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1. INTRODUCTION 

All groups considered are finite. 
It is well known that the set of all subnormal subgroups of a group G 

is a lattice. Now, assume that 5 is a subgroup-closed saturated formation 
containing the class of all nilpotent groups. It is known that the inter- 
section of two g-subnormal subgroups of a soluble group G is an 
S-subnormal subgroup of G (cf. [6, 5,2]). One might wonder if the set of 
all g-subnormal subgroups of a soluble group is a lattice. The answer is 
negative in general (see [2]), but there exist subgroup-closed saturated 
formations containing properly the class of all nilpotent groups for which 
the lattice property holds. 

In this paper, we obtain the exact description of the subgroup-closed 
saturated formations 5 of soluble groups such that the set of all 
g-subnormal subgroups is a lattice for every soluble group. 

2. PRELIMINARIES 

In this section we collect some definitions and notations as well as some 
known results. 
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First recall that if 5 is a saturated formation and G is a group, a maxi- 
mal subgroup A4 of G is said to be S-normal in G if the primitive group 
G/M, E 5, and B-abnormal otherwise (M, = n { Mg ( g E G} ). A subgroup 
H of a group G is called S-subnormal in G if either H = G or there exists 
a chain H=H,<H,-,< ... <H,=G such that Hi+, is a maximal 
g-normal subgroup of Hi, for every i = 0, . . . . n - 1. 

If M is a maximal subgroup of a group G such that M, = 1, we will say 
that M is a core-free maximal subgroup of G, and if X is a class of groups 
we denote char 3E = (pi P/C, E X}, where C, denotes the cyclic group of 
order p. Recall that the boundary b(X) of a class of groups X consists of 
all groups G satisfying G 6 3Z and G/N E X for all 1 # N u G. 

If rc is a set of prime numbers, let G and 6, denote the classes of soluble 
and soluble n-groups, respectively. ‘$2 denotes the class of all nilpotent 
groups. 

The following results will turn out to be crucial in the proof of our main 
result. 

(2.1) LEMMA [S, Theorem 1.3.111. Zf H is a subnormal subgroup of a 
finite group G, then Sot(G) normalizes H. 

(2.2) LEMMA [2]. Let G e !R& where 5 is a saturatedformation, and let 
E be an S-maximal subgroup of G satisfying G = EF(G). Then E is an 
B-normalizer of G. 

(2.3) LEMMA [3, 11. Let G be a group and let 3 be a saturatedforma- 
tion. If G5 is abelian, then G8 is complemented in G and any two com- 
plements in G of G5 are conjugate. The complements are the S-normalizers 
of G. 

(2.4) LEMMA [4, Hilfssatz 1.31. Let H be a group with a unique minimal 
normal subgroup M, where A4 is a q-group. If p is a prime distinct from q 
then H has a faithful irreducible representation over GF(p). 

(2.5) LEMMA [7, Lemma 1.11. Let 5 be a subgroup-closed saturated 
formation. Zf H is @subnormal in G and H < U < G, then H is S-subnormal 
in U. 

For details about formations the reader is referred to [4]. 

3. THE LATTICE OF ~-SUBNORMAL SUBGROUPS 

(3.1) LEMMA. Let G be a group and let H be an S-subnormal subgroup 
of G, where 5 is a subgroup-closed saturated formation. Then H5 is sub- 
normal in G. 
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Proof: We argue by induction on the order of G. Let N be a minimal 
normal subgroup of G. Then HN/N is @subnormal in G, so that HsN is 
subnormal in G. If HN is a proper subgroup of G, then H n is subnormal 
in HN by Lemma 2.5. Therefore H” is subnormal in G and the lemma is 
true. So we can assume G = HN for each minimal normal subgroup N of 
G. This implies that H is contained in a core-free S-normal maximal 
subgroup of G. But then G is an S-group and H n = 1 is subnormal in G. 

(3.2) LEMMA. Let C% = {rc;: ie I} be a partition of z, a set of prime num- 
bers, and let 5 be the saturated formation of soluble groups locally defined 
by the formation function f given by f(p) = G=,, if p E 71, and ig 1, and 
f(q) = 0, if q $7t. Then G is an B-group if and only if G is a soluble n-group 
with a normal Hall ni-subgroup, for every i E 1. 

Proof Assume that GE 3. We see that G has a normal Hall 
rci-subgroup for each i E 1 by induction on [Gl. Let N be a minimal normal 
subgroup of G and let p E rc, the prime divisor of ) Nj. If H is a Hall 
rci-subgroup of G, then Nd H and H/N is a Hall rci-subgroup of G/N. By 
induction we deduce that H is a normal subgroup of G. Now, let A be a 
Hall rcj-subgroup of G with j# i. Then A n N = 1 and since AN/N is a Hall 
nj-subgroup of G/N, we have that AN CI G. If AN < G, then A 4 AN and 
A a G. Therefore we can assume that G = AN and A is a maximal sub- 
group of G. Since GE 5, we have that G/A, E 6,, but then A = A, because 
AlA, E C,, that is, A is a normal subgroup of G. 

The converse is clear since the chief factors of a such group G are 
@central. 

(3.3) THEOREM. Let 3 be a subgroup-closed saturated formation of 
soluble groups containing ‘92, the class of all nilpotent groups, and let f be the 
full and integrated local formation function defining 5. Then 5 satisfies the 
following condition: 

(*) “If H, and H, are two @subnormal subgroups of GE G, then 
(H,, Hz) is an g-subnormal subgroup of G”, tf and only tf f can be 
described in the following way: “There exists a partition (zi}iSl of P, the set 
of all prime numbers, such that f (p) = 6,, for every prime number p E ni and 
for every i E I”. 

Proof Assume that the formation 5 = LF( f) as above satisfies (*). It is 
well known that f(p) is a subgroup-closed formation for every prime p (cf. 
[4, Hilfssatz 2.21). We split the first part of the proof into the following 
steps: 

(1) For each prime number p E P, every primitive group GE 
5 n (b(f(p)) is cyclic. 
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It is clear that G has a unique minimal normal subgroup N, and 
evidently N must be a q-group, where p #q E P. Therefore there exists an 
irreducible and faithful G-module V, over GF(p). We claim that G has a 
unique maximal subgroup M such that MG = 1, which provides the result. 

Assume that M1 and M, are maximal subgroups of G, M, # M2 and 
(Mi)G = 1, i = 1, 2. Then Mi Ed. Consider now the semidirect product 
H = [V,,] G, with respect to the action of G on VP. Clearly H# 5, so 
H8 = V,, and G is not B-subnormal in H. But for i = 1,2, VP Mi is 
g-normal maximal subgroup of H, and Mi is S-subnormal in V,M,, 
because 1/,M, E 6,f(p) = f(p) c 5, that is, Mi is G-subnormal in H. Since 
8 satisfies (*), we have that G = (M,, M2) is $j-subnormal in H, which is 
a contradiction. 

(2) If p and q are prime numbers and q E char(f(p)), then 
P E char(f(q))- 

Assume that C,$f(q) and consider an irreducible and faithful 
C,-module VP over GF(p). Then the semidirect product [ V,]C,, with 
respect to the action of C, on VP, belongs to gnb(f(q)), which 
contradicts (1). 

(3) If p and q are prime numbers and p E char(f(q)), then 
char(.f(p)) = char(.f(q)). 

If r E P and r E char(f(q))\char(f(p)), then r # q and C, Ef(r), because 
of (2). Consider now an irreducible and faithful C,-module I/, over GF(r). 
Then [ V,] C, E i-j n b(f(p)), a contradiction with (1). 

(4) If p, qE P and p Echar(f(q)), then GPcf(q). 

Since f(q) is subgroup-closed, and a p-group of order p” is iso- 
morphic with a subgroup of the n-fold iterated wreath product 
(...(C,-,,,C,)...)-,,, C, = H,, it is enough to prove that H, E f(q), 
VnEN. 

Denote inductively H, = C, and H,, = H,- I _ regC,,, for n 2 2, and 
assume inductively that H, _ 1 of. Since Z(H,) is cyclic, H, has a unique 
minimal normal subgroup, and consequently there exists an irreducible and 
faithful H,,-module P’, over GF(q). Consider the semidirect product 
G = [ V,] H,, with respect to the action of H, on V,. If (H,, ~, ) # denotes 
the base group of H,,, then H, = (H,- i) # C,. Since (H, ~ i) # and C, are 
f(q)-groups, we have that V,,(H,- i)# and VyCp are f(q)-groups. So 
(He I)* and C, are $j-subnormal in G. Consequently GE 5 and then 
H, Ef(q). 

(5) If P, q E P and P E charU(q)), then G,f(q) =f(q). 
Assume that G is a group of minimal order in G,f(q)Lf(q), Then G has 

a unique minimal normal subgroup N, G/NE f(q) and N is a p-group. If 
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G E 5, we may argue as in (1) to obtain that G has a unique maximal sub- 
group, that is, G is cyclic, and consequently Gef(q), a contradiction. 
Therefore G +! 3, in particular N g d(G), and so there exists a maximal 
subgroup R of G such that G = NR, R E f (q) and G” = N. Now R must be 
again a cyclic r-group, with p # r E P. Finally, from (3) and (4), we have 
that G E 6,6, s 6, f(p) = f (p) E 5, which is a contradiction. 

(6) If p E P and rr = char(f(p)), thenf(p) = 6,. 

Since f(p) is a subgroup-closed formation, it is clear that f(p) E 6,. 
On the other hand, if f(p) # 6,, choose a group G of minimal order in 

G.iJ(p), and consider a minimal normal q-subgroup N of G, q E rc. Then 
G/NEf(p), that is, GE G,f(p)=f(p), by (5), a contradiction. 

Conversely, let 6 = (71,: in I} be a partition of P, the set of all prime 
numbers, and let 3 be the saturated formation of soluble groups locally 
defined by the integrated and full formation function f given by f (p) = 6,, 
if p E rr,. We see that 5 verifies the condition (*). 

Suppose not and take G of minimal order among the groups X having 
two @subnormal subgroups A and B such that (A, B) is not 
g-subnormal in X. Then there exists two k-subnormal subgroups H and K 
of G such that T= (H, K) is not @subnormal in G. The group G should 
have the following properties: 

is a primitive group and T is a core-free maximal subgroup 
ofG.(l) G’ 

Take N a minimal normal subgroup of G. Since HN/N and KNIN are 
two B-subnormal subgroups of G/N, then TN/N= (HN/N, KNIN) is 
?j-subnormal in G/N by minimality of G. Moreover, if TN < G again T is 
@subnormal in TN. Therefore T would be @subnormal in G, a contradic- 
tion. So TN= G for every minimal normal subgroup N of G. But then T 
is a core-free maximal subgroup of G, and G is a primitive group. 

Suppose that p is the prime dividing the order of N = Sot(G). Let in I 
such that p E 7ti. 

(2) If L is an S-subnormal subgroup of G contained in T, then L is 
a x,-group. In particular, H and K are rcr,-groups. 

By Lemma 3.1, L5 is a subnormal subgroup of G and so Lemma 2.1 
implies that N < N,(L5). On the other hand N n L5 = 1, since L is con- 
tained in T. So L5 d C,(N) = N and L is an g-group. Let N, be a minimal 
L-invariant subgroup of N. If LN, were not an S-group, then No would be 
the s-residual of LN,, but this is impossible because L is s-subnormal in 
LNo. Therefore if Sot,(N) denotes the product of all minimal L-invariant 
subgroups of N, we have that L Sot,(N) is an @group. On the other hand, 
if LN were not an g-group there would exist an g-maximal subgroup F 
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of LN containing L Sot,(N). By Lemmas 2.2 and 2.3 we have that 
LN=F(LN)% and Fn(LN)“=l. But ~#(LN)“~SOC,(N)~F~(LN)~, 
a contradiction. Therefore LN must be an g-group. 

Now if j E I and i # j, we have that O,,(L) < C,(N) = N, SO O,,(L) = 1 
and L is a Xi-group, by Lemma 3.2. 

Among the pairs (A, B) of S-subnormal subgroups of G such that 
(A, B) is not g-subnormal in G, we take a pair (H, K) with (HI + \KK( 
maximal. Suppose llyl 6 (HI. Then: 

(3) (H, H’ ) is B-subnormal in G, for every x E G. 

Assume the result is not true. Then by the choice of (H, K), we have 
INI = IKI. Among the elements g of G such that (H, H”) is not 
&subnormal in G, take x E G with (H, H-‘) of minimal order. It is clear 
that G = (H, H”) N and R = (H, H”) is a core-free maximal subgroup of 
G. If G=(H,x), then G=R(H,x)~ and x=tr with tER and 
rE (H, x)“. On the other hand, G= (H, H”, x) = (H, H’, r). If (H, H’) 
is a proper subgroup of R, then (H, H’) is @subnormal in G by the 
choice of R, and since r E (H, H’, r ) a, we have r E ( H, H’ ) by [2]. There- 
fore x E R, a contradiction. Thus, R = (H, H’). Consequently, without loss 
of generality, we can assume that x E R. 

For this subgroup R we have: 

(a) R” < N,(H). 

Suppose that R3 is not contained in N,(H) and let z be an element of 
R%\NJH). Then H is a proper subgroup of (H, Hz) and there exists an 
‘$-normal maximal subgroup M of G such that (H, Hz) < M. Then 
(H, Hz) is @subnormal in A4 by the choice of G, so that (H, H’) is 
@subnormal in G and, by the choice of (H, K), we have that R = 
(H, H”, Hz) is an @subnormal subgroup of G, a contradiction. 

(b) Every maximal subgroup M of R containing H is g-normal in R. 

Let M be a maximal subgroup of R such that H < M. If M were not 
s-normal in R, M would be a supplement of Rs in R. Applying (a), the 
normal closure HR of H in R must be contained in M but this is impossible 
because HR = R. Thus M is g-normal in R. 

(c) R is a n,-group. 

Since H is a xi-group, there exists a Hall zi-subgroup A of R containing 
H. Then AN is a Hall zi-subgroup of G. If A were a proper subgroup of 
R, there would exist a maximal subgroup M of R such that H < A < M. By 
(b), M is B-normal in R. So, L = MN is an &-normal maximal subgroup 
of G containing AN. Assume 1G : L( = q”, q a prime number, and let jE I 
such that q E rrj. Since L is g-normal in G, we have that GIL, is a xi-group. 

481148.1-4 



48 BALLESTER-BOLINCHES, DOERK, AND PkREZ-RAMOS 

On the other hand, i#j because (G : ANI is a nj-number. Therefore, R is 
contained in L, and L = G, a contradiction. 

Now, by (c), G is a n,-group. Since 6, is contained in 5, we have that 
G is an g-group, a contradiction. Therefore (3) is true. 

By the choice of (H, K) and applying (3), it is rather easy to see that 
Kd N,(H). Then, T= HK is a rci-group by (2). This implies that G is a 
rci-group, which provides the final contradiction. 

(3.4) Remark. It becomes clear from our proof of the first part of the 
above theorem that the following statement holds: 

If 5 is a subgroup-closed saturated formation of 
soluble groups, non-necessarily containing the class of all 
nillpotent groups, satisfying the condition (*), then there 
exists a family of pairwise disjoint sets of primes {rci: iE I} 
such that 5 is locally defined by the integrated and full 
formation function f given by 

and 

f(P) = ~n,t if pEni, iEI, 

f(s) = a for each q+! U{7ci: ig I}. 

Notice that in this case 7j has not full characteristic. 
Next we see that indeed the hypothesis of % s 5, where % is the class of 

all nilpotent groups, is unnecessary in the above theorem. 

(3.5) THEOREM. Let iJ be a subgroup-closed saturated formation of 
soluble groups and let f be the full and integrated formation function defining 
3. Denote rr := char 5. Then the set of all g-subnormal subgroups is a lattice 
for every soluble group if and only iff can be described in the following way: 

“There exists a partition (rci: iE I) of n such that 
f(p) = G,, for every prime number p E zci and for every i E I, 
and f (q) = 121, for every q 4 71.” 

ProoJ: If the set of all g-subnormal subgroups is a lattice for every 
soluble group, then 5 satisfies the condition (*) in Theorem 3.3. By the 
above remark f can be described in the mentioned way. 

Conversely, let { rri: in I } be a partition of rc and let 5 be the saturated 
formation of soluble groups locally defined by the integrated and full 
formation function f given by f(p) = 6,, for every prime number PE ni 
and for every i E 1, and f(q) = a,, for every q 4 n.We see that the set of all 
$J-subnormal subgroups is a lattice for every soluble group. 
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Let !$ be the saturated formation of soluble groups locally defined by the 
formation function h given by h(p) =f(p), for every p E rc, and h(q) = S,,, 
for each q # 71. 

It is clear that sj is a subgroup-closed saturated formation of soluble 
groups containing the class of all nilpotent groups. Applying Theorem 3.3 
the set of all $-subnormal subgroups is a lattice for every soluble group. 

Now consider a soluble group G and two F$subnormal subgroups H and 
K of G. It is clear that H and K are $-subnormal subgroups of G. Therefore 
T= (H, K) is Jj-subnormal in G. That is, if T < G, there exists a chain 
T = TO < T, < . < T,, = G of subgroups of G such that T, is %-normal 
maximal subgroup of T,, , , for 0 d i < n. On the other hand, T has n-index 
in G. Therefore Ti has n-index in T, + i, and then T, is s-normal in Ti+ , , 
for 0 < i < n. This means that T is S-subnormal in G. 

Next we see that H n K is @subnormal in G by induction on IGl. We 
distinguish two cases: 

(1) H is a maximal subgroup of G. Since G/H, is a z-group, we have 
that H n K has z-index in K. Therefore H n K has n-index in G because K 
is S-subnormal in G. Arguing as above, taking into account that H n K is 
$j-subnormal in G, we conclude that H n K is g-subnormal in G. 

(2) The general case. If H < G, let M be an g-normal maximal sub- 
group of G such that H < M. Applying case (I), we have that Mn K is 
B-subnormal in G. By induction and Lemma 2.5, H n K is S-subnormal in 
M. Therefore H n K is S-subnormal in G. 

Consequently, if H and K are k-subnormal subgroups of G then H n K 
and (H, K) are @subnormal subgroups of G, i.e., the set of all 
S-subnormal subgroups of G is a lattice. 

4. SOME APPLICATIONS 

Let {rci: in I} be a family of pairwise disjoint sets of primes and put 
rc = lJ {rci: i E I}. In the sequel 5 denotes the saturated Fitting formation of 
soluble groups locally defined by the integrated and full formation function f 
given by: f(p) = 6,,, if p E x, and i E 1, and f(q) = @, if q $ rr. It is clear that 
7t = char 5. 

(4.1) THEOREM. If H and K are two &subnormal g-subgroups of a 
soluble group G, then (H, K) E 5. Consequently, tfG E 6,, the g-radical G, 
of G has the form 

G, = (X E s/X is &subnormal in G ). 
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ProoJ The second statement is a mere consequence of the first one. 
Assume that the first statement is not true and take G of minimal order 

among the groups X having two @subnormal S-subgroups A and B such 
that (A, B) is not an %-group. Among the pairs (A, B) of g-subnormal 
@subgroups of G such that (A, B) is not an S-group, we choose a pair 
(H, K) with JHI + IK) maximal. 

Because of Lemma 2.5 and the choice of G, it must be G = (H, K). Since 
ZJ is a Fitting class, and since H and K are g-groups, we may assume that 
N,(H) < G. Take x E G\N,(H). If (H, H”) < G, then (H, H-‘) E 5 by the 
minimal choice of G and Lemma 2.5. Moreover Theorem (3.5) implies that 
(H, H”) is &subnormal in G. Consequently, since H< (H, H-‘) and 
because of the choice of (H, K), it follows that G = (H, H”, K) E 5, a 
contradiction.Therefore, (H, H ‘) = G. In particular, we may also deduce 
that N,(H) is the unique maximal subgroup of G containing H. Since H 
is g-subnormal in G, N,(H) is S-normal in G and then GZ < N,(H). 

Again from the choice of G, it is clear that G is in the boundary of the 
saturated formation 3. Consequently G must be a primitive group and if 
N denotes the socle of G, we have that N= Ga. 

Let p be the prime dividing the order of N and let i E 1 such that p E n;. 
(Note that G is a rc-group because H is an g-subnormal g-subgroup of G.) 
Now, if jEf and j#i, we have that O,(H)dC,(N)<N. So O,,(H)= 1 
and H is a n,-group. 

If we assume that G is not a rri-group, then there exists a Hall 
rr,-subgroup A of G and a maximal subgroup L of G such that H < A 6 L. 
Suppose that IG : Ll is a q-power, q a prime number, and let jE 1 such that 
q E rcj. Since L is g-normal in G (note that L = N,(H)), we have that G/L, 
is a nj-group and j# i because [G : LI is a rci-number. Therefore A d L, 
and G= (H, H’) < L,, a contradiction. Consequently G is 7c,-group, in 
particular G is an g-group, which provides the final contradiction. 

Nothing can be said about the relation between the S-radical and the 
@subnormal g-subgroups of an arbitrary soluble group. For instance, 
if g=Gip, one can find soluble groups G satisfying 1 = (XE g/X is 
s-subnormal in G) < O,(G) < G = Op( G). 

It is well known the Baer’s characterization of the p-radical of a group, 
that is, a p-element x of a group G lies in O,(G) if, and only if, any two 
conjugates of x generate a p-subgroup of G. It is rather easy to derive from 
this result that a subgroup H of a group G is contained in F(G) if, and only 
if, (H, HR) is a nilpotent group, for every gg G. As a consequence of 
Theorem 4.1 we see once more that our 5 has an analogous behaviour to 
the class of nilpotent groups as the next theorem shows: 

(4.2) THEOREM. For a subgroup H of a group GE 6,, the following 
statements are equivalent: 
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(i) H is contained in the g-radical G, of G; 

(ii) (H, HR) is an g-group for every g E G. 

Proof. (i) implies (ii). If H< G,, then (H, Hg) is contained in the 
s-group G, and so (H, Hg) is an B-group for every g E G. 

(ii) implies (i). Evidently H is @subnormal in (H, Hg) for every 
go G, and arguing as in [2, Th. 1, (3) + (l)] we deduce that H is 
@subnormal in G. Since H is an S-group it follows that H d G, by 
Theorem 4.1. 

(4.3) Remark. The above theorem does not hold for arbitrary sub- 
group-closed saturated Fitting formations of soluble groups. Take, for 
instance, 5 = !R2 the class of all groups with nilpotent length at most 2 and 
G = Sym(4). If H is a subgroup of G generated by a transposition, then 
(H, HY) E 5, for every g E G, but H is not contained in Alt(4) = G+. 

F. P. Lockett has studied in [9] the g-injectors of soluble rc-groups, 
when 5 is our Fitting formation and 7~ = char 5. Exactly, he has obtained 
the following result: 

(4.4) THEOREM [9, Th. 2.1.11. If GE 6,, then the @injectors of G are 
exactly the subgroups Xi,,VZi, where VX, E Hall,,(C,(O,;(F(G)))). 

We ask ourselves whether the @injectors obtained by Lockett have a 
good behaviour with respect to g-subnormal subgroups. The answer is 
given in the following theorem: 

(4.5) THEOREM. If GE 6, and V is an g-injector of G and H is an 
S-subnormal subgroup of G, then V n H is an @injector of H, 

Proof. Assume that the result is not true and let G be a counterexample 
of minimal order. Evidently we may suppose that His an B-normal maximal 
subgroup of G. From Theorem 4.4 we know that V = XIE,Vi, where 
Vi E Hall,,(C,(O,;(F(G)))). Consequently, since O,;(F(G)) < X,+,0,(G) 
and since O,(G) d V,, we have Vi < C,(Xj,iO,(G)) < C,(O,;(F(G))), 
that is, V, E Hall,,(C,(X,, ;O,(G))) = Hall,,(C,(O,;(F(G)))). Moreover 
there exists an i E 1 such that G/H, is a n,-group, because H is B-normal 
in G and so O,,(G)=O,,(H)=O,,(H,), for every k#i and V~HE 
Hall,,(C,(xj,,O,(H))). 

Since 0,J H) centralizes X,, iO,(G), there exists a Hall n,-subgroup of 
C&X, + iO,(G)) containing O,,(H), and now Theorem 4.4 implies that V, 
centralizes O,(H) if k # i. Therefore we have that Vk < C,(X,,,O,(H)) if 
k # i. Consequently, if k # i, v/k < R, E Hall,,( C,(X, + k 0, (H))). We show 
that R,d CG(J’,,kOT,(G)), and so V, = R,. To see that this is so, we only 
need to prove that Rk centralizes O,(G). But from R, < H,, we deduce 
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that [O,(G), R,]<H,nO,(G)dO,(H)andhence [O,(G), R,, R,]=l. 
This implies that Rk is subnormal in O,,(G)R, and obviously 
CO,(G), &I = 1. 

On the other hand, we have that V, n H < C,(Xj,jO,,(G)) = 
C,(Xj,iO,,(H)). Then, the result will be proved if we see that I’, n H is 
here a Hall rc;-subgroup. Denote C = C,(Xi,iO,(G)) and let V, n H 6 
Rj~Hall,,(HnC). Take gEC such that Rj=Hn Vy. If G=C, then 
C = G = H, V,. Now Hn Vf = H n V(’ = (Hn Vj)h for some h E H, and 
clearly H n Vi = R,. Hence we may assume that C< G. Since C 4 G, we 
have that C=C,(X,+,O,(C)) and VnC=Vix(Xk+iVknC) is an 
S-injector of C by minimality of G. Moreover it is easy to prove that 
H n C is g-subnormal in C, because Ca < G3 n C < Hn C. Therefore, 
because of the minimal choice of G, it follows that Vn Hn C = 
(Vi n H) x (Xk+, V, n C) is an g-injector of H n C. In particular, Vi n HE 
Hall, (C*), where C* = Cc, H (X,,,O,,(Cn H)). Analogously Vfn HE 
Hall,,( C*), because Vf x (X, + i k V ) is also and @injector of G. Conse- 
quently jV~nHj=jVjnH] and Ri=V,nH. 
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