JOURNAL OF ALGEBRA 148, 42-52 (1992)

On the Lattice of F-Subnormal Subgroups*

A. BALLESTER-BOLINCHES

Departament D'Algebra, Universitat de València, C/Doctor Moliner, 50, E-46100 Burjassot, Valencia, Spain

K. DOERK

Fachbereich Mathematik, Johannes Gutenberg-Universität, Postfach 3980, D-6500 Mainz, Germany

AND

M. D. Pérez-Ramos

Departament D'Algebra, Universitat de València, C/Doctor Moliner, 50, E-46100 Burjassot, Valencia, Spain

Communicated by Gernot Stroth

Received May 18, 1990

1. INTRODUCTION

All groups considered are finite.

It is well known that the set of all subnormal subgroups of a group G is a lattice. Now, assume that \mathfrak{F} is a subgroup-closed saturated formation containing the class of all nilpotent groups. It is known that the intersection of two \mathfrak{F} -subnormal subgroups of a soluble group G is an \mathfrak{F} -subnormal subgroup of G (cf. [6, 5, 2]). One might wonder if the set of all \mathfrak{F} -subnormal subgroups of a soluble group is a lattice. The answer is negative in general (see [2]), but there exist subgroup-closed saturated formations containing properly the class of all nilpotent groups for which the lattice property holds.

In this paper, we obtain the exact description of the subgroup-closed saturated formations \mathfrak{F} of soluble groups such that the set of all \mathfrak{F} -subnormal subgroups is a lattice for every soluble group.

2. PRELIMINARIES

In this section we collect some definitions and notations as well as some known results.

* Research partially supported by DGICYT-proyecto No. PS87-0055-C02-02.

First recall that if \mathfrak{F} is a saturated formation and G is a group, a maximal subgroup M of G is said to be \mathfrak{F} -normal in G if the primitive group $G/M_G \in \mathfrak{F}$, and \mathfrak{F} -abnormal otherwise $(M_G = \bigcap \{M^g | g \in G\})$. A subgroup H of a group G is called \mathfrak{F} -subnormal in G if either H = G or there exists a chain $H = H_n < H_{n-1} < \cdots < H_0 = G$ such that H_{i+1} is a maximal \mathfrak{F} -normal subgroup of H_i , for every i = 0, ..., n-1.

If *M* is a maximal subgroup of a group *G* such that $M_G = 1$, we will say that *M* is a core-free maximal subgroup of *G*, and if \mathfrak{X} is a class of groups we denote char $\mathfrak{X} = \{p \in \mathbb{P}/C_p \in \mathfrak{X}\}$, where C_p denotes the cyclic group of order *p*. Recall that the boundary $b(\mathfrak{X})$ of a class of groups \mathfrak{X} consists of all groups *G* satisfying $G \notin \mathfrak{X}$ and $G/N \in \mathfrak{X}$ for all $1 \neq N \triangleleft G$.

If π is a set of prime numbers, let \mathfrak{S} and \mathfrak{S}_{π} denote the classes of soluble and soluble π -groups, respectively. \mathfrak{N} denotes the class of all nilpotent groups.

The following results will turn out to be crucial in the proof of our main result.

(2.1) LEMMA [8, Theorem 1.3.11]. If H is a subnormal subgroup of a finite group G, then Soc(G) normalizes H.

(2.2) LEMMA [2]. Let $G \in \mathfrak{NF}$, where \mathfrak{F} is a saturated formation, and let E be an \mathfrak{F} -maximal subgroup of G satisfying G = EF(G). Then E is an \mathfrak{F} -normalizer of G.

(2.3) LEMMA [3, 1]. Let G be a group and let \mathfrak{F} be a saturated formation. If $G^{\mathfrak{F}}$ is abelian, then $G^{\mathfrak{F}}$ is complemented in G and any two complements in G of $G^{\mathfrak{F}}$ are conjugate. The complements are the \mathfrak{F} -normalizers of G.

(2.4) LEMMA [4, Hilfssatz 1.3]. Let H be a group with a unique minimal normal subgroup M, where M is a q-group. If p is a prime distinct from q then H has a faithful irreducible representation over GF(p).

(2.5) LEMMA [7, Lemma 1.1]. Let \mathfrak{F} be a subgroup-closed saturated formation. If H is \mathfrak{F} -subnormal in G and $H \leq U \leq G$, then H is \mathfrak{F} -subnormal in U.

For details about formations the reader is referred to [4].

3. THE LATTICE OF F-SUBNORMAL SUBGROUPS

(3.1) LEMMA. Let G be a group and let H be an \mathfrak{F} -subnormal subgroup of G, where \mathfrak{F} is a subgroup-closed saturated formation. Then $H^{\mathfrak{F}}$ is subnormal in G.

Proof. We argue by induction on the order of G. Let N be a minimal normal subgroup of G. Then HN/N is F-subnormal in G, so that $H^{\mathfrak{F}}N$ is subnormal in G. If HN is a proper subgroup of G, then $H^{\mathfrak{F}}$ is subnormal in HN by Lemma 2.5. Therefore $H^{\mathfrak{F}}$ is subnormal in G and the lemma is true. So we can assume G = HN for each minimal normal subgroup N of G. This implies that H is contained in a core-free F-normal maximal subgroup of G. But then G is an F-group and $H^{\mathfrak{F}} = 1$ is subnormal in G.

(3.2) LEMMA. Let $\mathfrak{E} = \{\pi_i : i \in l\}$ be a partition of π , a set of prime numbers, and let \mathfrak{F} be the saturated formation of soluble groups locally defined by the formation function f given by $f(p) = \mathfrak{S}_{\pi_i}$, if $p \in \pi_i$ and $i \in l$, and $f(q) = \emptyset$, if $q \notin \pi$. Then G is an \mathfrak{F} -group if and only if G is a soluble π -group with a normal Hall π_i -subgroup, for every $i \in l$.

Proof. Assume that $G \in \mathfrak{F}$. We see that G has a normal Hall π_i -subgroup for each $i \in I$ by induction on |G|. Let N be a minimal normal subgroup of G and let $p \in \pi_i$ the prime divisor of |N|. If H is a Hall π_i -subgroup of G, then $N \leq H$ and H/N is a Hall π_i -subgroup of G/N. By induction we deduce that H is a normal subgroup of G. Now, let A be a Hall π_j -subgroup of G with $j \neq i$. Then $A \cap N = 1$ and since AN/N is a Hall π_j -subgroup of G/N, we have that $AN \lhd G$. If AN < G, then $A \lhd AN$ and $A \lhd G$. Therefore we can assume that G = AN and A is a maximal subgroup of G. Since $G \in \mathfrak{F}$, we have that $G/A_G \in \mathfrak{S}_{\pi_i}$, but then $A = A_G$ because $A/A_G \in \mathfrak{S}_{\pi_i}$, that is, A is a normal subgroup of G.

The converse is clear since the chief factors of a such group G are \mathfrak{F} -central.

(3.3) THEOREM. Let \mathfrak{F} be a subgroup-closed saturated formation of soluble groups containing \mathfrak{N} , the class of all nilpotent groups, and let f be the full and integrated local formation function defining \mathfrak{F} . Then \mathfrak{F} satisfies the following condition:

(*) "If H_1 and H_2 are two \mathfrak{F} -subnormal subgroups of $G \in \mathfrak{S}$, then $\langle H_1, H_2 \rangle$ is an \mathfrak{F} -subnormal subgroup of G", if and only if f can be described in the following way: "There exists a partition $\{\pi_i\}_{i \in I}$ of \mathbb{P} , the set of all prime numbers, such that $f(p) = \mathfrak{S}_{\pi_i}$, for every prime number $p \in \pi_i$ and for every $i \in I$ ".

Proof. Assume that the formation $\mathfrak{F} = LF(f)$ as above satisfies (*). It is well known that f(p) is a subgroup-closed formation for every prime p (cf. [4, Hilfssatz 2.2]). We split the first part of the proof into the following steps:

(1) For each prime number $p \in \mathbb{P}$, every primitive group $G \in \mathfrak{F} \cap (b(f(p)))$ is cyclic.

It is clear that G has a unique minimal normal subgroup N, and evidently N must be a q-group, where $p \neq q \in \mathbb{P}$. Therefore there exists an irreducible and faithful G-module V_p over GF(p). We claim that G has a unique maximal subgroup M such that $M_G = 1$, which provides the result.

Assume that M_1 and M_2 are maximal subgroups of G, $M_1 \neq M_2$ and $(M_i)_G = 1$, i = 1, 2. Then $M_i \in f(p)$. Consider now the semidirect product $H = [V_p]G$, with respect to the action of G on V_p . Clearly $H \notin \mathfrak{F}$, so $H^{\mathfrak{F}} = V_p$ and G is not \mathfrak{F} -subnormal in H. But for $i = 1, 2, V_p M_i$ is \mathfrak{F} -normal maximal subgroup of H, and M_i is \mathfrak{F} -subnormal in $V_p M_i$, because $V_p M_i \in \mathfrak{S}_p f(p) = f(p) \subseteq \mathfrak{F}$, that is, M_i is \mathfrak{F} -subnormal in H. Since \mathfrak{F} satisfies (*), we have that $G = \langle M_1, M_2 \rangle$ is \mathfrak{F} -subnormal in H, which is a contradiction.

(2) If p and q are prime numbers and $q \in char(f(p))$, then $p \in char(f(q))$.

Assume that $C_p \notin f(q)$ and consider an irreducible and faithful C_q -module V_p over GF(p). Then the semidirect product $[V_p]C_q$, with respect to the action of C_q on V_p , belongs to $\mathfrak{F} \cap b(f(q))$, which contradicts (1).

(3) If p and q are prime numbers and $p \in char(f(q))$, then char(f(p)) = char(f(q)).

If $r \in \mathbb{P}$ and $r \in \operatorname{char}(f(q)) \setminus \operatorname{char}(f(p))$, then $r \neq q$ and $C_q \in f(r)$, because of (2). Consider now an irreducible and faithful C_q -module V_r over GF(r). Then $[V_r]C_q \in \mathfrak{F} \cap b(f(p))$, a contradiction with (1).

(4) If $p, q \in \mathbb{P}$ and $p \in \operatorname{char}(f(q))$, then $\mathfrak{S}_p \subseteq f(q)$.

Since f(q) is subgroup-closed, and a *p*-group of order p^n is isomorphic with a subgroup of the *n*-fold iterated wreath product $(\cdots (C_{p \sim \text{reg}} C_p) \cdots)_{\sim \text{reg}} C_p = H_n$, it is enough to prove that $H_n \in f(q)$, $\forall n \in \mathbb{N}$.

Denote inductively $H_1 = C_p$ and $H_n = H_{n-1 \sim \text{reg}} C_p$, for $n \ge 2$, and assume inductively that $H_{n-1} \in f(q)$. Since $Z(H_n)$ is cyclic, H_n has a unique minimal normal subgroup, and consequently there exists an irreducible and faithful H_n -module V_q over GF(q). Consider the semidirect product $G = [V_q]H_n$, with respect to the action of H_n on V_q . If $(H_{n-1})^{\#}$ denotes the base group of H_n , then $H_n = (H_{n-1})^{\#} C_p$. Since $(H_{n-1})^{\#}$ and C_p are f(q)-groups, we have that $V_q(H_{n-1})^{\#}$ and V_qC_p are f(q)-groups. So $(H_{n-1})^{\#}$ and C_p are \mathfrak{F} -subnormal in G. Consequently $G \in \mathfrak{F}$ and then $H_n \in f(q)$.

(5) If $p, q \in \mathbb{P}$ and $p \in \operatorname{char}(f(q))$, then $\mathfrak{S}_p f(q) = f(q)$.

Assume that G is a group of minimal order in $\mathfrak{S}_p f(q) \setminus f(q)$. Then G has a unique minimal normal subgroup N, $G/N \in f(q)$ and N is a p-group. If

 $G \in \mathfrak{F}$, we may argue as in (1) to obtain that G has a unique maximal subgroup, that is, G is cyclic, and consequently $G \in f(q)$, a contradiction. Therefore $G \notin \mathfrak{F}$, in particular $N \not \subseteq \phi(G)$, and so there exists a maximal subgroup R of G such that G = NR, $R \in f(q)$ and $G^{\mathfrak{F}} = N$. Now R must be again a cyclic r-group, with $p \neq r \in \mathbb{P}$. Finally, from (3) and (4), we have that $G \in \mathfrak{S}_p \mathfrak{S}_r \subseteq \mathfrak{S}_p f(p) = f(p) \subseteq \mathfrak{F}$, which is a contradiction.

(6) If
$$p \in \mathbb{P}$$
 and $\pi = \operatorname{char}(f(p))$, then $f(p) = \mathfrak{S}_{\pi}$.

Since f(p) is a subgroup-closed formation, it is clear that $f(p) \subseteq \mathfrak{S}_n$.

On the other hand, if $f(p) \neq \mathfrak{S}_{\pi}$, choose a group G of minimal order in $\mathfrak{S}_{\pi} \setminus f(p)$, and consider a minimal normal q-subgroup N of G, $q \in \pi$. Then $G/N \in f(p)$, that is, $G \in \mathfrak{S}_q f(p) = f(p)$, by (5), a contradiction.

Conversely, let $\mathfrak{E} = \{\pi_i : i \in l\}$ be a partition of \mathbb{P} , the set of all prime numbers, and let \mathfrak{F} be the saturated formation of soluble groups locally defined by the integrated and full formation function f given by $f(p) = \mathfrak{S}_{\pi_i}$, if $p \in \pi_i$. We see that \mathfrak{F} verifies the condition (*).

Suppose not and take G of minimal order among the groups X having two F-subnormal subgroups A and B such that $\langle A, B \rangle$ is not F-subnormal in X. Then there exists two F-subnormal subgroups H and K of G such that $T = \langle H, K \rangle$ is not F-subnormal in G. The group G should have the following properties:

(1) G is a primitive group and T is a core-free maximal subgroup of G.

Take N a minimal normal subgroup of G. Since HN/N and KN/N are two F-subnormal subgroups of G/N, then $TN/N = \langle HN/N, KN/N \rangle$ is F-subnormal in G/N by minimality of G. Moreover, if TN < G again T is F-subnormal in TN. Therefore T would be F-subnormal in G, a contradiction. So TN = G for every minimal normal subgroup N of G. But then T is a core-free maximal subgroup of G, and G is a primitive group.

Suppose that p is the prime dividing the order of N = Soc(G). Let $i \in l$ such that $p \in \pi_i$.

(2) If L is an \mathfrak{F} -subnormal subgroup of G contained in T, then L is a π_i -group. In particular, H and K are π_i -groups.

By Lemma 3.1, $L^{\mathfrak{F}}$ is a subnormal subgroup of G and so Lemma 2.1 implies that $N \leq N_G(L^{\mathfrak{F}})$. On the other hand $N \cap L^{\mathfrak{F}} = 1$, since L is contained in T. So $L^{\mathfrak{F}} \leq C_G(N) = N$ and L is an \mathfrak{F} -group. Let N_0 be a minimal L-invariant subgroup of N. If LN_0 were not an \mathfrak{F} -group, then N_0 would be the \mathfrak{F} -residual of LN_0 , but this is impossible because L is \mathfrak{F} -subnormal in LN_0 . Therefore if $Soc_L(N)$ denotes the product of all minimal L-invariant subgroups of N, we have that $L Soc_L(N)$ is an \mathfrak{F} -group. On the other hand, if LN were not an \mathfrak{F} -group there would exist an \mathfrak{F} -maximal subgroup F of LN containing $L \operatorname{Soc}_L(N)$. By Lemmas 2.2 and 2.3 we have that $LN = F(LN)^{\mathfrak{F}}$ and $F \cap (LN)^{\mathfrak{F}} = 1$. But $1 \neq (LN)^{\mathfrak{F}} \cap \operatorname{Soc}_L(N) \leq F \cap (LN)^{\mathfrak{F}}$, a contradiction. Therefore LN must be an \mathfrak{F} -group.

Now if $j \in l$ and $i \neq j$, we have that $O_{\pi_j}(L) \leq C_G(N) = N$, so $O_{\pi_j}(L) = 1$ and L is a π_j -group, by Lemma 3.2.

Among the pairs (A, B) of \mathfrak{F} -subnormal subgroups of G such that $\langle A, B \rangle$ is not \mathfrak{F} -subnormal in G, we take a pair (H, K) with |H| + |K| maximal. Suppose $|K| \leq |H|$. Then:

(3) $\langle H, H^x \rangle$ is \mathfrak{F} -subnormal in G, for every $x \in G$.

Assume the result is not true. Then by the choice of (H, K), we have |H| = |K|. Among the elements g of G such that $\langle H, H^g \rangle$ is not \mathfrak{F} -subnormal in G, take $x \in G$ with $\langle H, H^x \rangle$ of minimal order. It is clear that $G = \langle H, H^x \rangle N$ and $R = \langle H, H^x \rangle$ is a core-free maximal subgroup of G. If $G = \langle H, x \rangle$, then $G = R \langle H, x \rangle^{\mathfrak{F}}$ and x = tr with $t \in R$ and $r \in \langle H, x \rangle^{\mathfrak{F}}$. On the other hand, $G = \langle H, H^x, x \rangle = \langle H, H', r \rangle$. If $\langle H, H' \rangle$ is a proper subgroup of R, then $\langle H, H' \rangle$ is \mathfrak{F} -subnormal in G by the choice of R, and since $r \in \langle H, H', r \rangle^{\mathfrak{F}}$, we have $r \in \langle H, H' \rangle$ by [2]. Therefore $x \in R$, a contradiction. Thus, $R = \langle H, H' \rangle$. Consequently, without loss of generality, we can assume that $x \in R$.

For this subgroup R we have:

(a)
$$R^{\mathfrak{F}} \leq N_G(H).$$

Suppose that $\mathbb{R}^{\mathfrak{F}}$ is not contained in $N_G(H)$ and let z be an element of $\mathbb{R}^{\mathfrak{F}}\setminus N_G(H)$. Then H is a proper subgroup of $\langle H, H^z \rangle$ and there exists an \mathfrak{F} -normal maximal subgroup M of G such that $\langle H, H^z \rangle \leq M$. Then $\langle H, H^z \rangle$ is \mathfrak{F} -subnormal in M by the choice of G, so that $\langle H, H^z \rangle$ is \mathfrak{F} -subnormal in G and, by the choice of (H, K), we have that $R = \langle H, H^x, H^z \rangle$ is an \mathfrak{F} -subnormal subgroup of G, a contradiction.

(b) Every maximal subgroup M of R containing H is \mathfrak{F} -normal in R.

Let *M* be a maximal subgroup of *R* such that $H \leq M$. If *M* were not \mathfrak{F} -normal in *R*, *M* would be a supplement of $R^{\mathfrak{F}}$ in *R*. Applying (a), the normal closure H^R of *H* in *R* must be contained in *M* but this is impossible because $H^R = R$. Thus *M* is \mathfrak{F} -normal in *R*.

(c) R is a π_i -group.

Since H is a π_i -group, there exists a Hall π_i -subgroup A of R containing H. Then AN is a Hall π_i -subgroup of G. If A were a proper subgroup of R, there would exist a maximal subgroup M of R such that $H \leq A \leq M$. By (b), M is \mathfrak{F} -normal in R. So, L = MN is an \mathfrak{F} -normal maximal subgroup of G containing AN. Assume $|G:L| = q^a$, q a prime number, and let $j \in I$ such that $q \in \pi_j$. Since L is \mathfrak{F} -normal in G, we have that G/L_G is a π_i -group.

On the other hand, $i \neq j$ because |G:AN| is a π'_i -number. Therefore, R is contained in L_G and L = G, a contradiction.

Now, by (c), G is a π_i -group. Since \mathfrak{S}_{π_i} is contained in \mathfrak{F} , we have that G is an \mathfrak{F} -group, a contradiction. Therefore (3) is true.

By the choice of (H, K) and applying (3), it is rather easy to see that $K \leq N_G(H)$. Then, T = HK is a π_i -group by (2). This implies that G is a π_i -group, which provides the final contradiction.

(3.4) *Remark.* It becomes clear from our proof of the first part of the above theorem that the following statement holds:

If \mathfrak{F} is a subgroup-closed saturated formation of soluble groups, non-necessarily containing the class of all nillpotent groups, satisfying the condition (*), then there exists a family of pairwise disjoint sets of primes $\{\pi_i: i \in I\}$ such that \mathfrak{F} is locally defined by the integrated and full formation function f given by

$$f(p) = \mathfrak{S}_{\pi_i}, \quad \text{if} \quad p \in \pi_i, \, i \in l,$$

and

$$f(q) = \emptyset$$
, for each $q \notin U\{\pi_i : i \in l\}$.

Notice that in this case F has not full characteristic.

Next we see that indeed the hypothesis of $\mathfrak{N} \subseteq \mathfrak{F}$, where \mathfrak{N} is the class of all nilpotent groups, is unnecessary in the above theorem.

(3.5) THEOREM. Let \mathfrak{F} be a subgroup-closed saturated formation of soluble groups and let f be the full and integrated formation function defining \mathfrak{F} . Denote $\pi := \operatorname{char} \mathfrak{F}$. Then the set of all \mathfrak{F} -subnormal subgroups is a lattice for every soluble group if and only if f can be described in the following way:

"There exists a partition $\{\pi_i : i \in l\}$ of π such that $f(p) = \mathfrak{S}_{\pi_i}$, for every prime number $p \in \pi_i$ and for every $i \in l$, and $f(q) = \emptyset$, for every $q \notin \pi$."

Proof. If the set of all \mathfrak{F} -subnormal subgroups is a lattice for every soluble group, then \mathfrak{F} satisfies the condition (*) in Theorem 3.3. By the above remark f can be described in the mentioned way.

Conversely, let $\{\pi_i: i \in l\}$ be a partition of π and let \mathfrak{F} be the saturated formation of soluble groups locally defined by the integrated and full formation function f given by $f(p) = \mathfrak{S}_{\pi_i}$, for every prime number $p \in \pi_i$ and for every $i \in l$, and $f(q) = \emptyset$, for every $q \notin \pi$. We see that the set of all \mathfrak{F} -subnormal subgroups is a lattice for every soluble group.

Let \mathfrak{H} be the saturated formation of soluble groups locally defined by the formation function h given by h(p) = f(p), for every $p \in \pi$, and $h(q) = S_{\pi'}$, for each $q \notin \pi$.

It is clear that \mathfrak{H} is a subgroup-closed saturated formation of soluble groups containing the class of all nilpotent groups. Applying Theorem 3.3 the set of all \mathfrak{H} -subnormal subgroups is a lattice for every soluble group.

Now consider a soluble group G and two F-subnormal subgroups H and K of G. It is clear that H and K are S-subnormal subgroups of G. Therefore $T = \langle H, K \rangle$ is S-subnormal in G. That is, if T < G, there exists a chain $T = T_0 < T_1 < \cdots < T_n = G$ of subgroups of G such that T_i is S-normal maximal subgroup of T_{i+1} , for $0 \le i < n$. On the other hand, T has π -index in G. Therefore T_i has π -index in T_{i+1} , and then T_i is F-normal in T_{i+1} , for $0 \le i < n$. This means that T is F-subnormal in G.

Next we see that $H \cap K$ is \mathfrak{F} -subnormal in G by induction on |G|. We distinguish two cases:

(1) *H* is a maximal subgroup of *G*. Since G/H_G is a π -group, we have that $H \cap K$ has π -index in *K*. Therefore $H \cap K$ has π -index in *G* because *K* is \mathfrak{F} -subnormal in *G*. Arguing as above, taking into account that $H \cap K$ is \mathfrak{F} -subnormal in *G*, we conclude that $H \cap K$ is \mathfrak{F} -subnormal in *G*.

(2) The general case. If H < G, let M be an \mathfrak{F} -normal maximal subgroup of G such that $H \leq M$. Applying case (1), we have that $M \cap K$ is \mathfrak{F} -subnormal in G. By induction and Lemma 2.5, $H \cap K$ is \mathfrak{F} -subnormal in M. Therefore $H \cap K$ is \mathfrak{F} -subnormal in G.

Consequently, if H and K are \mathfrak{F} -subnormal subgroups of G then $H \cap K$ and $\langle H, K \rangle$ are \mathfrak{F} -subnormal subgroups of G, i.e., the set of all \mathfrak{F} -subnormal subgroups of G is a lattice.

4. Some Applications

Let $\{\pi_i: i \in l\}$ be a family of pairwise disjoint sets of primes and put $\pi = \bigcup \{\pi_i: i \in l\}$. In the sequel \mathfrak{F} denotes the saturated Fitting formation of soluble groups locally defined by the integrated and full formation function f given by: $f(p) = \mathfrak{S}_{\pi_i}$, if $p \in \pi_i$ and $i \in l$, and $f(q) = \emptyset$, if $q \notin \pi$. It is clear that $\pi = \operatorname{char} \mathfrak{F}$.

(4.1) THEOREM. If H and K are two \mathfrak{F} -subnormal \mathfrak{F} -subgroups of a soluble group G, then $\langle H, K \rangle \in \mathfrak{F}$. Consequently, if $G \in \mathfrak{S}_{\pi}$, the \mathfrak{F} -radical $G_{\mathfrak{F}}$ of G has the form

$$G_{\mathfrak{F}} = \langle X \in \mathfrak{F} / X \text{ is } \mathfrak{F}\text{-subnormal in } G \rangle.$$

Proof. The second statement is a mere consequence of the first one.

Assume that the first statement is not true and take G of minimal order among the groups X having two F-subnormal F-subgroups A and B such that $\langle A, B \rangle$ is not an F-group. Among the pairs (A, B) of F-subnormal F-subgroups of G such that $\langle A, B \rangle$ is not an F-group, we choose a pair (H, K) with |H| + |K| maximal.

Because of Lemma 2.5 and the choice of G, it must be $G = \langle H, K \rangle$. Since \mathfrak{F} is a Fitting class, and since H and K are \mathfrak{F} -groups, we may assume that $N_G(H) < G$. Take $x \in G \setminus N_G(H)$. If $\langle H, H^x \rangle < G$, then $\langle H, H^x \rangle \in \mathfrak{F}$ by the minimal choice of G and Lemma 2.5. Moreover Theorem (3.5) implies that $\langle H, H^x \rangle$ is \mathfrak{F} -subnormal in G. Consequently, since $H < \langle H, H^x \rangle$ and because of the choice of (H, K), it follows that $G = \langle H, H^x, K \rangle \in \mathfrak{F}$, a contradiction. Therefore, $\langle H, H^x \rangle = G$. In particular, we may also deduce that $N_G(H)$ is the unique maximal subgroup of G containing H. Since H is \mathfrak{F} -subnormal in G, $N_G(H)$ is \mathfrak{F} -normal in G and then $G^{\mathfrak{F}} \leq N_G(H)$.

Again from the choice of G, it is clear that G is in the boundary of the saturated formation \mathfrak{F} . Consequently G must be a primitive group and if N denotes the socle of G, we have that $N = G^{\mathfrak{F}}$.

Let p be the prime dividing the order of N and let $i \in l$ such that $p \in \pi_i$. (Note that G is a π -group because H is an \mathfrak{F} -subnormal \mathfrak{F} -subgroup of G.) Now, if $j \in l$ and $j \neq i$, we have that $O_{\pi_j}(H) \leq C_G(N) \leq N$. So $O_{\pi_j}(H) = 1$ and H is a π_i -group.

If we assume that G is not a π_i -group, then there exists a Hall π_i -subgroup A of G and a maximal subgroup L of G such that $H \leq A \leq L$. Suppose that |G:L| is a q-power, q a prime number, and let $j \in l$ such that $q \in \pi_j$. Since L is \mathfrak{F} -normal in G (note that $L = N_G(H)$), we have that G/L_G is a π_j -group and $j \neq i$ because |G:L| is a π_i -number. Therefore $A \leq L_G$ and $G = \langle H, H^x \rangle \leq L_G$, a contradiction. Consequently G is π_i -group, in particular G is an \mathfrak{F} -group, which provides the final contradiction.

Nothing can be said about the relation between the \mathfrak{F} -radical and the \mathfrak{F} -subnormal \mathfrak{F} -subgroups of an arbitrary soluble group. For instance, if $\mathfrak{F} = \mathfrak{S}_p$, one can find soluble groups G satisfying $1 = \langle X \in \mathfrak{F}/X$ is \mathfrak{F} -subnormal in $G \rangle < O_p(G) < G = O^p(G)$.

It is well known the Baer's characterization of the *p*-radical of a group, that is, a *p*-element x of a group G lies in $O_p(G)$ if, and only if, any two conjugates of x generate a *p*-subgroup of G. It is rather easy to derive from this result that a subgroup H of a group G is contained in F(G) if, and only if, $\langle H, H^g \rangle$ is a nilpotent group, for every $g \in G$. As a consequence of Theorem 4.1 we see once more that our \mathfrak{F} has an analogous behaviour to the class of nilpotent groups as the next theorem shows:

(4.2) THEOREM. For a subgroup H of a group $G \in \mathfrak{S}_{\pi}$, the following statements are equivalent:

- (i) *H* is contained in the \mathfrak{F} -radical $G_{\mathfrak{F}}$ of *G*;
- (ii) $\langle H, H^g \rangle$ is an \mathfrak{F} -group for every $g \in G$.

Proof. (i) implies (ii). If $H \leq G_{\mathfrak{F}}$, then $\langle H, H^g \rangle$ is contained in the \mathfrak{F} -group $G_{\mathfrak{F}}$ and so $\langle H, H^g \rangle$ is an \mathfrak{F} -group for every $g \in G$.

(ii) implies (i). Evidently H is \mathfrak{F} -subnormal in $\langle H, H^g \rangle$ for every $g \in G$, and arguing as in [2, Th. 1, (3) \rightarrow (1)] we deduce that H is \mathfrak{F} -subnormal in G. Since H is an \mathfrak{F} -group it follows that $H \leq G_{\mathfrak{F}}$ by Theorem 4.1.

(4.3) Remark. The above theorem does not hold for arbitrary subgroup-closed saturated Fitting formations of soluble groups. Take, for instance, $\mathfrak{F} = \mathfrak{N}^2$ the class of all groups with nilpotent length at most 2 and G = Sym(4). If H is a subgroup of G generated by a transposition, then $\langle H, H^g \rangle \in \mathfrak{F}$, for every $g \in G$, but H is not contained in Alt(4) = $G_{\mathfrak{N}^2}$.

F. P. Lockett has studied in [9] the \mathfrak{F} -injectors of soluble π -groups, when \mathfrak{F} is our Fitting formation and $\pi = \operatorname{char} \mathfrak{F}$. Exactly, he has obtained the following result:

(4.4) THEOREM [9, Th. 2.1.1]. If $G \in \mathfrak{S}_{\pi}$, then the \mathfrak{F} -injectors of G are exactly the subgroups $X_{i \in I} V_{\pi_i}$, where $V_{\pi_i} \in \operatorname{Hall}_{\pi_i}(C_G(O_{\pi'_i}(F(G))))$.

We ask ourselves whether the \mathfrak{F} -injectors obtained by Lockett have a good behaviour with respect to \mathfrak{F} -subnormal subgroups. The answer is given in the following theorem:

(4.5) THEOREM. If $G \in \mathfrak{S}_{\pi}$ and V is an \mathfrak{F} -injector of G and H is an \mathfrak{F} -subnormal subgroup of G, then $V \cap H$ is an \mathfrak{F} -injector of H.

Proof. Assume that the result is not true and let G be a counterexample of minimal order. Evidently we may suppose that H is an \mathfrak{F} -normal maximal subgroup of G. From Theorem 4.4 we know that $V = X_{i \in I} V_i$, where $V_i \in \operatorname{Hall}_{\pi_i}(C_G(O_{\pi'_i}(F(G))))$. Consequently, since $O_{\pi'_i}(F(G)) \leq X_{j \neq i} O_{\pi_j}(G)$ and since $O_{\pi_i}(G) \leq V_i$, we have $V_i \leq C_G(X_{j \neq i} O_{\pi_j}(G)) \leq C_G(O_{\pi'_i}(F(G)))$, that is, $V_i \in \operatorname{Hall}_{\pi_i}(C_G(X_{j \neq i} O_{\pi_j}(G))) = \operatorname{Hall}_{\pi_i}(C_G(O_{\pi'_i}(F(G))))$. Moreover there exists an $i \in I$ such that G/H_G is a π_i -group, because H is \mathfrak{F} -normal in G and so $O_{\pi_k}(G) = O_{\pi_k}(H) = O_{\pi_k}(H_G)$, for every $k \neq i$ and $V \cap H \in \operatorname{Hall}_{\pi_i}(C_H(x_{j \neq i} O_{\pi_i}(H)))$.

Since $O_{\pi_i}(H)$ centralizes $X_{j \neq i} O_{\pi_j}(G)$, there exists a Hall π_i -subgroup of $C_G(X_{j \neq i} O_{\pi_j}(G))$ containing $O_{\pi_i}(H)$, and now Theorem 4.4 implies that V_k centralizes $O_{\pi_i}(H)$ if $k \neq i$. Therefore we have that $V_k \leq C_H(X_{j \neq k} O_{\pi_j}(H))$ if $k \neq i$. Consequently, if $k \neq i$, $V_k \leq R_k \in \text{Hall}_{\pi_k}(C_H(X_{j \neq k} O_{\pi_j}(H)))$. We show that $R_k \leq C_G(X_{j \neq k} O_{\pi_j}(G))$, and so $V_k = R_k$. To see that this is so, we only need to prove that R_k centralizes $O_{\pi_i}(G)$. But from $R_k \leq H_G$, we deduce

that $[O_{\pi_i}(G), R_k] \leq H_G \cap O_{\pi_i}(G) \leq O_{\pi_i}(H)$ and hence $[O_{\pi_i}(G), R_k, R_k] = 1$. This implies that R_k is subnormal in $O_{\pi_i}(G)R_k$ and obviously $[O_{\pi_i}(G), R_k] = 1$.

On the other hand, we have that $V_i \cap H \leq C_H(X_{j \neq i} O_{\pi_j}(G)) = C_H(X_{j \neq i} O_{\pi_j}(H))$. Then, the result will be proved if we see that $V_i \cap H$ is here a Hall π_i -subgroup. Denote $C = C_G(X_{j \neq i} O_{\pi_j}(G))$ and let $V_i \cap H \leq R_i \in \text{Hall}_{\pi_i}(H \cap C)$. Take $g \in C$ such that $R_i = H \cap V_i^g$. If G = C, then $C = G = H_G V_i$. Now $H \cap V_i^g = H \cap V_i^h = (H \cap V_i)^h$ for some $h \in H$, and clearly $H \cap V_i = R_i$. Hence we may assume that C < G. Since $C \lhd G$, we have that $C = C_C(X_{j \neq i} O_{\pi_j}(C))$ and $V \cap C = V_i \times (X_{k \neq i} V_k \cap C)$ is an \mathfrak{F} -injector of C by minimality of G. Moreover it is easy to prove that $H \cap C$ is \mathfrak{F} -subnormal in C, because $C^{\mathfrak{F}} \leq G^{\mathfrak{F}} \cap C \leq H \cap C$. Therefore, because of the minimal choice of G, it follows that $V \cap H \cap C = (V_i \cap H) \times (X_{k \neq i} V_k \cap C)$ is an \mathfrak{F} -injector of $H \cap C$. In particular, $V_i \cap H \in \text{Hall}_{\pi_i}(C^*)$, where $C^* = C_{C \cap H}(X_{j \neq i} O_{\pi_j}(C \cap H))$. Analogously $V_i^g \cap H \in \text{Hall}_{\pi_i}(C^*)$, because $V_i^g \times (X_{k \neq i} V_k)$ is also and \mathfrak{F} -injector of G. Consequently $|V_i^g \cap H| = |V_i \cap H|$ and $R_i = V_i \cap H$.

References

- A. BALLESTER-BOLINCHES, δ-normalizers and local definitions of saturated formations of finite groups, Israel J. Math. 67, No. 3 (1989), 312–326.
- A. BALLESTER-BOLINCHES AND M. D. PÉREZ-RAMOS, F-subnormal closure, J. Algebra 138 (1991), 91–98.
- 3. R. W. CARTER AND T. O. HAWKES, The F-normalizers of a finite soluble group, J. Algebra 5 (1967), 175-202.
- K. DOERK, Zur Theorie der Formationen endlicher auflösbarer Gruppen, J. Algebra 13 (1969), 345–373.
- 5. K. DOERK AND M. D. PÉREZ-RAMOS, A criterion for F-subnormality, J. Algebra 120, No. 2 (1989), 416-421.
- A. D. FELDMAN, F-bases and subgroup embeddings in finite solvable groups, Arch. Math. 47 (1986), 481-492.
- 7. P. FÖRSTER, Finite groups all of whose subgroups are F-subnormal or F-subabnormal, J. Algebra 103 (1986), 285-293.
- 8. J. C. LENNOX AND S. E. STONEHEWER, "Subnormal Subgroups of Groups," Oxford Univ. Press, London, 1987.
- 9. F. P. LOCKETT, "On the Theory of Fitting Classes of Finite Soluble Groups," Ph.D. Thesis, University of Warwick, 1971.