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a  b  s  t  r  a  c  t

This  study  aimed  to characterize  nanocellulose  extracted  from  cotton  (Gossypium  hirsutum)  linters.
The  nanocellulose  was  subjected  to  electronic  microscopy,  thermal  analysis,  X-ray  diffractometry,  light
scattering,  and  contact  angle.  The  properties  of  the  nanocellulose  are  considerably  different  from  the
linter.  The  acidic  hydrolyses  applied  to  extract  the  nanocrystals  increased  the  crystallinity  index  and  the
hydrophilicity  and  decreased  the  thermal  stability.  On  average,  the  nanocrystals  were  177  nm  long and
12  nm  wide,  with  an aspect  ratio of  19  when  measured  by  microscopy.  The  light  scattering  results  were
eywords:
ossypium hirsutum
anowhisker
o-product
groindustrial waste
ight  scattering diffraction

coherent  with  the  crystal  dimensions.  Cotton  linter  is a  potential  source  of  nanocellulose  crystals,  par-
ticularly  to  be  used  in the  production  of  hydrophilic  nanocomposites.  Extraction  of nanocellulose  from
raw  cotton  linter  does  not  require  pulping.

© 2012 Elsevier Ltd. Open access under the Elsevier OA license.
ignocellulosic  characterization

. Introduction

Linter is an important by product of the textile industry. Cotton
inter is the short fiber that cannot be used in the textile process.

hen the regular cotton fibers are extracted in the ginning pro-
ess, the linter remains attached to the seed coat. The fuzzy seed
eeds to be subjected to an additional process that will mechani-
ally remove the linter. The amount of linter produced worldwide
s around 2.5 million metric tons, considering the 42 million met-
ic tons of cotton lint produced in 2010 (FAOSTAT, 2012; Sczostak,
009). Traditional products made from linter are: absorbent cot-
on, special papers, cellulose nitrate, and acetate (Sczostak, 2009;
ieira, Beltrão, Lima, & Leão, 2008). In some cases, the linter is not
xtracted, but kept with the seed (when it is used for oil extraction)
r chemically dissolved (for planting the seed).

Producing cellulose nanocrystals is an interesting use for lin-
er. Nanocrystals of cellulose, with diameters ranging from 2 nm
o 20 nm and length ranging from 100 nm to 2.1 �m are called
hiskers, nanowhiskers, or nanofibrils, and they can be obtained
rom many natural fibers (Capadona et al., 2009; Pandey, Ahn, Lee,
ohanty, & Misra, 2010; Rosa et al., 2010). Natural fibers are used

ecause they are cheap, abundant, renewable, and biodegradable
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(Eichhorn et al., 2010; Siqueira, Bras, & Dufresne, 2009; Teixeira
et al., 2010). Nanocrystals can be used as fillers in composites
(Capadona et al., 2009; Eichhorn et al., 2010; Stelte & Sanadi, 2009;
Teixeira et al., 2010) because they have interesting mechanical
properties such as low gas permeability (Stelte & Sanadi, 2009)
and stiffness enhancing capacity (Pääkkö et al., 2008). They can
also be used as reinforcements for adhesives, components of elec-
tronic devices, biomaterials, foams, aerogels, and textiles (Eichhorn
et al., 2010; Pääkkö et al., 2008; Pandey et al., 2010; Ummartyotin,
Juntaro, Sain, & Manuspiya, 2012).

Crystalline and amorphous regions are found in cellulose fibers
in proportions that vary among plant species. For that reason,
the characteristics (particularly the dimensions) of nanocellulosic
materials depend largely on the raw material. Even though all cel-
lulose nanocrystals are made of the same biopolymer, different
raw materials can be used to obtain nanowhiskers tailored to spe-
cific needs (Beck-Candanedo, Roman, & Gray, 2005; Eichhorn et al.,
2010; Pandey et al., 2010; Rosa et al., 2010).

Cotton fiber is a traditional source of cellulose nanostructures
(Rånby, 1949), but its chemical composition can be influenced by
many factors including the genotype and the environment where
it was produced. However, in the literature on cotton nanocrys-

tals there is scarce information on how and where the cotton was
produced (Ibrahim, El-Zawawy, & Nassar, 2010; Lin, Chen, Huang,
Dufresne, & Chang, 2009). The use of regular cotton fiber can also
result in a product different from those made of linter (Ass, Ciacco, &

dx.doi.org/10.1016/j.carbpol.2012.08.010
http://www.sciencedirect.com/science/journal/01448617
http://www.elsevier.com/locate/carbpol
mailto:joao.morais@embrapa.br
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rollini, 2006; Teixeira et al., 2010; Yang, Fukuzumi, Saito, Isogai, &
hang, 2011). The knowledge on basic properties of the raw mate-
ial is important for the reliable use of these nanostructures. This
tudy aimed to extract and characterize cellulose nanowhiskers
btained from raw cotton linter produced in Brazil.

.  Materials and methods

.1.  Raw material

The  sample was obtained from cotton cv. Delta Opal, har-
ested in 2010 at Luis Eduardo Magalhães, State of Bahia, Brazil,
nder environmental conditions of Cerrado (Brazilian Savannah)
nd Köppen climatic classification BSh (Castro et al., 2010). A first-
ut linter was used because it is a cleaner material than second-cut
r mill-run linters.

.2.  Nanowhiskers preparation

The  linter was ground in a Wiley mill and hydrolyzed with-
ut any chemical pretreatment. The method of acidic hydrolysis
Cranston & Gray, 2006; Medeiros et al., 2008; Orts et al., 2005)
as applied with minor adaptations. The linter was  mechanically

tirred at a ratio of 1:20 (w/v) of aqueous concentrated sulfuric
cid (60%, w/w) with a Teflon© bar dispersing element, at 45 ◦C, for
0 min. The nanowhiskers suspension was centrifuged for 15 min
t 13,000 rpm in a High-speed Refrigerated Centrifuge CR22GIII,
nd the precipitate was resuspended in distilled water and dia-
yzed with tap water until a pH (6–7) was reached. The process
rom centrifugation through dialysis was repeated three times.

.3.  Chemical characterization

The  content of moisture, ash, extractives, lignin, hemicellulose,
nd alpha-cellulose was measured in the raw linter (TAPPI, 1993,
000, 2002a, 2002b, 2009; Yokoyama, Kadla, & Chang, 2002). The
esults are presented in wet basis.

.4. Electronic microscopy

The  morphology of cotton linter was analyzed by Scanning Elec-
ronic Microscopy. The fibers were ground in a Wiley mill and
ven-dried at 40 ◦C for 24 h. They were gold-coated for 15 min  in
mitech K550 metalizer with argon as a carrier gas. The metalized
inter was scanned in a Zeiss DSM 940A SEM under accelerated
lectrons with 15 kV of energy. The width of 31 individual fibers
as measured, and the mean, standard deviation, and confidence

nterval were calculated.
The  dimensions of the nanocellulose whiskers were measured

y transmission electronic microscopy (TEM). The nanocellulose
uspension at 4% (w/v) was mildly ultrassonicated in a water bath
onicator for 30 min, and 1 mL  of the solution was dropped on a 300
esh nickel grid coated with Formvar© polymer. After 2 min, the

xcessive water was drained with a Wathman paper no. 2, and the
rid was inverted and allowed to touch a drop of uranyl acetate 2%
w/v) for 5 min. This process was repeated three times, and the grid
as air-dried at room temperature for 24 h.

The  grid was analyzed in a Morgani 268D TEM, with 0.2 nm of
esolution. The length and width of 100 crystals were measured
sing the software Gimp 2.6. The mean, standard deviation, and
onfidence interval were calculated.
.5. Thermal analyses

The  thermal stability of the raw linter and nanowhiskers was
nalyzed in a Mettler Toledo TGA/SDTA 851. Samples weighing
olymers 91 (2013) 229– 235

5  mg  were analyzed under a nitrogen atmosphere with 50 mL/min
of gas flow rate, heating rate of 10 ◦C/min, and a temperature range
from 25 to 800 ◦C.

2.6.  FTIR analyses

FTIR  experiments were conducted using an Agilent Cary 640
FTIR spectrometer. Linter sample was dried, ground and pelletized
using KBr (1:100, w/w).  Nanocellulose suspension 4% (w/v) was
added to KBr. The mixture was  oven-dried at 65 ◦C overnight and
pelletized. The spectra were recorded in the range from 4000 to
400 cm−1 at 4 cm−1 resolution and 100 scans per sample.

2.7. X-ray diffractogram

The  X-ray diffraction of the materials was  measured in a Xpert
MDP diffractometer with Co tube at 40 kV and 30 mA. The crys-
tallinity index (ICr) of the cellulose was calculated using the Eq.
(1):

%ICr =
(

1 −
(

Iam

I0 0 2

))
× 100 (1)

in  which, Iam is the intensity of diffraction of the amorphous mate-
rial taken at a 2� angle between 21◦ and 22◦, when the intensity
is minimal, and I0 0 2 is the maximum intensity of diffraction of the
(0 0 2) lattice peak at a 2� angle between 26◦ and 27◦ (Segal, Creely,
Martin, & Conrad, 1959).

2.8.  Contact angle

A  drop of water was placed on the surface of raw linter, glass,
and nanocellulose coated glass. For the raw linter, a layer of about
5 cm2 of surface and 0.5 cm thick was hand-molded, and the water
drop was  applied. The contact angle was measured on glass apply-
ing a water drop on a 26 mm × 76 mm microscopy glass slide. For
the nanocellulose, 1 mL  of the whisker suspension at 4% (w/v) was
dripped upon the glass slide. Another slide was  used to spread the
suspension evenly over the whole surface, and the glass slide was
oven-dried at 60 ◦C for 5 min. The measurement was made when
the slide reached room temperature.

The contact angle was  measured with a lab-made software, with
seven replications of two preparations of each material. Statisti-
cal analysis was performed by the software SisVar© considering a
completely randomized design.

2.9. Particle size measurement and zeta potential

The nanocellulose suspension at 4% (w/v) was diluted in water
at the ratio of 1:100 (v/v) and ultrasonicated for 30 min in an
ultrasonic bath Unique, model USC-1400 (40 kHz of ultrasound fre-
quency, 135 W RMS  power). Measurements were made using a
Malvern 3000 Zetasizer NanoZS (Malvern Instruments, UK). This
equipment uses dynamic light scattering to measure the diffu-
sion of particles moving under Brownian motion, and converts
this to size and size distribution. It also uses laser doppler micro-
electrophoresis to apply and electric field to the dispersion of
particles, which then move with a velocity related to their zeta
potential. The particle size was measured using the Smoluchowski
algorithm.

3. Results and discussion
3.1.  Chemical characterization

The  cotton linter has an excess of 80% of holocellulose, and more
than 3/4 of it is alpha-cellulose (Table 1). This cellulose content is
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Table 1
Lignocellulosical composition of cotton linter cv. Delta Opal.

Component Content (%, w/w)a

Moisture 6.33 ± 0.06
Ashes 2.32 ± 0.04
Extractives 5.59 ± 1.91
Insoluble lignin 0.68 ± 0.35
Holocellulose 81.51 ± 4.12
Hemicellulose 4.60 ± 0.60

w
i
w
i
c

h
a
N
(
r
M
(

161 to 193), 12 nm wide (ranging from 10 to 13), and have an aspect
Alpha-cellulose 76.91 ± 7.19

a Mean ± standard error.

ithin the normal range for cotton linter (Sczostak, 2009), and it
s compared to the cellulose content of naturally colored cotton,

hich ranges from 74.0% to 80.3% (Teixeira et al., 2010). However, it
s lower than the 97.7% of cellulose found in hydrophilic (medicinal)
otton.

The linter is an attractive source of nanowhiskers because it
as more cellulose than other natural fibers commonly used such
s: sisal (Agave sisalana) (67–78%) (Oksman, Mathew, Långström,
yström, & Joseph, 2009), banana (Musa spp.) (54–64.4%)

Cherian et al., 2008; Oksman et al., 2009), sugarcane (Saccha-

um officinarum) bagasse (44.9–45%) (Cerqueira, Rodrigues Filho, &
eireles, 2010; Zhao, Wang, & Liu, 2008), bamboo (Bambusa spp.)

41.8–54.0%) (Ardanuy, Claramunt, García-Horta, & Barra, 2011;

Fig. 1. SEM pictures of cotton linter cv. Delta Opal.
olymers 91 (2013) 229– 235 231

Chen, Yu, Liu, Hai, & Zhang, 2011), and coconut (Cocos nucifera)
husk (32.5–45.9%) (Brígida, Calado, Gonç alves, & Coelho, 2010; Rosa
et al., 2010). Cotton linter is also available in large amounts because
it is a by-product of the textile industry. Upscaling of linter for com-
mercial production of cellulosic nanowhiskers requires a supply
with little variation in the cellulose content and low impurities con-
tent such as seed coat, soil, plant residues, and other contaminants.

3.2. Electronic microscopy

A  curled and soft-flat shape was  observed in the SEM pictures of
the linter (Fig. 1a). The surface was  rough with some pits. The aver-
age width was  23.04 �m,  with a confidence interval of 1.01 �m
(Fig. 1b), which is in accordance with reports in the literature
(Sczostak, 2009). This curled shape increases the surface area and
makes the fiber more reactive than typical cotton fibers. The flat
shape of this fiber increases its specific area and favors chemical
reactions such as acidic hydrolysis.

The nanocellulose suspension had a white gel appearance
(Fig. 2a). Bundles of crystals are depicted in the TEM pictures
(Fig. 2b). On average, the whiskers are 177 nm long (ranging from
ratio (L/D) of 19 (ranging from 20 to 24). The TEM pictures (Fig. 2b)
also depict agglomeration of nanocellulose bundles, points with
dispersed crystallites, and individual crystals.

Fig. 2. Nanocellulose suspension (a) and TEM picture of cotton linter nanowhiskers
(b).
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Fig. 3. Thermal decomposition profile of raw linter (a) and linter nanowhiskers (b), and FTIR spectra (c) of raw linter (bottom) and linter nanowhiskers (top).
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Fig. 3. (Continued ).
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The nanocrystals’ dimensions are influenced by the hydrolysis
onditions or pretreatments. However, it is widely accepted that
he raw material is the most important factor (Beck-Candanedo
t al., 2005; Capadona et al., 2009; Eichhorn et al., 2010; Pandey
t al., 2010; Silva, Haraguchi, Muniz, & Rubira, 2009). The aspect
atio (L/D) of the crystals extracted from linter is different from
hose extracted from coconut husks (35–44) (Rosa et al., 2010), sug-
rcane bagasse (32–64) (Teixeira et al., 2011), sisal (43–60) (Garcia
e Rodriguez, Thielemans, & Dufresne, 2006), regular cotton fiber
10–14) (Teixeira et al., 2010), microcrystalline cellulose (11–13)
Capadona et al., 2009; Shanmuganathan, Capadona, Rowan, &

eder, 2010), and flax (Linum usitatissimum) (15) (Cao, Dong,
 Li, 2007). The aspect ratio of linter nanowhiskers does not
verlap with any of those listed, and this raw material is an
ption if nanocrystals with specific dimensions are required by
ndustry.

.3. Thermal and FTIR analyses

The  decomposition pattern of raw linter is presented in Fig. 3a.
here are small weight losses around 45–50 ◦C related to the mois-
ure. The main Tonset of raw linter was at 312.92 ◦C and the peak
as at 340.29 ◦C. In the nanocellulose (Fig. 3b), the Tonset was

educed to 200.95 ◦C and the main peak was reduced to 219.00 ◦C.
here are also two new weight losses with peaks at 287.50 ◦C and
67.67 ◦C, which could be a result of the cellulose sulfonation. This

ifference may  be caused by the removal of the protective waxes
nd lignin layers from the fiber, as well as the insertion of sul-
ate groups in the glucose residues (Fig. 3c). There is a reduction
f the number of peaks and increasing of the spectrum resolution
in  the nanocellulose FTIR curve in comparison to the linter FTIR
spectrum. There are some peaks between 750 cm−1 and 1000 cm−1

and other peaks around 1350 cm−1 and 1175 cm−1, which indi-
cate the presence of sulfonates in the nanocellulose (Socrates,
2004).

Reduced Tonset was also observed in nanocellulose crystals
extracted from palm oil (Elaeis guineensis) (Fahma, Iwamoto, Hori,
Iwata, & Takemura, 2010), coconut husk (Fahma, Iwamoto, Hori,
Iwata, & Takemura, 2011), naturally colored cotton fibers (Teixeira
et al., 2010), and sugarcane bagasse (Teixeira et al., 2011). In the nat-
urally colored cotton, the reduction from 250–280 ◦C to 200–205 ◦C
occurred because sulfate groups were inserted and less activa-
tion energy was required for the start of the thermal degradation
(Teixeira et al., 2010).

3.4.  X-ray diffractogram

The  diffractograms of linter and nanocellulose had peaks related
to the crystallographic plans of cellulose in accordance with the
Bragg angles (2�) with an intensity of 17.422◦ (plan 1 0 1), 19.169◦

(plan 1 0 1̄), and 26.518◦ (plan 0 0 2) as indicated by the Interna-
tional Centre for Diffraction Data – ICDD (Fig. 4). The raw linter has
a crystallographic pattern very similar to the standard ICDD cellu-
lose, but the pictures are blurring, perhaps due to the presence of
non-cellulosic amorphous materials such as fiber extractives (Sec-

tion 3.1). The nanocellulose diffractogram had a good definition. It
had a greater (0 0 2) lattice peak that suggests an increased crys-
tallinity. The higher crystallinity is confirmed by the ICr which was
64.42% for linter and 90.45% for nanocellulose.
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Fig. 4. X-ray diffractogram pattern of untreated linter (top) and cellulose
nanowhiskers (middle) in comparison with cellulose X-ray diffraction pattern as
I
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Table 2
Contact angles of raw linter cotton, glass slide and nanocellulose coated glass slide.

Material Contact angle (mean ± confidence interval)a

Raw linter 70.6 ± 3.4◦a
Glass 30.6 ± 3.3◦b
Nanocellulose coated glass 23.2 ± 4.0 ◦c

a Means followed by the same letter do not differ by the Tukeyı̌s test at 95% of
confidence.

Fig. 6. Particle size distribution of linter nanowhiskers.
CDD (bottom).

The linter crystallinity was increased by 40%, while this incre-
ent in other raw materials ranged from 4.6% in medicinal cotton

Teixeira et al., 2010) to 105% in banana fiber (Cherian et al., 2008).
fter all the different pretreatments for cellulose pulping in these
ellulosic sources, the crystallinity may  vary from 74% (Cherian
t al., 2008) to 91% (Teixeira et al., 2010). Thus, the linter nanocel-
ulose has a high crystallinity, and this property can be important
or the composites made of these nanofillers.

.5. Contact angle
The  raw linter has low hydrophilicity (Table 2). This charac-
eristic may  be partly explained by the chemical composition of
inter (Section 3.1; Sczostak, 2009) and partly by the rough sur-
ace (Fig. 1c), which may  increase the contact angle due to air

Fig. 5. Contact angle of linter layer (left), glass (center), a
bubbles trapped beneath the drop (Spori et al., 2008; Zhang &
Kwok, 2003). The thin nanocellulose layer significantly increased
the hydrophilicity of the glass surface (Table 2 and Fig. 5). Some
reasons for the increased hydrophilicity in the nanocrystals are
the exclusion of apolar components, the insertion of polar sul-
fate groups, and the exposition of OH groups from the cellulose
structure.

3.6. Particle size measurement and zeta potential

The zeta potential has a mean value of −45.3 ± 1.4 mV.  The
suspension of nanocellulose is considered stable because the abso-
lute value is higher than 25 mV  (Mirhosseini, Tan, Hamid, & Yusof,
2008). The particle size distribution resulted in three main groups:
0.9% of the particles were around 9.2 nm, 88.6% were around
179.3 nm, and 10.6% were around 2.236 nm (Fig. 6). The particle size
measured by light scattering cannot be related precisely to the crys-
tals’ diameter and length dimensions of their bundles. However,
the first and second groups are similar to the TEM measurements
(Section 3.2). If an adequate mathematical treatment is adopted,
a light scattering technique can replace TEM for returning a good
estimation of nanocrystals’ dimensions (Braun, Dorgan, & Chandler,

2008). For linter nanowhiskers, the Smoluchowski algorithm of
general purposes was  efficient for measuring the linter crystals’
dimensions.

nd nanocellulose coated glass (right) (bar = 1 cm).
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. Conclusions

Cellulose nanocrystals were successfully extracted by hydroly-
is from raw cotton linter. The linter nanocrystals have an aspect
atio of 19, crystallinity of 91%, and high hydrophilicity. Their
imensions can be accurately measured by TEM, but light scatter-

ng techniques can also be employed for estimating the dimensions.
xtraction of nanocellulose from raw cotton linter does not require
ulping before the acidic hydrolysis.
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rígida,  A. I. S., Calado, V. M.  A., Gonç alves, L. R. B., & Coelho, M.  A. Z. (2010). Effect
of  chemical treatments on properties of green coconut fiber. Carbohydrate Poly-
mers, 79, 832–838.

ao,  X., Dong, H., & Li, C. M.  (2007). New nanocomposite materials reinforced with
flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules, 8,
899–904.

apadona, J. R., Shanmuganathan, K., Trittschuh, S., Seidel, S., Rowan, S. J., & Weder, C.
(2009). Polymer nanocomposites with nanowhiskers isolated from microcrys-
talline  cellulose. Biomacromolecules, 10, 712–716.

astro, K. B., Martins, E. S., Gomes, M.  P., Reatto, A., Lopes, C. A., Passo, D. P., et al.
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