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Peroxisome proliferator-activated receptor a (PPARa) is a

member of the ligand-activated nuclear receptor superfamily,

and plays an important role in lipid metabolism and glucose

homeostasis. The purpose of this study is to determine

whether the activation of PPARa by fenofbrate would

improve diabetes and its renal complications in type II

diabetes mellitus. Male C57 BLKS db/db mice and db/m

controls at 8 weeks of age were divided to receive either a

regular diet chow (db/db, n¼ 8; db/m, n¼ 6) or a diet

containing fenofibrate (db/db, n¼ 8; db/m, n¼ 7). Mice were

followed for 8 weeks. Fenofibrate treatment dramatically

reduced fasting blood glucose (Po0.001) and HbA1c levels

(Po0.001), and was associated with decreased food intake

(Po0.01) and slightly reduced body weight. Fenofibrate also

ameliorated insulin resistance (Po0.001) and reduced plasma

insulin levels (Po0.05) in db/db mice. Hypertrophy of

pancreatic islets was decreased and insulin content markedly

increased (Po0.05) in fenofibrate-treated diabetic animals. In

addition, fenofibrate treatment significantly reduced urinary

albumin excretion (Po0.001). This was accompanied by

dramatically reduced glomerular hypertrophy and mesangial

matrix expansion. Furthermore, the addition of fenofibrate to

cultured mesangial cells, which possess functional active

PPARa, decreased type I collagen production. Taken together,

the PPARa agonist fenofibrate dramatically improves

hyperglycemia, insulin resistance, albuminuria, and

glomerular lesions in db/db mice. The activation of PPARa by

fenofibrate in mesangial cells may partially contribute to its

renal protection. Thus, fenofibrate may serve as a therapeutic

agent for type II diabetes and diabetic nephropathy.
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The worldwide prevalence of type II diabetes is rapidly
increasing, and diabetic nephropathy is projected to become
most common cause of end-stage renal disease and cardio-
vascular events in the industrialized world. Insulin resistance is
a central and pathogenic feature of type II diabetes1–3

contributing to the development of obesity, dyslipidemia,
hypertension, and cardiovascular disease.4 Hyperglycemia has
also recently been demonstrated to be a principal causative
factor in the development of micro- and macrovascular
complications in diabetic patients.5,6 Furthermore, dyslipide-
mia associated with increased plasma triglycerides and
decreased plasma high-density lipoprotein cholesterol together
with hypertension represent two additional important risk
factors associated with cardiorenal complications.

Peroxisome proliferator-activated receptor a (PPARa) is a
member of the nuclear hormone receptor superfamily of fatty
acid activated transcription factors.7,8 PPARa binds to a specific
peroxisome proliferators response element (PPRE) in the
promoter element of target genes, forming a heterodimer with
the 9-cis-retinoic acid receptor RXRa. PPARa target genes
include several key enzymes actively involved in lipid metabo-
lism. PPARa is particularly abundant in tissues exhibiting high
levels of energy metabolism, including the brown fat tissue, liver,
kidney and heart, and to a lesser extent in skeletal muscle.9,10

Although its role in lipid metabolism is most firmly established,
it has recently been found that PPARa may also play an
important role in enhancing insulin action.11,12 These findings
suggest that PPARa ligands might provide novel therapeutic
agents for the treatment of type II diabetes.

Here we report the effect of fenofibrate, a specific PPARa
ligand, on hyperglycemia, insulin resistance, and diabetic
nephropathy in type II diabetic db/db mice. We report that
PPARa activation by fenofibrate improves insulin sensitivity,
glucose control, and diabetic nephropathy associated with
decreased urine albumin excretion and attenuated glomerular
mesangial matrix accumulation.

RESULTS
Food intake and body weight

Compared to untreated db/db mice, daily food consumption
in fenofibrate-treated db/db mice was initially not different,
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but subsequently significantly decreased after 4 weeks of
treatment (Po0.05, Table 1). After 2 months of treatment
with fenofibrate, the body weight of db/db mice was slightly
reduced compared with that of control db/db mice (Po0.05)
(Figure 1a).

Glucose, HbA1c, insulin, and Homeostasis model assessment
(HOMAIR) index

Fenofibrate treatment dramatically improved glycemic con-
trol in db/db mice so that both blood sugar and HbA1c levels
were reduced to levels similar to that seen in db/m mice
(Figure 1b and c). Compared to untreated db/db mice, serum
insulin levels in db/db mice receiving fenofibrate treatment
were significantly reduced after 8 weeks’ fenofibrate treat-
ment (2.671.2 vs 4.570.9 ng/ml, Po0.05) (Figure 1d).
Surprisingly, we noticed a late increase in serum insulin levels
in untreated db/m mice at 16 weeks of age that was also
blocked by fenofibrate treatment (Figure 1d). Similarly, db/db
mice receiving fenofibrate treatment exhibited improved
insulin sensitivity reflected by significantly lower HOMAIR

indexes compared to that in untreated db/db animals
(2.271.3 vs 16.673.9, Po0.001). Decreased HOMAIR

indexes were also observed at the end of study in db/m mice
treated with fenofibrate (data not shown).

Pancreatic histology

Untreated db/db mice exhibited marked hyperplasia and
hypertrophy (Figure 2a). In contrast, fenofibrate-treated db/
db mice showed dramatically reduced islet size to values
within the range of that in db/m mice (Po0.01) (Figure 2b).
Immunostaining study further demonstrated that insulin
content as reflected by insulin-positive area per islet was
significantly increased in pancreatic islets in db/db mice

treated with fenofibrate treatment compared to untreated
mice (Po0.05) (Figure 2c). No change in islet size and
insulin immunoreactivity was found in fenofibrate treated
db/m mice.

Serum lipid levels

Serum triglyceride levels appeared to be lower in db/db mice,
but slightly increased in db/m mice following 8 weeks’
treatment (Table 1). In contrast, serum total cholesterol levels
increased in both db/db and db/m mice after 2 months
treatment with fenofibrate (Po0.05). The lipoprotein profile
showed that the major cholesterol subfraction affected by
fenofibrate was comprised of increased high-density lipo-
protein-cholesterol with little change in very low-density
lipoprotein- or low-density lipoprotein-cholesterol levels in
db/db mice (Table 1).

Blood chemistry

Blood Naþ , Kþ , Cl�, hematocrit, and creatinine levels
showed no significant difference among the groups. Com-
pared to untreated db/db mice, fenofibrate-treated db/db mice
exhibited a slight increased in blood urea nitrogen (BUN)
(Po0.05) (Table 2). The anion gap in treated db/db mice was
significantly higher than that in untreated db/db mice
(13.471.8 vs 10.672.1, Po0.02), suggesting ketosis could
contribute to unmeasured anions in treated db/db mice.

Organ weight

Fenofibrate treatment of db/db or db/m mice did not affect
kidney weight (Table 3). In contrast, fenofibrate treatment
induced dramatic hepatomegaly and reduced epididymal
adipose tissue mass in both db/db and db/m mice. These

Table 1 | Effects of fenofibrate on body weight, food intake,
and lipid profiles in nondiabetic db/m and diabetic db/db
mice

db/db db/db-Feno db/m db/m-Feno

Body weight (g)
Baseline 42.571.4 41.971.7 24.571.8 25.772.4
Final 53.473.7 47.074.0* 26.871.4 24.573.9

Food intake (g)
Baseline 4.570.7 5.270.8 0.870.2 1.070.3
Final 4.170.8 2.270.6** 1.170.3 0.770.3

Lipid profiles TC (mg/dl)
Baseline 177.1719.5 173.3713.8 111.9732.9 120.2732.0
Final 159.0715.9 273.2735.6* 101.979.4 209.5721.9#

VLDL 12.572.7 13.373.6 ND ND
LDL 13.173.0 10.373.0 ND ND
HDL 140.4712.4 189.6710.1* ND ND

TG (mg/dl)
Baseline 154.3716.3 165.7716.7 94.3724.8 109.4721.4
Final 153.2726.1 156.1746.7 99.477.9 117.9725.4#

HDL, high-density lipoprotein; LDL, low-density lipoprotein; TC, total cholesterol; TG,
triglyceride; VLDL, very low-density lipoprotein; ND, not done. *Po0.05, **Po0.01 vs
db/db mice and #Po0.05 vs db/m mice.
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Figure 1 | Changes in (a) body weight, (b) fasting blood glucose,
(c) HbA1c, and (d) plasma insulin concentrations in nondiabetic
db/m and diabetic db/db mice treated without or with feno-
fibrate for 2 months starting at age of 8 weeks. Overnight fasting
blood glucose, HbA1c, plasma insulin levels, and body weight were
determined as described in ‘Materials and Methods’. *Po0.05 and
**Po0.001 vs db/db mice, #Po0.05 vs db/m mice.
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changes were more prominent in db/db mice. Fenofibrate also
increased cardiac weight in both db/db and db/m mice
(Po0.05).

Urine volume and albuminuria

Untreated db/db mice consumed more water (data not
shown) and exhibited greater urine volume than control db/
m mice (Figure 3a). Following fenofibrate treatment for 2
weeks, water intake (data not shown) and urine output
rapidly decreased to levels seen in db/m mice (Po0.001,
Figure 3a). Untreated db/db mice exhibited a persistent
increase in urine albumin excretion. However, after treatment
with fenofibrate for 2 weeks, urine albumin excretion
decreased to levels comparable to that in db/m mice.
Albuminuria in db/db mice was persistently reduced
throughout the treatment period (Po0.01, Figure 3b).
Fenofibrate treatment in db/m mice did not exhibit any
change in water intake (data not shown), urine output
(Figure 3a), or albuminuria (Figure 3b).

Renal histological examination

Marked glomerular mesangial expansion in db/db mice was
improved by fenofibrate treatment (Figure 4a and b).
Glomerulometric determinations further showed signifi-

cantly decreased glomerular surface area in fenofibrate-
treated db/db mice (P¼ 0.03) as well as a tendency for
reduced mesangial area (P¼ 0.07, Figure 4b).

Expression of PPARa in freshly isolated glomeruli and
cultured mesangial cells

PPARa mRNA was detected in freshly isolated glomeruli,
cultured MCT (a murine renal proximal tubule cell line) cells,
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Figure 2 | Pancreatic islets in diabetic db/db mice treated with fenofibrate. (a) Insulin immunoreactivity in pancreatic islets in db/db and db/
m mice treated with or without fenofibrate (Original magnification: � 200). More insulin positive cells were found in fenofibrate treated db/db
mice. (b) Quantitative analysis showing that marked improvement of pancreatic islet hypertrophy in db/db mice receiving fenofibrate treatment
compared to untreated db/db animals. (c) Quantitative comparison of insulin immunoreactivity (% insulin staining-positive area per islet) in
pancreatic islets between control db/db mice and fenofibrate-treated db/db mice. **Po0.001, #Po0.05, vs control db/db mice; n¼ 5
(fenofibrate-treated db/db mice) and n¼ 6 (untreated control db/db mice).

Table 2 | Influences of fenofibrate on blood chemistry in
nondiabetic db/m and diabetic db/db mice

db/db db/db-feno db/m db/m-feno

BUN (mg/dl) 21.674.2 27.374.3* 25.674.6 30.075.0
Creatinine (mg/ml) 1.0870.21 0.8670.13 1.0870.11 1.3070.10
Anion gap 10.672.1 13.471.8* ND ND
Hematocrit (%) 49.072.3 48.172.2 45.272.7 47.073.2

*Po0.05 vs db/db group.

Table 3 | Kidney, liver, heart, and epididymal fat tissue weight
(per 100 g body weight) in nondiabetic db/m and diabetic db/
db mice treated without or with fenofibrate

db/db db/db-feno db/m db/m-feno

Kidney 0.4870.04 0.4970.10 0.5470.09 0.5370.08
Liver 5.1970.16 10.6970.81** 4.5770.21 12.972.34##

Heart 0.2870.05 0.3570.08* 0.5070.04** 0.5470.09#

Epididymal 5.4870.40 4.8370.40* 0.6970.16** 0.5670.28#

*Po0.05 and **Po0.001 vs db/db mice; #Po0.05 and ##Po0.001 vs db/m mice.
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Figure 3 | Fenofibrate decreases (a) urine volume and (b) urine
albumin excretion in diabetic db/db mice. db/db and db/m mice
were treated with or without fenofibrate (Feno) for 2 months. Urine
volume was collected and measured using the metabolic cages every
2 weeks. Urinary albumin excretion was analyzed using the method
described in ‘Materials and Methods’. *Po0.01 and **Po0.001 vs. db/
db mice.
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as well as mesangial cells from db/db mice, as assessed by
reverse transcriptase-polymerase chain reaction (Figure 5a
and b). PPARa mRNA levels were increased by 1.4-fold in
the kidneys of db/db mice compared to db/m mice (Po0.05,
n¼ 3), as assessed by real-time polymerase chain re-
action analysis. PPARa protein expression was also evident
by Western blot in two db/db mice mesangial cell lines
(Figure 5c).

Functional PPARa activity and inhibitory effect of fenofibrate
on high glucose-induced type I collagen production in
cultured mesangial cells

PPRE3X luciferase reporter analysis demonstrated that the
fenofibrate significantly increased luciferase activity in db/db
mouse mesangial cells (Figure 6a). Cells cultured under high
glucose exhibited more type I collagen production than in
cells cultured with normal glucose. Treatment with feno-
fibrate (10 mM) significantly suppressed collagen I production
stimulated by high glucose (Figure 6b).

DISCUSSION

The present studies demonstrate that the PPARa agonist
fenofibrate improves insulin resistance, glucose control, and
adiposity in a mouse model of type II diabetic db/db mice.
Fenofibrate treatment also reduces 24-h urinary albumin
excretion and improves renal histopathologic changes,
including reduced glomerular hypertrophy and mesangial
matrix expansion in db/db mice. These beneficial renal effects
of fenofibrate appear to be associated both with its insulin-
sensitizing effect as well as a direct action on cultured
glomerular mesangial cells. These findings suggest that
PPARa may represent a potential therapeutic target in
treating type II diabetes and its renal complications.

Accumulating evidence suggests that PPARa activators
may improve insulin resistance in type 2 diabetic animals12

and patients with the insulin resistance syndrome.13

Multiple mechanisms have been postulated regarding the
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and inhibitory effect of PPARa activation on high glucose-
induced type I collagen production. (a) PPRE3X luciferase reporter
assay showing fenofibrate treatment significantly increased luciferase
activity in cultured db/db mouse mesangial cells with or without
PPARa overexpression. Data were presented as mean7s.d., *Po0.05
vs control; **Po0.001 vs control, n¼ 8; (b) activation of PPARa
suppresses high-glucose-mediated type I collagen expression.
Treatment of primarily cultured db/db mouse mesangial cells for 3
days with high-glucose (30 mM) significantly increased type I collagen
production as assessed by enzyme linked immunosorbent assay.
Fenofibrate, a PPARa agonist, suppressed the high-glucose-mediated
increase in type I collagen protein production. *Po0.05 vs cells
cultured with normal glucose (5 mM); #Po0.01 vs cells treated with
high-glucose. Values are means7s.d. (n ¼ 6) in a single experiment
representative of two independent experiments.
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hypoglycemic and insulin-sensitizing effect of PPARa
agonists. PPARa activators have been found to increase
hepatic fatty acid catabolism, resulting in decreased systemic
and tissue free fatty acid content.14 Fibrates have also
been reported to reduce the triglyceride content in
skeletal muscle, which has been correlated with improved
insulin sensitivity.12,15 Finally, PPARa activation suppresses
monocyte production of inflammatory cytokines including
interleukin-6 and TNF-a, thereby improving insulin
resistance.16–18 A recent report by Koh et al.12 showed
that fenofibrate treatment prevents the development of
diabetes in OLETF rats by reducing adiposity, improving
peripheral insulin action, and exerting beneficial effects
on pancreatic b-cells. Here we report that activation of
PPARa by fenofibrate also improved glycemic control
in db/db mice by attenuating insulin resistance, reducing
pancreatic islet hypertrophy, enhancing islet insulin expres-
sion, and increasing high-density lipoprotein-cholesterol.
Taken together, these studies are consistent with the
possibility that PPARa activators may provide a novel
therapeutic approach for treating insulin resistance and type
II diabetes.

The db/db mouse is characterized by a G-to-T point
mutation of the leptin receptor gene, leading to abnormal
receptor splicing and defective signaling of leptin.19,20 The
present studies provide confirmation that the PPARa agonist
fenofibrate decreases food intake by a mechanism indepen-
dent of leptin action. This finding is in sharp contrast to
thiazolidinedione PPARg activators, which increase body
weight and adipose tissue mass.21–23 The mechanisms by
which fenofibrate decreases body weight in db/db mice
remain unclear. In addition to reduced food intake,
hypercatabolism induced by fenofibrate may also play a
role.12,24 This is supported by the observation that the BUN
levels, BUN/creatinine ratio, and the anion gap were greater
in db/db mice receiving fenofibrate than in control db/db
mice. In present studies, it is also unexpected to notice that
there was only slight improvement in plasma triglyceride
levels in db/db mice receiving 2-month fenofibrate treatment.
A previous study reports that fenofibrate slightly but
significantly lowers serum triglyceride in db/db mice treated
for 14 days.25 The difference in findings might be a function
of different durations, dosages, and genetic backgrounds
studied.

Treatment of rodents with peroxisome proliferators
including fibrate can cause liver enlargement via PPARa
activation. In the present study, we also observed the
hepatomegly as well as cardiomegaly in db/m and db/db
mice receiving fenofibrate treatment. However, histological
examination excluded the contribution of steatosis and
fibrosis. In fact, fibrate treatment has been reported to be
effective in preventing myocardial fibrosis, steatosis, and
hepatic fibrosis in several rodent models.26–28 Most impor-
tantly, the hepato-proliferative effect of fibrate does not
appear to occur in humans, possibly due to species difference
and low PPARa activity.29

In present studies, within 2 weeks of fenofibrate treatment,
urinary albumin excretion was significantly reduced in
diabetic mice and remained low throughout the 2-month
period of fenofibrate treatment. The early beneficial effect
may also reflect renal hemodynamic changes rather than
being directly attributed to renal histological improvement,
since fenofibrate has been shown to be able to modulate
nitric oxide and eicosanoid production.30–32 In contrast, the
long-term improvement may be associated with improved
renal structural features, as supported by the findings that
fenofibrate-treated db/db mice exhibited decreased glomeru-
lar volume and attenuated matrix deposition. Although a
profound reduction in albuminuria and a modest improve-
ment in renal histology were evident after 2 months of
treatment, studies of longer duration may be able to
demonstrate more profound renal protection by fenofibrate.

At present the mechanisms by which PPARa agonists
improve diabetic nephropathy remain unclear. Both indirect
metabolic effects and direct renal effect seem likely. Improved
glucose control and reduced hyperinsulinemia associated
with fenofibrate treatment may contribute to reduced
albuminuria and improved renal glomerular lesions in db/
db mice.33,34 In addition, direct renal actions appear to be
involved in beneficial renal effect of fenofibrate in diabetic
nephropathy. This possibility is supported by the fact that
PPARa activator fenofibrate suppressed exaggerated type I
collagen production in high-glucose treated mesangial cells.
Therefore, direct renal action may also play an important role
in mediating renoprotective effect of fenofibrate in diabetic
nephropathy.

In summary, the present studies show the PPARa agonist
fenofibrate markedly improves hyperglycemia and insulin
resistance in db/db mice without inducing weight gain or
adiposity. Treatment with fenofibrate also results in marked
renoprotective effect in these animals. Our studies suggest
that PPARa could serve as an important therapeutic target
for treating type II diabetes and diabetic nephropathy as well.

MATERIALS AND METHODS
Animals
Six-week-old male C57BLKS/J db/db and db/m mice were purchased
from Jackson Labs and housed under a standard condition.
Fenofibrate (0.2%, w/w, Sigma, St Louis, MO, USA) was mixed
into the standard chow diet, and provided to db/db mice (n¼ 8) and
age- and gender-matched db/m mice (n¼ 7) for 2 months starting at
age of 8 weeks. Control db/db mice (n¼ 8) and control db/m mice
(n¼ 6) received normal mouse chow for 8 weeks. In total,
250–300 mg/kg/day of fenofibrate were administered in treated db/
db and db/m group.

Measurement of serum parameters
Blood was collected following an overnight fast. Blood glucose and
HbA1c levels were measured using HemoCue B-Glucose kit
(HemoCue AB, Angelholm, Sweden) and DCA 2000þ HbA1c kit
(Bayer, Elkhart, IN, USA), respectively. Plasma insulin levels were
measured using radioimmunoassay kit (Linco Reasearch, St Charles,
MO, USA). Blood BUN and hematocrit and serum creatinine were
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measured using iStat-Kit (HESKA, Fort Collins, MO, USA) and
HPLC, respectively.35 Serum lipid profile was measured using GPO-
Trinder kit (Sigma, St Louis, MO, USA) and FPLC. HOMAIR index
was calculated as follows: Fasting glucose (mmol/l)� fasting insulin
(mU/l)/22.5.

Measurements of urinary parameters
A 24-h urine collection was obtained using metabolic cages. Urine
albumin and creatinine concentrations were measured by an
immunoassay and the Jaffe alkaline picrate reaction (DCA
2000þAnalyzer, Bayer, Elkhart, IN, USA).

Light microscopy and immunostaining
Kidney and pancreas samples were fixed in 4% formaldehyde.
Histology was assessed following HE or PAS staining. Pancreatic
samples were also stained with insulin antibody (1:100, Zymed). The
surface area of staining of islet was quantified using morphometric
software.36 To examine the effect of fenofibrate on glomerular
volume and matrix area, glomerulometry analysis was utilized using
PAS-stained kidney sections as previously reported.37

Cell culture
Murine mesangial cells from a db/db mouse were cultured with some
modifications as previously reported38 and characterized by positive
staining for a-smooth muscle actin and negative staining for vWF
and cytokeratin.

Reverse transcriptase-polymerase chain reaction
Total RNA was extracted from glomeruli of male db/db and db/m
mice, mesangial cells isolated from wild-type and PPARa null mice
and MCT cells, a mouse proximal tubule cell line39 using Tri Reagent
(MRC, Cincinnati, OH, USA). Expression of PPARa was determined
by reverse transcriptase-polymerase chain reaction using a specific
set of primers: 50-CGT TCC AGC CCT TCC TCA GTC AGC-30

(sense) and 50-GAC ATC CCG ACA GAC AGG CAC TTG-30

(antisense). In addition, real-time polymerase chain reaction was
utilized to assess the mRNA levels of PPARa mRNA in male db/m
and db/db mice (8-week-old, n¼ 3).

Western blots
Samples containing equal amounts of protein (100mg) were resolved
by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, trans-
ferred onto nitrocellulose membranes, and incubated with a rabbit
anti-PPARa antibody (Santa Cruz). The specificity of the antibody
used was further confirmed by an immunoprecipitation study using
an additional polyclonal antibody from Sigma (Cat# P0869).

Transient transfections and peroxisome proliferators
response element-luciferase reporter assays
Mesangial cells were transfected with PPREx3 TK-Luc38,40 (Qiagen
Inc., Valencia, CA, USA). After incubation for 24 h, the transfection
mixture was replaced with complete media containing either vehicle
or fenofibrate (10mM). After 24 h, cells were harvested in 1�
luciferase lysis buffer (Dual Luciferase Kit, Promega) and relative
light units were determined using a luminometer (Mono light 2010,
Analytical Luminescence Laboratory, San Diego, CA, USA).

Type I collagen enzyme linked immunosorbent assay
Mesangial cells (2� 104) were seeded in each well of a 24-well plate.
After washing cells three times with 1� phosphate-buffered saline,

normal (5 mM) or high glucose (30 mM) medium containing 0.1%
fetal bovine serum was added to the cells in the presence or absence
of 10 mm fenofibrate for 72 h. Media and cell lysate were collected for
determination of type I collagen production by enzyme linked
immunosorbent assay as previously described.38 Final values were
normalized for cell numbers.

Statistical analysis
The data expressed as means7s.d. Significance of difference
between two groups was evaluated using Student’s t-test. For
multiple comparisons, one-way analysis of variance was used to
evaluate differences among groups. A P-value of o0.05 was
considered statistically significant.
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