(G) < (14 0(1/m)he(G) 5)
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Finally, we will make frequent use of the AM/GM inequality:

Theorem 6. If x1, ..., x; >0, then

n 1/n 18
(nxi) < —ZX,‘.
i=1 n i=1

2. The case k | n via extremal graph theory

For n a sufficiently large multiple of k, it turns out to be possible to prove Conjecture 1 using
stability versions of Turan-type results. We will prove the following

Theorem 5. If k € N, n is a sufficiently large multiple of k, X is an n-element set, and G is a k-generator for X,
then |G| > | Fp k|. Equality holds only if G is of the form F .

We need a few more definitions. Let H denote the graph with vertex-set PX, where we join two
subsets x, y C X if they are disjoint. With slight abuse of terminology, we call H the ‘Kneser’ graph
on PX (although this usually means the analogous graph on X®™). If F,G c PX, we say that G
k-generates F if every set in F is a disjoint union of at most k sets in G.

The main steps of the proof. First, we will show that for any A C PX with | 4] > 2(2"/%), the density
of Kj11's in the induced subgraph H[.A] is o(1).

Secondly, we will observe that if n is a sufficiently large multiple of k, and G C PX has size close
to |Fnkl and k-generates almost all subsets of X, then Ky(H[G]) is very close to Ki(Tx(|G|)), the
number of Kj’s in the k-partite Turan graph on |G| vertices.

We will then prove that if G is any graph with small Kj,q-density, and with Ky(G) close to
K (Tk(]G])), then G can be made k-partite by removing a small number of edges. This can be seen
as a (strengthened) variant of the Simonovits Stability Theorem [7], which states that any Kj,-free
graph G with e(G) close to the maximum e(T(]G|)), can be made k-partite by removing a small
number of edges.

This will enable us to conclude that H[G] can be made k-partite by the removal of a small number
of edges, and therefore the structure of H[G] is close to that of the Turdn graph Ty(|G|). This in
turn will enable us to show that the structure of G is close to that of a canonical k-generator F k
(Proposition 9).

Finally, we will use a perturbation argument to show that if n is sufficiently large, and |G| < |Fn k!,
then G = Fj k, completing the proof. O

In fact, we will first show that if A C PX with |A| > 2(2"%), then the homomorphism density
of Ky+q ®t in H[A] is o(1), provided t is sufficiently large depending on k. Hence, we will need the
following (relatively well-known) lemma relating the homomorphism density of a graph to that of its
blow-up.

Lemma 7. Let F be a graph on f vertices, let t = (t1, t2, ..., tf) € N/, and let F @ t denote the t-blow-up of F.
If the homomorphism density of F in G is p, then the homomorphism density of F @ tin G is at least p'1t2~ts

Proof. This is a simple convexity argument, essentially that of [7]. It will suffice to prove the state-
ment of the lemma when t= (1,...,1,r) for some r € N. We think of F as a (labelled) graph on
vertex set [f]={1,2,..., f}, and G as a (labelled) graph on vertex set [n]. Define the function
x :[nlf - {0,1} by

1 ifi v;is a homomorphism from F to G,

vi,...,v )={
Xt ! 0 otherwise.
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Then we have

1
he(G)=— > xGi...vp=p

The homomorphism density hrg,...1,n(G) of F® (1,...,1,1)in G is

1 r
hF®(l,...,1,r)(G)=m > [Tx(vi..covioav ())

1ot g VD v vyt i=1

.
:nf]—_] Z <% Z X(Vl,...,vf_l,vf)>

(V1. Vg€l 1 vreln)

2(,1;—_1 Z ( Z x(v1,...,vf_],vf)>)

(Visevy_pemf=1 ~ vyreln]

. r
=(n_f Z X(V1,...,Vf_1,Vf)>

(V1. Vi1 vp)€elmlf

Here, the inequality follows from applying Jensen’s Inequality to the convex function x + x". This
proves the lemma for t=(1,...,1,r). By symmetry, the statement of the lemma holds for all vectors
of the form (1,...,1,r,1,...,1). Clearly, we may obtain F ® t from F by a sequence of blow-ups by
these vectors, proving the lemma. 0O

The following lemma (a rephrasing of Lemma 4.2 in Alon and Frankl [1]) gives an upper bound on
the homomorphism density of K1 ®t in large induced subgraphs of the Kneser graph H.

Lemma 8. If A C PX with | A| = m = 20+1/&+1n then
hig, @ (HIAT) < (k4 127D,
Proof. We follow the proof of Alon and Frankl cited above. Choose (k 4+ 1)t members of A uniformly

at random with replacement, (Agj))lgisk_‘_l.lgjgt. The homomorphism density of Ky,1 ®t in H[A]
is precisely the probability that the unions

¢
U; = U A;])
=1

are pairwise disjoint. If this event occurs, then |U;| <n/(k 4+ 1) for some i. For each i € [k], we have

Pr{|u,-|<n/(k+1)}zpr( U (h [AY c s} ))

ScX: [S|<n/(k+1)

- T nffres)

|SI<n/ (k+1) j=1
- Y @my
ISI<n/(k+1)
<o (zn/(k+1)/m)f
— —nGt=1).
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Hence,

k k
Pr( U{|U,~| <n/k+ 1)}) < Zpr{|u,-| <n/k+ 1) < (k+1)27"CD,

i=1 P
Therefore,
i, 0t (HLAT) < (k+1)27"CD,

as required. O

From the trivial bound above, any k-generator G has |G| > 27k 5o § > 1/(k(k + 1)), and therefore,
choosing t =ty :=2k(k + 1), we see that

iy o (HIGT) < (k+1)277.
Hence, by Lemma 7,
i (H[g]) < Ok(Z_”/tf),
Therefore, by (5),
dic,,, (HIGI) < 0p(27%) < 270" o

provided n is sufficiently large depending on k, where a; > 0 depends only on k.
Assume now that n is a multiple of k, so that |F, x| = K2k — k. We will prove the following
‘stability’ result.

Proposition 9. Let k € N be fixed. If n is a multiple of k, and G C PX has |G| < (1 + n)|Fn k| and k-generates
at least (1 — €)2" subsets of X, then there exists an equipartition (Si)i.‘zl of X such that

on(Ups)

i=1

> (1~ e/ = Dy = 2787) | F el

where Ci, Dy, & > 0 depend only on k.
We first collect some results used in the proof. We will need the following theorem of Erdds [6].

Theorem 10 (Erdds). If r < k, and G is a Ky.1-free graph on n vertices, then

Kr(G) < Kr(Ti(m).

We will also need the following well-known lemma, which states that a dense k-partite graph has
an induced subgraph with high minimum degree.

Lemma 11. Let G be an n-vertex, k-partite graph with

e(G) = (1 —1/k —8)n?/2.

Then there exists an induced subgraph G' C G with |G'| =1’ > (1 — +/8)n and minimum degree §(G') >
(1=1/k—=/8)(@ —1).

Proof. We perform the following algorithm to produce G’. Let G; = G. Suppose that at stage i, we
have a graph G; on n — i+ 1 vertices. If there is a vertex v of G; with d(v) < (1 —1/k —n)(n — i),
let Gj;1 = G; — v; otherwise, stop and set G’ = G;. Suppose the process terminates after j = an steps.
Then we have removed at most
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j i
(r4m—m2¥wn=a—uww(6>—czﬁ)

edges, and the remaining graph has at most

K\ /n—j 2_ 2 2
<2> (T) =1 -a)?(1—1/kn*/2

edges. But our original graph had at least

(1 —1/k—8)n?/2

edges, and therefore

A-1/k—=m(1—-Q0-a)?)n?/2+ 1 -a)?A —1/kn?/2 > (1 —1/k - 8§)n/2,

so
n(1—a)*>n—s.

Choosing 1 = /8, we obtain
n(1—a)?=n-mn),

and therefore
1-a?>1-n,

o
a<1-01-m'" <.

Hence, our induced subgraph G’ has order
|G'|=n"> (1 —+6é)n,

and minimum degree
$(G = -1/k—+8)(n-1). O

We will also need Shearer’s Entropy Lemma.

2325

Lemma 12 (Shearer’s Entropy Lemma). (See [4].) Let S be a finite set, and let A be an r-cover of S, meaning a
collection of subsets of S such that every element of S is contained in at least r sets in A. Let F be a collection

of subsets of S. For A C S, let 4 = {F N A: F € F} denote the projection of F onto the set A. Then

171" < [ ] |17al
AeA

In addition, we require two ‘stability’ versions of Turan-type results in extremal graph theory.
The first states that a graph with a very small Kji-density cannot have K -density much higher

than the k-partite Turdn graph on the same number of vertices, for any r < k.

Lemma 13. Let r < k be integers. Then there exist C, D > 0 such that for any o > 0, any n-vertex graph G

with Ky 1-density at most « has K;-density at most

k(k—1)---(k—1+1)

m (1+ca/®2 4 p/n).
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Proof. We use a straightforward sampling argument. Let G be as in the statement of the lemma.
Let §(7) be the number of I-subsets U C V(G) such that G[U] contains a copy of Kj1, so that ¢ is
simply the probability that a uniform random I-subset of V (G) contains a Ki4q. Simple counting (or
the union bound) gives

l
¢S <k+ 1>ot.

By Theorem 10, each Ky{-free G[U] contains at most

()

K;’s. Therefore, the density of K;'s in each such G[U] satisfies

<k(k—1)-~-(k—r+1) I

= k" I—1)---(A—r+1)
k(k—1)---(k—r+1)

< G (1 + O(]/l)). (7)

Note that one can choose a random r-set in graph G by first choosing a random [-set U, and then

choosing a random r-subset of U. The density of K;’s in G is simply the probability that a uniform
random r-subset of V(G) induces a K;, and therefore

o (G1V))

dk,(G) =Ey[dx, (GIUT)].

where the expectation is taken over a uniform random choice of U. If U is K1-free, which happens
with probability 1 — ¢, we use the upper bound (7); if U contains a Ky1, which happens with
probability ¢, we use the trivial bound dg, (G[U]) < 1. We see that the density of K;’s in G satisfies

k(k—1)---(k—1+1)

di, (G) < (1—2¢) (1+0a/D)+¢

kr
k(k—1)---(k—r+1) [
gk(k—l)--~(k—r—+—1) +O(1/1)+1k+1a.

kr

Choosing | = min{|oc~"/®+2)] n} proves the lemma. O
The second result states that an n-vertex graph with a small Kji-density, a Ki-density not too
much less than that of T (n), and a Kj_q-density not too much more than that of Ty(n), can be made
into a k-partite graph by the removal of only a small number of edges.
Theorem 14. Let G be an n-vertex graph with Ky 1-density at most o, Ky_1-density at most
k!
a+8 pray
and Ky-density at least
k!
1- )’)W7
where y < 1/2. Then G can be made into a k-partite graph Go by removing at most

k+1
(2/3 +2y + BT k+ D ,g‘ +1 Vo + 21</n> (g)
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edges, which removes at most

k+1
(2/3 Y2yt —8" k+ ”f+zl/n)( )(Z)

Ky ’s.
Proof. If k e N, and G is a graph, let

Ki(G) ={S € V(©)W: G[S]is aclique}

denote the set of all k-sets that induce a clique in G. If S € V(G), let N(S) denote the set of vertices
of G joined to all vertices in S, i.e. the intersection of the neighbourhoods of the vertices in S, and
let d(S) = |N(S)|. For S € KCx(G), let

fo(S)= Y dm).

TCS, |T|=k—1

We begin by sketching the proof. The fact that the ratio between the Kj-density of G and the Kj_1-
density of G is very close to 1/k will imply that the average Ef;(S) over all sets S € K (G) is not
too far below n. The fact that the Kj,q-density of G is small will mean that for most sets S € ICx(G),
every (k — 1)-subset T € S has N(T) spanning few edges of G, and any two distinct (k — 1)-subsets
T, T’ C S have [IN(T)NN(T’)| small. Hence, if we pick such a set S which has f¢(S) not too far below
the average, the sets {N(T): T C S, |T| =k — 1} will be almost pairwise disjoint, will cover most of
the vertices of G, and will each span few edges of G. Small alterations will produce a k-partition of
V (G) with few edges of G within each class, proving the theorem.
We now proceed with the proof. Observe that

> sexu) 2tcs, Tj=k—1d(T)
K (G)
_ 2 Teky(G) d(T)?
- K (G)
(Zrelck,l(c)d(T))z

Kr—1(G)Ky(G)

_ (kK(G))?

~ Ki—1(G)Ki(G)

2 Ky (G)
Kk-1(G)

Bo1e ()

K1+p k(")

Efc=

>k*(1—

_I= ( k+1).
n J—

T 148
(The first inequality follows from Cauchy-Schwarz, and the second from our assumptions on the Kj-
density and the Kj_q-density of G.)

We call a set T € Kx_1(G) dangerous if it is contained in at least /o ("~ k“) Kyy1's. Let D denote

the number of dangerous (k — 1)-sets. Double-counting the number of times a (k — 1)-set is contained
in a Ki41, we obtain

n—k+1 k+1 n
<
o5 ) < (el )
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since there are at most o(,.;';) Kiy1's in G. Hence,

b <\/&<ki 1)'

Similarly, we call a set S € Kx(G) treacherous if it is contained in at least /o (n—k) Ki1's. Double-
counting the number of times a k-set is contained in a Ky;1, we see that there are at most ﬂ(Z)
treacherous k-sets.

Call a set S € K(G) bad if it is treacherous, or contains at least one dangerous (k — 1)-set; other-
wise, call S good. Then the number of bad k-sets is at most

n n n
Val, ) +m—k+1)Va =k+ DV, ),
k k—1 k
so the fraction of sets in Ky(G) which are bad is at most
k+ Do kKk+1)J/a
-yt a-pkt -

Suppose that

max{| fc(S)|: Sisgood} < (1 —y)(n—k+1).
Observe that for any S € Ky (G), we have

fe(S) <k(n—k+1),

since d(T) <n—k+ 1 for each T € S*=D_ Hence,

k k
Ef¢ < ((1 _k (k—H)«/o_z)(1 —W)-i-k (k_H)\/&k)(n—k—H)

1 —=p)k! 1 —y)k!
k+1
1oy REDV Gy,
1 —y)k!
a contradiction if
1—y Ktk +1)Ja 2Kk (k4 1)
V="Yo T p T aopn SYTEY T Ve

Let S € Ky(G) be a good k-set such that f(S) > (1 — yo)(n — k + 1). Write S = {v1,..., vg}, let
T; =S\ {v;} for each i, and let N; = N(T;) for each i. Observe that N; "\ Nj = N(S) for each i # j, and
IN(S)| =d(S) < /a(n—k). Let W; = N; \ N(S) for each i; observe that the W;’s are pairwise disjoint.
Let

k
R=V(@G)\|JW;

i=1

be the set of ‘leftover’ vertices.
Observe that

k
STIN\NGS)| = f6(S) —kN(S) = (1 — Y)(n —k+1) — kv/ar(n — k),

i=1

and therefore the number of leftover vertices satisfies

Rl < (Y +k/o)n + k.
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We now produce a k-partition (Vi)i.‘:1 of V(G) by extending the partition (Wi)ff:] of V(G)\ R
arbitrarily to R, i.e., we partition the leftover vertices arbitrarily. Now delete all edges of G within V;
for each i. The number of edges within N; is precisely the number of Kj1’s containing T;, which is
at most ﬁ("_§+l). The number of edges incident with R is trivially at most (¥ + k/a)n(n — 1) +
k(n — 1). Hence, the number of edges deleted was at most

2
k+1
<<2,3+2 wf+2k/n><>.

Removing an edge removes at most (2:5) Ky's, and therefore the total number of Kj’s removed is
at most

k1 _
<2ﬂ+2y+78k (l<+1)f+2/</n>( )(Z_i)

8kk1(k +1) k\ /n
= (Zﬂ +2y + Tﬁ+ Zk/n) <2> (k>,

completing the proof. O

(w+k«/&)n(n—1)+k(n—1)+k«/&<n_k+1>

Note that the two results above together imply the following

Corollary 15. For any k € N, there exist constants Ay, By > 0 such that the following holds. For any o > 0, if
G is an n-vertex graph with Ky 1-density at most «, and Ky-density at least

R ) k!
as
where y < 1/2, then G can be made into a k-partite graph Go by removing at most

(2)/ + Al<a]/(k+2) + Bk/n) (Z)

edges, which removes at most

k\ (n
(2)/ +Al<a1/(k+2) + Bk/rl) (2) (k)

Ki's.

Proof of Proposition 9. Suppose G C PX has |G| =m < (1 4+ n)|Fnkl, and k-generates at least
(1 —€)2" subsets of X. Our aim is to show that G is close to a canonical k-generator. We may assume
that € < 1/C;§ and n < 1/D’§, so by choosing C, and Dy appropriately large, we may assume through-
out that € and 5 are small. By choosing & appropriately small, we may assume that n > ng(k), where
no(k) is any function of k.

We first apply Lemma 13 and Theorem 14 with G = H[G], where H is the Kneser graph on PX,
G CPX with |G| =m < (14 n)|Fnkl, and G k-generates at least (1 — €)2" subsets of X. By (6), we
have

di,., (HIG]) < 27%",

and therefore we may take o = 2-%", Applying Lemma 13 with r =k — 1, we may take g = 275" for
some by > 0.
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We have |G|=m < (1+n) k2" —k), so
k kik
<m><m (I +n)k o

— <
k)~ k! k!
Notice that

k—1

> (T) <km* < (1 4 k2T < (1 Tk 1/on
i=0

Since G k-generates at least (1 — €)2" subsets of X, we have
Kk(HIGY) = (1 — €)2" — (1 + )k~ TKka0=1/0n,

Hence,
K (H[GD

m

(i)
- 1—-e2"—(1+ 77)k—1kk2(1—1/k)n
= ((1+r])k2”/k)

k

di, (HIG1) =

Jl-e—(+ mk—1ika—n/k fy
- (1+ )k Kk
k!

> (1 —e— k” _ kszn/k) l_k’
K

where the last inequality follows from
1—¢€

(1+mk

Therefore, the Ky-density of H[J] satisfies

>1-0-n">1-ed—kp>1-e—kn.

k!
di, (HIGT) > (1 — )ik
where

y =€ +kn +kk2a7/k,
Let

k+1
V= (2,3 foy 4 KRAD o 2k/n> <'2‘>

k!

By Theorem 14, there exists a k-partite subgraph Go of H[G] with
m
Ki(Go) > Ki(HIG]) — v K

> (l _ 6)2” _ (1 + n)’(f]kkz(lf‘l/k)n _ w(m)

k
1 kel
> (1 —e— %w —(1+ n)k—1/<’<z—’</”>2".
Writing

1+ n)kKk L
¢=e+%w+(1+n)k Tgkp—k/m,
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we have

Ki(Go) = (1 —¢)2".
Let Vq,..., Vi be the vertex-classes of Go. By the AM/GM inequality,

k k k
< Vi
Ki(Go) <[ Vil < (%) = (m/k),
i=1

and therefore

|g| —-m 2 k(](k(GO))l/k 2 k(l _ ¢)1/k2n/k7 (8)

recovering the asymptotic result of [5].
Moreover, any k-partite graph Gg satisfies

1 <
e(Go) > (;) (Ki(Go))™'*.

To see this, simply apply Shearer’s Entropy Lemma with S = V(Gg), F = Ky(Gg), and A =
{ViuV;: i+ j}. Then A is a (k —1)-cover of V(Go). Note that Fviuv; CEgy(Vi, Vj), and therefore

k—1
(Ke(Go) < [ ecotVi. V).
{i,j}elk]®

Applying the AM/GM inequality gives

(Ke(Go)) " < [T eco (Vi V) <
(i.j)

<M>® _ (emo))@
(5) &)
and therefore

1 )
e(Go) > (;) (Ki(Go))™%,

as required.
It follows that

e(Go) = <12<)(1 _ ¢)2/k22n/k

k 2/k m 2
g <2>(1 -9 ((1 +n)k>

=’ —¢)* 1 —1/kym?/2
(1—2n—¢*)1 - 1/kym?/2
=(1-8)(1-1/kym?/2,

where § = 21 + ¢%/k.
Hence, Gg is a k-partite subgraph of H[G] with |Go| = |G| =m, and e(Gg) > (1 — 8 — 1/k)ym?/2.
Applying Lemma 11 to Gg, we see that there exists an induced subgraph H’ of Gy with

VoWV

[H'| > (1 = V8)gl, (9)

and

S(H) > (1 —1/k—V8)(|H'| - 1).
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Let Yq,..., Yy be the vertex-classes of H’; note that these are families of subsets of X. Clearly, for
each i € [k],
il < |H'| = 8(H") < (1/k+~/8)|H'| + 1. (10)

Hence, for each i € [k],

il > [H'| = (k= D((1/k+ V)| H'| +1) > (1/k — (k= D8 |H'| =k + 1. (11)
For each i € [k], let
Si= U y
yeYi

be the union of all sets in Y;. We claim that the S;’s are pairwise disjoint. Suppose for a contradiction
that S1 NSy #@. Then there exist y1 € Y and y; € Y, which both contain some element p € X. Since

S(H) =1 —1/k—8)(|H'| - 1),
at least (1 —1/k —+/8)(|H’| — 1) sets in Uiz Yi do not contain p. By (10),

UYI‘ SOVl < (1= 1/k+ (k= DVB) |H'| +k—1,
i#1 i#1

and therefore the number of sets in Ui?&1 Y; containing p is at most

(1= 1/k+ k= DV8)[H'| +k =1~ (1 = 1/k=8)(|H'| 1) <kv/5|H'| + k.

The same holds for the number of sets in (J;, Yi containing p, so the total number of sets in H’
containing p is at most

2kv/8|H'| + 2k.

Hence, the total number of sets in G containing p is at most

(2k 4+ 1)v/8m + 2k.

But then the number of ways of choosing at most k disjoint sets in G with one containing p is at
most

(1+m 1) (2k + 1)v8m + 2k) = 01(v/8)2" + 0, (2071/07) < 271 — 2™,

contradicting the fact that G k-generates all but €2" of the sets containing p.
Hence, we may conclude that the S;’s are pairwise disjoint. By definition, Y; C PS;, and therefore
|Y;| <28, But from (11),

il > (1 —k(k — DV3
(1—kk—1)V/$
(1—k(k—1DV8)(1 = v/8)(1 — ) k2" — k41
(1= (k(k = 1)+ 1)/5 — ¢ /*) 2"k k41

> (1= 1I2/5 — ¢1/K)2M/k —k
S gn/k=1.

) H'|/k—k+1
) = V8)IGI/k —k+1

>
=
=
>

using (9) and (8) for the second and third mequalltles respectively. Hence, we must have |S;| > n/k
for each i, and therefore |S;| =n/k for each i, i.e. (S; )l:1 is an equipartition of X. Putting everything

together and recalling that 8§ = 2 + ¢%/¥ and ¢ = Oy (e + n + 27%"), we have
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‘gn (Opsi)

i=1

k
> il
i=1

> (1-I2V5 — ¢ Rk — k2

(provided n is sufficiently large depending on k), where Ci, Dy, & > 0 depend only on k. This proves
Proposition 9. O

We now prove the following

Proposition 16. Let v(n) = o(1). If G is a k-generator for X with |G| < |Fy k|, and

‘gﬂ < QPS,-)

where (Si){.‘ 1 is a partition of X into k classes of sizes as equal as possible, then provided n is sufficiently large

depending on k, we have |G| = |F; k| and

= (1 =v)|Fnkl

k
g=JPsi\ ).

i=1

Note that n is no longer assumed to be a multiple of k; the case k=2 and n odd will be needed
in Section 3.

Proof. Let G and (Si)i.‘: be as in the statement of the proposition. For each i € [k], let F; =
(PSi\ {#}) \ G be the collection of all nonempty subsets of S; which are not in G. By our assumption
on G, we know that |F;| < 0(2!5il) for each i € [k]. Let

k
=g\ JPs»
i=1
be the collection of ‘extra’ sets in G; let |£| = M.
By relabeling the S;’s, we may assume that |F7| > |F2| > --- > | Fk|. By our assumption on |G|,
M < k|FA].
Let

R={yiuUspU---Usk: y1 € F1, s CSi, Vi >2};

observe that the sets yq Lisy Li--- s, are all distinct, so |R| = |F;|2"~51I. By considering the number
of sets in £ needed for G to k-generate R, we will show that M > k|F7| unless F; = @. (In fact, our
argument would also show that M > py|F1| unless F1 =@, for any p, > 0 depending only on k.)

Let N be the number of sets in R which may be expressed as a disjoint union of two sets in £
and at most k — 2 other sets in G. Then

ve (NS ()

1 k2n/kyk—2
<SRRI PK- p k27

(k —2)!
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=o(1)| 72"
=o(IRl), (12)

where we have used |G| < |Fyx| < cok2™* (see (3)), [S1] < [n/k], and |F1| = 0(251]) in the second,
third and fourth lines respectively.
Now fix x1 € 1. For j > 1, let Aj(x1) be the collection of (k — 1)-tuples (s2,...,sk) € PSy x --- x
PSy such that
XquUsyu--- LSk

may be expressed as a disjoint union

yiudyaU---Uyi
with y; € € but y; C S;, Vi # j. Let A*(xq) be the collection of (k — 1)-tuples (sz,...,s) € PSz x
-+« X PS8 such that
X uUsyu--- LSk
may be expressed as a disjoint union of two sets in £ and at most k — 2 other sets in G.
Now fix j # 1. For each (s2, ..., sx) € Aj(x1), we may write
X1 I.ISzLI---I_ISk:SQ Uspl---UsjqUYy;jLSjyq L. LSk,

where yj=s;jU(x1\s}) €. Since y;NS; =s;, different s;’s correspond to different y;’s € £, and so
there are at most |£| = M choices for s;. Therefore,

[ Ajx)| < 208183 < 2Btk 7y | < 2k(—'2];1 " )2”—'51',
1
the last inequality following from the fact that |S;| > |Sq] — 1. Hence,
¢ K&l
DA G| < 2Ktk — 1)(—1>2"*'51' =o(1)2" 1, (13)

2151l
j=2

Observe that for each x; € Fq,

k
A ) U JAja) =PSy x PS3 x -+ x PS,
j=1
and therefore

k
|A* )| + [Ar x|+ Y| Ajx)| =201,
j=2

so by (13),
| A% ()| + | A1 ()| = (1= 0(1))27 511,

Call x; € Fy ‘bad’ if | A*(x1)| > 2~ *+22n=I51l; otherwise, call x; ‘good’. By (12), at most an o(1)-
fraction of the sets in 7 are bad, so at least a 1 —o(1) fraction are good. For each good set x; € Fi,
notice that

1 > (1 —27%2) - )
|.A (X1)| > (] 2 (k+2) 0(1))2n—\51|

Now perform the following process. Choose any (s, ..., S¢) € A1(x1); we may write
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— D¢ /
XpUsyl---USpg=2z""USyL---Lsp

with (s),....s}) € PSy x -+- x PS, 2V e &, 2V NSy =x;, and 2V \ Sy # . Pick py € 2V \ Sy. At
most %2"“5” of the members of .41(x1) have union containing p, so there are at least

(1 _ % _ 27(1{4’2) _ O(1)>2n7|51|

remaining members of A1 (x1). Choose one of these, (ta,...,t;) say. By definition, we may write
xUbu---ut=zPuthu--ut,

with (t),....t,) € PSy x -+ x PSy, 2P € €, 2? NSy =xq, and 2 \ S # 0. Since py ¢ z?, we must
have z® = z(V, Pick p, € z®\ Sy, and repeat. At most %2”*‘51‘ of the members of 4 (x1) have union
containing pq or py; there are at least

(% _ 27(1{4’2) _ O(l)>2n7|51|

members remaining. Choose one of these, (ua, ..., u) say. By definition, we may write

Xx1Uup - U =2z% uubu-- U

with (u), ..., up) € PSy x -+ x PSy, 23 € £, 29 NS =x, and z®) \ Sq # @. Note that again z® is
distinct from z(", z?, since p1, p> ¢ z®. Continuing this process for k + 1 steps, we end up with a
collection of k + 1 distinct sets zD, ..., z&+D ¢ & such that z0 N'S; =x;, VI € [k + 1]. Do this for
each good set x; € Fi; the collections produced are clearly pairwise disjoint. Therefore,

1€] = (k+1)(1 —o(D))|F1].
This is a contradiction, unless F; = ¢. Hence, we must have F, = --- = F, =, and therefore

k

g=JPsn\ .

i=1

proving Proposition 16, and completing the proof of Theorem 5. O

3. The case k = 2 via bipartite subgraphs of H

Our aim in this section is to prove the k =2 case of Conjecture 1 for all sufficiently large odd n,
which together with the k =2 case of Theorem 5 will imply

Theorem 4. If n is sufficiently large, X is an n-element set, and G C PX is a 2-generator for X, then
|G| > |Fn,2|. Equality holds only if G is of the form F ».
Recall that
2.2M/2 _ ) if n is even;
3.20=1/2 _ 2 ifnisodd.

Suppose that X is an n-element set, and G C PX is a 2-generator for X with |G| =m < |Fp2|.
The counting argument in the Introduction gives

m
1+m+(2>>2”,

| Fn,2| :{
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which implies that

1G> (1-o0(1))v22"2.

For n odd, we wish to improve this bound by a factor of approximately 1.5.

Our first aim is to prove that induced subgraphs of the Kneser graph H which have order §2(2"/2)
are o(1)-close to being bipartite (Proposition 18).

Recall that a graph G = (V, E) is said to be e-close to being bipartite if it can be made bipartite by
the removal of at most €|V |? edges, and e-far from being bipartite if it requires the removal of at least
€|V|? edges to make it bipartite.

Using Szemerédi's Regularity Lemma, Bollobds, Erdés, Simonovits and Szemerédi [3] proved the
following

Theorem 17 (Bollobds, Erdés, Simonovits, Szemerédi). For any € > 0, there exists g(€) € N depending on €
alone such that for any graph G which is e-far from being bipartite, the probability that a uniform random
induced subgraph of G of order g(¢) is non-bipartite is at least 1/2.

Building on methods of Goldreich, Goldwasser and Ron [10], Alon and Krivelevich [2] proved with-
out using the Regularity Lemma that in fact, one may take

< (log(1/€))®
€

g(e) (14)
where b > 0 is an absolute constant. As observed in [2], this is tight up to the poly-logarithmic factor,
since necessarily,

1
> —.
g(e) 6

We will first show that for any fixed ¢ > 0 and [ € N, if A Cc PX with |A| > c2"/2, then the
density of Cy41’s in H[.A] is at most o(1). To prove this, we will show that for any I € N, there exists
t € N such that for any fixed ¢ > 0, if A c PX with |.A| > c2"/2, then the homomorphism density
of Cyy1 ®t in H[A] is o(1). Using Lemma 7, we will deduce that the homomorphism density of
Cai1 in H[A] is o(1), implying that the density of Cy41’s in H[.A] is o(1). This will show that H[.A]
is 0o(1)-close to being bipartite (Proposition 18). To obtain a sharper estimate for the o(1) term in
Proposition 18, we will use (14), although to prove Theorem 4, any o(1) term would suffice, so one
could in fact use Theorem 17 instead of (14).

We are now ready to prove the following

Proposition 18. Let ¢ > 0. Then there exists b > 0 such that for any A C PX with |.A| > c2"/2, the induced
subgraph H[.A] can be made bipartite by removing at most

(log, log, n)?

|AP?
logy n

edges.

Proof. Fix ¢ > 0; let A C PX with |.A| =m > c2"/2. First, we show that for any fixed | € N, there exists
t € N such that the homomorphism density of Cy11 ® t’s in H[.A] is at most o(1). The argument is a
strengthening of that used by Alon and Frankl to prove Lemma 4.2 in [1].

Let t € N to be chosen later. Choose (2/ + 1)t members of A uniformly at random with re-
placement, (A,(]))lgi@lﬂ,lgjgt- The homomorphism density of Cy,1 ®t in H[A] is precisely the
probability that the unions
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t

U; = U Alg)

j=1

satisfy U; NU;+1 =@ for each i (where the addition is modulo 2[4 1).
We claim that if this occurs, then |U;| < (% — n)n for some i, provided n < 1/(4l + 2). Suppose for

a contradiction that U; N U;4q =@ for each i, and |U;| > (% — mn for each i. Then |Uj; \ Uj| <n—
[Uit1]—1Ui| < 2nn for each i € [2]—1]. Since Uy 1\Uq C Ulj=1 (Uzj+1\Uzj-1), we have [Uz11\Uq| <

Z’j:] U211\ Ugj_1] < 2Inn. 1t follows that [Uq N Ugyq] > (1/2 — 2L+ 1nn > 0 if n < 1/(4l + 2),
a contradiction.
We now show that the probability of this event is very small. Fix i € [k]. Observe that

pr{|u,-|<(1/2—n)n}=1’f< U (h{Agj)CS}»

SCX: |SI<1/2—mn \ j=1

< > (s

ISI<(1/2—mn j=1

- > @

ISI<(1/2—mn

L[ 2072=mnN\
<(*n)
— 2—(nt—1)nc—t
<27,

provided t > 2/1n. Hence,

21+1 2141
Pr( Jflui<ayz- n)n}) <Y Pr{|Uuil < (1/2=mn} < @I+ 127

i=1 i=1
Therefore,
heyet (HIAD) < @I+ 127"
Choose 1= g; and t =2/n=16l. By Lemma 7,

2041
heyy (H[A]) < ((2[ + 1)2—nc—t)l/t

= (21 + 1)1/ A8 5 =n/A6*T —1/(16)%
=0 (2—"/(161)2’“)

Observe that the number of (2s + 1)-subsets of A containing an odd cycle of H is at most

> —@l+1
ZmZI-HhCZHI (H[A]) <m 2(5 _—g )>

=1

Hence, the probability that a uniform random (2s + 1)-subset of A contains an odd cycle of H is at
most

s
m2l+1

Zm(m—l)---(m—Zl)

=1
< S(zs + 1)'0 (271’!/(]65)254»1)

@25 +1)(25)--- (2(s =) + 1)hcy,,, (HLA])
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(provided s < 0(+/m)). This can be made < 1/2 by choosing

s=alog,n/log, log, n,
for some suitable a > 0 depending only on c. By (14), it follows that H[.A] is ((log, log, n)?/log, n)-
close to being bipartite, for some suitable b > 0 depending only on c, proving the proposition. O

Before proving Theorem 4 for n odd, we need some more definitions. Let X be a finite set. If
A CPX, and i € X, we define

A ={xeArig¢x},
Af ={x\{i}: xe A, iex};

these are respectively called the lower and upper i-sections of A.

If Y and Z are disjoint subsets of X, we write H[Y, Z] for the bipartite subgraph of the Kneser
graph H consisting of all edges between Y and Z. If B is a bipartite subgraph of H with vertex-sets Y
and Z, and F C PX, we say that B 2-generates F if for every set x € F, there exist y €Y and z€ Z
such that yNnz=¢, yze€ E(B), and y Liz=x, i.e. every set in F corresponds to an edge of B.

Proof of Theorem 4 for n odd. Suppose that n=2I+1 > 3 is odd, X is an n-element set, and G C PX
is a 2-generator for X with |G|=m < |Fy2|=3- 2! — 2. Observe that

e(H[G]) = 22%! —|g| —1 =22+ —3.2! 41,
and therefore H[G] has edge-density at least

22’+1—3-2’+1> 2241 3.2l 41 4
= > —.
(9 13-21-2)(3-21-3) "~ 9

(Here, the last inequality rearranges to the statement [ > 0.) By Proposition 18 applied to G, we can
remove at most

(log, log, n)® 2 < (log, logy n)” 9.

logyn log, n

edges from H[G] to produce a bipartite graph B. Let Y, Z be the vertex-classes of B; we may assume
that Y u Z = G. Define € > 0 by

{lyuz:yeY, zeZ ynz=0)| =1 -e)2?";
then clearly, we have

e(B) > (1 —e€)2%+1, (15)

Note that

b b
c< 9 (log, log, m) 13.2-0+D g (logy logy )"\ _ o(1).
2 logyn logyn

Let
a=v|2,  p=|z|/2"

By assumption, o + 8 <3 — 274D <3 Since |Y||Z| > e(B) > (2 — 2¢)22, we have a8 > 2 — 2¢. This
implies that

1-2€ <a,f <2+2€. (16)
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(To see this, simply observe that to maximize o subject to the conditions < 1—2€ and o + 8 < 3,
it is best to take « =1 — 2¢ and B =2 + 2¢, giving af =2 — 2¢ — 4€% < 2 — 2¢, a contradiction. It
follows that we must have @ > 1 — 2¢, so 8 < 2 + 2¢; (16) follows by symmetry.)

From now on, we think of X as the set [n]={1,2,...,n}. Let
wy={ienl: |Y;"| >1vI/3}.
wy={ienl: |Z]| >121/3}.

First, we prove the following
Claim 1. W, U W, =[n].

Proof. Suppose for a contradiction that W1 U W3 # [n]. Without loss of generality, we may assume
that n ¢ W1 U W. Let

o=Y /Y, ¢=|zf|/1Z;

then we have 6, ¢ < 1/3. Observe that the number e, of edges between Y and Z which generate a
set containing n satisfies

(1-2€)2% <en < (0a(1 — ¢)B + dB(1 — 0))2% = (6 + ¢ — 20¢)a p2%. (17)

(Here, the left-hand inequality comes from the fact that B 2-generates all but at most €22+ subsets
of [n], and therefore B 2-generates at least (1 — 2¢)2% sets containing n.)
Notice that the function

fO.0)=0+0¢—20¢, 0<6,9<1/3

is a strictly increasing function of both 6 and ¢ for 0 < 0, ¢ < 1/3, and therefore attains its maximum
of 4/9 at 6 = ¢ = 1/3. Therefore,

1-2e< 4055'
~ 9 ’
since o + B < 3, we have
3/2-3€/2<a,B<3/2+3/€/2.
Moreover, by the AM/GM inequality, o8 < 9/4, so
9
and therefore
1/3—-8€¢/3<60,¢p<1/3.
Thus |Y|,|Z]=3/2 — 0(1)2! and 0, ¢ =1/3 —o(1). Therefore, we have
Y |=2"1(1-0(D),
|z [=2"7"(1—oD).
Yy |=2'(1+0(D),
|Z7| =2'(1+0(D)).

Observe that G, =Y, U Z; must 2-generate all but at most 0(2%) of the sets in P{1,2,...,n—1} =
P{1,2,...,2l}, and therefore, by Proposition 9 for k =2 and n even, there exists an equipartition
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S1US; of {1,2,...,2l} such that Y, contains at least (1 — 0(1))2! members of PS;, and Z, contains
at least (1 —0(1))2! members of PS,. Define

U={yeY: ynS,=0},
V={zeZ:zNn 51 =0}

Since |U; | =(1—0(1))2" and |V, | = (1 —0(1))2!, we must have |V, \ U, |=0(2'), and |Z; \ V| =
0(2!). Our aim is now to show that |Y;} \ U;F| =0(2), and |Z] \ V,[| = 0(2).

Clearly, we have U, C PSy, and V; C PSy, so |U;| < 2! and Vil < 2!, Moreover, each set
x € Y;F \ Uf contains an element of S,, and therefore x U {n} is disjoint from at most 2I=1 sets in
V, C PS,. Similarly, each set x € Z;7 \ V,}* contains an element of Sq, and therefore x U {n} is disjoint
from at most 2= sets in U, C PSi. It follows that

en < U |IVir |+ [V U2+ v (U 2\ v 2
+Y UL |27 [+ ]z \ Vo [|Yy|
<|UF 2"+ [y N UF 2 V2 |z v 2T o 2%).

On the other hand, by (17), we have e, > (1 — 0(1))2%. Since |Y;f| =2'"1(1 —0(1)), and |Z;}| =
2711 — 0(1)), we must have |V} \ UF| =0(2}), and |Z;} \ V| =0(2!), as required.

We may conclude that |Y \ U| =o0(2)) and |Z \ V| = 0(2!). Hence, there are at most o(2!) sets
in YU Z =g that intersect both S; and S,. On the other hand, since |Y;/|= (1 — 0(1)2"1 and
|Z+ = (1 —0(1))2"7, there are at least (14 0(1))2'~! sets s; € S1 such that s; U {n} ¢ Y, and there

are at least (1 +0(1))2/~! sets s, C Sy such that s, U {n} ¢ Z. Taking all pairs si,s, gives at least
(1+0(1))22-2 sets of the form

{NfUs1Usy (s1CS1, siUfn}¢Y, s2CSa, s2U{n} ¢ Z). (19)

Each of these requires a set intersecting both S; and S, to express it as a disjoint union of two sets
from G. Since there are o(2)) members of G intersecting both S; and S,, G generates at most

(1G] +1)o(2') = 0(2%)
sets of the form (19), a contradiction. This proves the claim. O
We now prove the following

Claim2. W{NW, =0.

Proof. Suppose for a contradiction that W1 N W; # (. Without loss of generality, we may assume that
n e Wi N Ws. As before, let

o=y /1Y, é=|Z]|/1ZI;
this time, we have 6, ¢ > 1/3. Observe that
(2 —2€)2% <e(B) < (1 —0¢)ap2?. (20)

Here, the left-hand inequality is (15), and the right-hand inequality comes from the fact that there
are no edges between pairs of sets (y,z) € Y x Z such that n e y Nz. Since 1 —6¢ < 8/9, we have

8
2—2e < —ap.
9 B
Since « + B < 3, it follows that

%(1—ﬁ)<a,ﬂ<§(1+ﬁ).
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Since aB < 9/4, we have

9
2—2e<-(1—-09¢),
4
and therefore

1/3<60,¢ <1/3+8¢/3.

Hence, we have

Vi =27 (1 —oD),
1z =21 (1 o).
Y| =21 +0(1),
|z | =2'(1+0(D)),
so exactly as in the proof of Claim 1, we obtain a contradiction. O
Claims 1 and 2 together imply that W1 U W3 is a partition of {1,2,...,n} ={1,2,...,21+ 1}. We

will now show that at least a (2/3 — o(1))-fraction of the sets in Y are subsets of W1, and similarly
at least a (2/3 — o(1))-fraction of the sets in Z are subsets of W. Let

_IYAPWY)| _1Z\PWa)
lyp o 1Z] '

Let y e Y\ PWj, and choose i € y N W3; since at least |Z|/3 of the sets in Z contain i, y has at
most 2|Z|/3 neighbours in Z. Hence,

2-26)2% <e(B) < (%aaﬂ +(1- 0)01,3>22’ =(1—-0o/3)aB2? <1 - 0/3)2221, (21)
and therefore

o <1/3+8¢€/3,
s0

|y N P(W1)| > (2/3 —8€/3)|Y]. (22)

Similarly, T < 1/3 + 8¢/3, and therefore |Z N P(W3)| > (2/3 — 8¢/3)|Z|.
If |W1] <1—1, then |Yﬂ'P(W1)| <21—1, so

21—1 3 21
2/3—8¢/3  41-4e

Y| < <(1-26)2,

contradicting (16). Hence, we must have |W1| > L Similarly, |W3| > 1, so {|{Wq], |W3|} = {1 + 1}.
Without loss of generality, we may assume that |Wq|=1[and |W;,|=1+1.
We now observe that

1Z] > (3/2 — 6€)2. (23)

To see this, suppose that |Z| = (3/2 — n)2.. Since |Z| + |Y| <3 - 2!, we have |Y| < (3/2 + 1)2.. Recall
that any y € Y \ PW; has at most 2|Z|/3 neighbours in Z. Thus, we have
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(2-26)2%2 <e(B)
2
< IYﬁPW1IIZI+|Y\7’W1I§IZI

<2 og)2 e (Ean)22(2 )2
sl 7n 2 TM)e3\ 7

1 2
— 2__ __2221.
< 3 3”)

Therefore 1 < 6¢, i.e. |Z| > (3/2 — 6€)2!, as claimed. Since |Z| + |Y| < 3 - 2!, we have

Y] < (3/2 +6€)2. (24)

We now prove the following
Claim 3.

(@) IP(W1)\ Y| <22¢24
(b) 1Z\ PW2| < (V€ +2€)2.,

Proof. We prove this by constructing another bipartite subgraph B, of H with the same number of
vertices as B, and comparing e(B,) with e(B). First, let

D =min{|P(W2)\ Z|,|Z\ PWal},

add D new members of P(W>)\ Z to Z, and delete D members of Z \ PW5, producing a new set Z’
and a new bipartite graph By = H[Y, Z']. Since |Z/| = |Z| < (2 + 2€)2!, we have |Z' \ PW;| < €2!*1,
i.e. Z' is almost contained within PW5. Notice that every member z € Z \ PW, had at most 2|Y|/3
neighbours in Y, and every new member of Z’ has at least |Y N"P(W1)| > (2/3 —8¢€/3)|Y| neighbours
in Y, using (22). Hence,

16€ 9

2% = 4€2%
9 4 ’

e(B1) > e(B) — 2€22%1 > (1 — 3¢)22+1,

Second, let

C=min{|PW1\ Y|, |Y \ PW1]},

add C new members of P(W1)\ Y to Y, and delete C members of Y \ PW1, producing a new set Y’
and a new bipartite graph B, = H[Y’, Z’]. Since |Y| > (1 — 2¢)2!, we have |Y' N PW;| > (1 — 2¢)2..
Since every deleted member of Y contained an element of W5, it had at most (1 4 2€)2! neighbours
in Z'. (Indeed, such member of Y intersects 2! sets in PW5, so has at most 2! neighbours in Z' N
PW; there are |Z'\ PW,| < €21 other sets in Z’.) On the other hand, every new member of Y’ is
joined to all of Z’ N PW,, which has size at least |Z N PW;| > (3/2 — 8¢)2.. It follows that

1 1
e(By) >e(By) + C(E - 10e>2’ >(1-36)22H 4 C(E - 106)21. (25)

We now show that e(By) < (14 €)22+1 If |Y'| > 2!, then write |Y'| = (1 + ¢)2! where ¢ > 0;
Y’ contains all of PW1, and ¢2! ‘extra’ sets. We have |Z'| < (2 — ¢)2/, and therefore by (23), ¢ <
1/2+6€ < 1. Note that every ‘extra’ set in Y'\ PW has at most 2! neighbours in W, and therefore
at most (1 + 2¢)2! neighbours in Z’. Hence,

e(By) <2'2—¢)2' +¢2'(1 +26)2' = (1 + )2 < (1 + )22,
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If, on the other hand, |Y’| < 2!, then since |Y’'| +|Z’| < 3- 2!, we have e(By) < |Y'||Z/| < 22*1,
Hence, we always have
e(By) < (146221 (26)
Combining (25) and (26), we see that

8¢
C——+—
1/2 —10e
provided € < 1/100.

This implies (a). Indeed, if |PW; \ Y| < C < 20€2!, then we are done. Otherwise, by the definition
of C, we have |Y \ PW;| < 20€2. Recall that by (16), |Y| > (1 — 2¢)2!, and therefore

2! < 20€2/,

Y NPWq|= Y| — Y\ PW1| > (1 —2¢)2' —20e2! = (1 — 22¢)2.
Hence,
|[P(WD\ Y| <2262, (27)

proving (a).
Since e(B) > (1 — €)22%1, e(By) < (14 €)2%*1, and e(B3) > e(B1), we have

e(By1) —e(B) < e(By) —e(B) < (14 €)22+1 — (1 — )22 = 22142 (28)

We now use this to show that

D =min{|P(W2)\ Z

NZ\PW,|} < Vel

Suppose for a contradiction that D > \/€2!; then it is easy to see that there must exist z € Z\ PW;
with at least

21Y|/3 — 8/€2!

neighbours in Y. Indeed, suppose that every z € Z \ PW, has less than 2|Y|/3 — 8./€2! neighbours
in Y. Recall that every new member of Z’ has at least (2/3 — 8¢)|Y| neighbours in Y. Hence,

e(B1) —e(B) > 8D(Ve — €)|Y| = 8V€2! (Ve — €)(1 — 26)2! > 221

since € < 1/16, contradicting (28).
Hence, we may choose z € Z \ PW; with at least

21Y|/3 — 8/€2!

neighbours in Y. Without loss of generality, we may assume that n € zN Wy; then none of these
neighbours can contain n. Hence, Y contains at most

|Y|/3 4 8y/€2!

sets containing n. But by (27), Y contains at least (1 —44¢€)2!=1 of the subsets of W that contain n,
and therefore |Y| > (3/2—0(1))21. By (23), it follows that |Y| = (3/2 —o(1)2' and |Z| = (3/2—{—0(1))2’,
so Y contains (1 —o0(1))2/~" sets containing n. Hence, by (18), so does Z. As in the proof of Claim 1,
we obtain a contradiction. This implies that

D =min{|P(W>)\ Z

JZ\PWa} < Ve2!,

as desired.
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This implies (b). Indeed, if |Z\ PW;| < /€2!, then we are done. Otherwise, by the definition of D,
IP(W2)\ Z| < /€2!, and therefore

IZNPW,| = (2 —e)2h
Since |Z| < (2 4 2¢€)2!, we have
IZ\PW3|=|Z| - |ZNPW3| < 2+2€)2' — 2 — €)2' = (Ve + 2¢€)2,
proving (b). O
We conclude by proving the following
Claim 4.
|P(W2)\ Z| < 4ve2.
Proof. Let

Fa=PW2)\Z

be the collection of sets in PW;, which are missing from Z, and let

E1=Y\PW,q

be the set of ‘extra’ members of Y.
Since G is a 2-generator for X, we can express all | 3|2 sets of the form

wil f (wi CWq, fheF)

as a disjoint union of two sets in G. All but at most €221 of these unions correspond to edges of B.
Since |Z\ PW3| < (/€ +2€)2!, there are at most (/€ +2€)2!|Y| edges of B meeting sets in Z\ PW,.
Call these edges of B ‘bad’, and the rest of the edges of B ‘good’. Fix f, € F; we can express all 2!
sets of the form

wil f (wq CWhy)
as a disjoint union of two sets in G. If wq U f is represented by a good edge, then we may write
wil fr=y1uw;

where yq € & with y1 N W1 = w1, and wy C Wy, so for every such wiq, there is a different y; € &;.
By (24), |Y| < (3/2+6€)2!, and by (27), |Y N PW1| > (1 —22¢)2!, so

€11 = Y| — [P(WD)NY| < (3/2+66)2" — (1 —226)2' = (1/2 +28¢)2".

Thus, for any f; € F», at most (1/2 + 28¢)2! unions of the form w; U f, correspond to good edges
of B. All the other unions are generated by bad edges of B or are not generated by B at all, so

(172 —28€)2'| 55| < 2€ + /€)2'Y| + €221,
Since |Y| < (3/2 +6€)2! and € is small, |F,| < 4/€2, as required. O

We now know that Y contains all but at most 0(2!) of PW1, and Z contains all but at most 0(2) of
PWs,. Since |Y|+|Z| < 3-2!, we may conclude that |Y| = (1—0(1))2! and |Z| = (2 —o0(1))2.. It follows
from Proposition 16 that provided n is sufficiently large, we must have G = P(W) U P(W>3) \ {0},
completing the proof of Theorem 4. O



D. Ellis, B. Sudakov / Journal of Combinatorial Theory, Series A 118 (2011) 2319-2345 2345

4. Conclusion

We have been unable to prove Conjecture 1 for k > 3 and all sufficiently large n. Recall that if G is
a k-generator for an n-element set X, then

1G] > 2"k,

In view of Proposition 18, it is natural to ask whether for any fixed k, all induced subgraphs of the
Kneser graph H with £2(2"/%) vertices can be made k-partite by removing at most 0(2%"/¥) edges.
This is false for k = 3, however, as the following example shows. Let n be a multiple of 6, and take an

equipartition of [n] into 6 sets Tq,..., T of size n/6. Let
A= |J @uT);
{i,j}el6]®

then | A| = 15(2"/3), and H[.A] contains a 2"/3-blow-up of the Kneser graph K (6, 2), which has chro-
matic number 4. It is easy to see that H[.A] requires the removal of at least 22"/3 edges to make it
tripartite. Hence, a different argument to that in Section 3 will be required.

We believe Conjecture 1 to be true for all n and k, but it would seem that different techniques
will be required to prove this.
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