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Abstract

This paper presents a coherence theorem for star-autonomous categories exactly analogous to Kelly and Mac Lane’s coherence
theorem for symmetric monoidal closed categories. The proof of this theorem is based on a categorial cut-elimination result, which
is presented in some detail.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

From the inception of proof nets in the late 1980s (see [16] and [8]), it could have been realized that they are
connected with the graphs one finds in Kelly and Mac Lane’scoherence theorem for symmetric monoidal closed
categories of [17]. The earliest explicit reference for that we know about is [3] (see also [4]). It was also soon suggested
that the multiplicative fragment of classical linear logic, which has an involutive negation that satisfies De Morgan
laws, is closely related to the notion of star-autonomous category, which stems from [1] (see [18,21] and [2]).

Star-autonomous categories in the sense of [2] are symmetric monoidal closed categories that have an object⊥
such that the canonical natural transformation from the identity functor to the functor( → ⊥)→ ⊥ is a natural
isomorphism (here → is the internal hom-bifunctor). This notion is equivalent to the notion of symmetric
linearly (alias weakly) distributive category with negation in the sense of [7] (Section 4, Definition 4.3). Establishing
the equivalence of the two notions is rather arduous, as noted in [7] (Theorem 4.5; a proof may be found in [13],
Chapter 3).

The aim of this paper is to present a coherence theorem for symmetric linearly distributive categories with negation,
which is exactly analogous to Kelly and Mac Lane’s coherence theorem for symmetric monoidal closed categories
mentioned above. Like Kelly and Mac Lane’s proof of [17], the proof of our coherence theorem is based on cut-
elimination or similar results. We will not present all of them. Some of these results are in [12], and some in [13]
and [14]. We will present in some detail only acut-elimination theorem for symmetric linearly distributive categories
with negation freely generated by a set of objects, on whichour coherence theorem relies.This is a cut-elimination
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theorem that asserts not only that for every derivation we have a cut-free derivation of the same type, but also that the
original derivation and the cut-free derivation are equal as arrows in a category (which is not a preorder: not all arrows
of the same type are equal in this category).

As we indicated above, this paper is not self-contained. A more detailed and more self-contained investigation of
star-autonomous categories and of their connection with the graphs of Kelly and Mac Lane, and with the proof nets
of classical linear logic, is in the study [13].

Sections 2, 3 and5 of this paper introduce gradually the notion of symmetric linearly distributive category with
negation freely generated by a set of objects.Section 4introduces a precise notion of graph of the kind of Kelly and
Mac Lane, and states the previous coherence results on which we rely.Sections 6and7 contain the cut-elimination
result, andSection 8the coherence result, which we have announced.

All the categories considered in this paper are small. Wehave no need here for categories whose collections of
objects or arrows are bigger than sets.

2. The category DS

The objects of the categoryDS are the formulae of the propositional languageL∧,∨, generated from a setP of
propositional letters, which we call simplyletters, with the binary connectives∧ and∨. We usep, q, r, . . . , sometimes
with indices, for letters, andA, B, C, . . . , sometimes with indices, for formulae.As usual, we omit the outermost
parentheses of formulae and other expressions later on.

To define the arrows of DS, we define first inductively a set of expressions called thearrow terms of DS. Every
arrow term ofDS will have atype, which isan ordered pair of formulae ofL∧,∨. We write f : A � B when the arrow
term f is of type(A, B). (We use theturnstile� instead of the more usual→, which we reserve for a connective and
a biendofunctor.) We usef, g, h, . . . , sometimes with indices, for arrow terms.

For all formulaeA, B andC of L∧,∨ the followingprimitive arrow terms:

1A : A � A,
∧
b→A,B,C : A ∧ (B ∧ C) � (A ∧ B) ∧ C,

∨
b→A,B,C : A ∨ (B ∨ C) � (A ∨ B)∨ C,

∧
b←A,B,C : (A ∧ B) ∧ C � A ∧ (B ∧ C),

∨
b←A,B,C : (A ∨ B)∨ C � A ∨ (B ∨ C),

∧
c A,B : A ∧ B � B ∧ A,

∨
c A,B : B ∨ A � A ∨ B,

dA,B,C : A ∧ (B ∨ C) � (A ∧ B) ∨ C

are arrow terms ofDS. If g : A � B and f : B � C are arrow terms ofDS, then f ◦ g : A � C is an arrow term ofDS;
and if f : A � D andg : B � E are arrow terms ofDS, then f ξ g : A ξ B � D ξ E , for ξ ∈ {∧,∨}, is an arrow term
of DS. This concludes the definition of the arrow terms ofDS.

Next we define inductively the set ofequations of DS, which are expressions of the formf = g, where f andg
are arrow terms ofDS of the same type. We stipulate first that all instances off = f and of the following equations
are equations ofDS:

(cat 1) f ◦ 1A = 1B ◦ f = f : A � B,

(cat 2) h ◦ (g ◦ f ) = (h ◦ g) ◦ f ,

for ξ ∈ {∧,∨},
(ξ 1) 1A ξ 1B = 1Aξ B ,

(ξ 2) (g1 ◦ f1) ξ (g2 ◦ f2) = (g1 ξ g2) ◦ ( f1 ξ f2),

for f : A � D, g : B � E andh : C � F ,

(
ξ

b→ nat) (( f ξ g) ξ h) ◦
ξ

b→A,B,C =
ξ

b→D,E,F ◦ ( f ξ (g ξ h)),

(
∧
c nat) (g ∧ f ) ◦

∧
c A,B = ∧c D,E ◦ ( f ∧ g),

(
∨
c nat) (g ∨ f ) ◦

∨
c B,A = ∨

cE,D ◦ ( f ∨ g),
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(d nat) (( f ∧ g) ∨ h) ◦ dA,B,C = dD,E,F ◦ ( f ∧ (g ∨ h)),

(
ξ

b
ξ

b)
ξ

b←A,B,C ◦
ξ

b→A,B,C = 1Aξ (BξC),
ξ

b→A,B,C ◦
ξ

b←A,B,C = 1(Aξ B)ξC ,

(
ξ

b 5)
ξ

b←A,B,Cξ D ◦
ξ

b←Aξ B,C,D = (1A ξ

ξ

b←B,C,D) ◦
ξ

b←A,BξC,D ◦ (
ξ

b←A,B,C ξ 1D),

(
∧
c
∧
c)

∧
c B,A ◦

∧
c A,B = 1A∧B ,

(
∨
c
∨
c)

∨
c A,B ◦

∨
c B,A = 1A∨B ,

(
∧
b
∧
c) (1B ∧ ∧cC,A) ◦

∧
b←B,C,A

◦ ∧c A,B∧C ◦
∧
b←A,B,C

◦ (
∧
c B,A ∧ 1C) = ∧

b←B,A,C ,

(
∨
b
∨
c) (1B ∨ ∨c A,C ) ◦

∨
b←B,C,A

◦ ∨c B∨C,A ◦
∨
b←A,B,C

◦ (
∨
c A,B ∨ 1C ) = ∨

b←B,A,C ,

(d∧) (
∧
b←A,B,C ∨ 1D) ◦ dA∧B,C,D = dA,B∧C,D ◦ (1A ∧ dB,C,D) ◦

∧
b←A,B,C∨D,

(d∨) dD,C,B∨A ◦ (1D ∧
∨
b←C,B,A) = ∨

b←D∧C,B,A
◦ (dD,C,B ∨ 1A) ◦ dD,C∨B,A,

for d R
C,B,A =df

∨
cC,B∧A ◦ (

∧
c A,B ∨ 1C ) ◦ dA,B,C ◦ (1A ∧ ∨c B,C) ◦

∧
cC∨B,A:

(C ∨ B) ∧ A � C ∨ (B ∧ A),

(d
∧
b) d R

A∧B,C,D
◦ (dA,B,C ∧ 1D) = dA,B,C∧D ◦ (1A ∧ d R

B,C,D) ◦
∧
b←A,B∨C,D,

(d
∨
b) (1D ∨ dC,B,A) ◦ d R

D,C,B∨A =
∨
b←D,C∧B,A

◦ (d R
D,C,B ∨ 1A) ◦ dD∨C,B,A.

The set of equations ofDS is closed under symmetry and transitivity of equality and under the rules

(cong ξ )
f = f1 g = g1

f ξ g = f1 ξ g1

whereξ ∈ { ◦ ,∧,∨}, and if ξ is ◦ , then f ◦ g is defined (namely,f andg have appropriate, composable, types).
On the arrow terms ofDS we impose the equations ofDS. This means that an arrow ofDS is an equivalence

class of arrow terms ofDS defined with respect tothe smallest equivalence relation such that the equations ofDS are
satisfied (see [12], Section 2.3, for details).

The equations(ξ 1) and(ξ 2) say that∧ and∨ are biendofunctors (i.e. 2-endofunctors in the terminology of [12],
Section 2.4). Equations in the list above with “nat” i n their names, and analogous derivable equations, will be called

naturality equations. Such equations say that
∧
b→,

∧
b←,

∧
c, etc. are natural transformations.

The equations(d∧), (d∨), (d
∧
b) and(d

∨
b) stemfrom [7] (Section 2.1; see [6], Section 2.1, for an announcement).

The equation(d
∨
b) of [12] (Section 7.2) amounts with(

∨
b
∨
b) to the presentone.

3. The category PN¬

The categoryPN¬ is defined asDS save that we make the following changes and additions. Instead ofL∧,∨, we
have the propositional languageL¬,∧,∨, which has in addition to what we have forL∧,∨ theunary connective¬.

To define the arrow terms ofPN¬, in the inductive definition that we had for the arrow terms ofDS we assume in
addition that for all formulaeA andB of L¬,∧,∨ the followingprimitive arrow terms:

∧
∆B,A: A � A ∧ (¬B ∨ B),
∨
Σ B,A: (B ∧ ¬B)∨ A � A,

are arrow terms ofPN¬.
To define the arrows ofPN¬, we assume in the inductive definition that we had for the equations ofDS the following

additional equations:
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(
∧
∆ nat) ( f ∧ 1¬B∨B) ◦

∧
∆B,A =

∧
∆B,D ◦ f ,

(
∨
Σ nat) f ◦

∨
Σ B,A =

∨
Σ B,D ◦ (1B∧¬B ∨ f ),

(
∧
b
∧
∆)

∧
b←A,B,¬C∨C

◦
∧
∆C,A∧B = 1A ∧

∧
∆C,B ,

(
∨
b
∨
Σ )

∨
ΣC,B∨A ◦

∨
b←C∧¬C,B,A =

∨
ΣC,B ∨ 1A,

for
∧
Σ B,A =df

∧
c A,¬B∨B ◦

∧
∆B,A : A � (¬B ∨ B) ∧ A,

(d
∧
Σ ) d¬A∨A,B,C ◦

∧
Σ A,B∨C =

∧
Σ A,B ∨ 1C ,

for
∨
∆B,A =df

∨
Σ B,A ◦

∨
c B∧¬B,A : A ∨ (B ∧ ¬B) � A,

(d
∨
∆)

∨
∆A,C∧B ◦ dC,B,A∧¬A = 1C ∧

∨
∆A,B ,

(
∨
Σ
∧
∆)

∨
Σ A,A ◦ dA,¬A,A ◦

∧
∆A,A = 1A,

for
∧
∆
′
B,A =df (1A ∧ ∨cB,¬B) ◦

∧
∆B,A : A � A ∧ (B ∨ ¬B) and

∨
Σ
′
B,A =df

∨
Σ B,A ◦ (

∧
c¬B,B ∨ 1A) : (¬B ∧ B)∨ A � A,

(
∨
Σ ′

∧
∆′)

∨
Σ
′
A,¬A

◦ d¬A,A,¬A ◦
∧
∆
′
A,¬A = 1¬A.

The naturality equations (
∧
∆ nat) and (

∨
Σ nat) saythat

∧
∆ and

∨
Σ are natural transformations in the second index. We

have analogous naturality equations for
∧
Σ ,

∨
∆,

∧
∆′ and

∨
Σ ′ .

The arrow
∧
∆B,A: A � A ∧ (¬B ∨ B) is analogous to the arrow of typeA � A ∧ � that one finds in monoidal

categories. However,
∧
∆B,A does not have an inverse inPN¬. The equation (

∧
b
∧
∆) is analogous to an equation that

holds in monoidal categories (see [20], Section VII.1, [12], Section 4.6, and Section 5 below).
A proof-net category is a category with two biendofunctors∧ and∨, aunary operation¬ on objects, and the natural

transformations
∧
b→,

∧
b←,

∨
b→,

∨
b←,

∧
c,
∨
c, d,

∧
∆ and

∨
Σ that satisfy the equations(

ξ

b 5), (
ξ

b
ξ

b), . . . , (
∨
Σ ′

∧
∆′ ) of PN¬.

It is clear how to define the notion of proof-net functor between proof-net categories, which preserves the proof-net
structure of acategory strictly (i.e. “on the nose”; cf. [12], Section 2.8). The functorG from PN¬ to Br definedin the
next section is a proof-net functor in this sense. The other functorsG mentioned later in the paper also each preserve
acertain categorial structure “on the nose”.

The categoryPN¬ is, up to isomorphism, the free proof-net category generated by the set of lettersP, thought of
as a discrete category.

4. The category Br

Weare now going to introduce a category calledBr. Thiscategory serves to formulate a coherence result for proof-
net categories, which says that there is a faithful functor fromPN¬ to Br. Thename of the categoryBr comes from
“Brauerian”. The arrows of this category correspond to graphs, or diagrams, that were introduced in [5] in connection
with Brauer algebras. Analogous graphs were investigated in [15], and in [17] Kelly and Mac Lane relied on them to
prove their coherence result for symmetric monoidal closed categories.

Let M be a set whose subsets are denoted byX , Y , Z , . . .. For i ∈ {s, t} (wheres stands for “source” andt for
“target”), letMi be a set in one-to-one correspondence withM, and leti :M→Mi be a bijection. Let Xi be the
subset ofMi that is the image of the subsetX of M underi . If u ∈M, then we useui as an abbreviation fori(u).
We assume also thatM, Ms andMt are mutually disjoint.
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For X, Y ⊆M, let asplit relation of M be a triple〈R, X, Y 〉 suchthat R ⊆ (Xs ∪ Y t )2. The setXs ∪ Y t may be
conceived as the disjoint union ofX andY . We denote a splitrelation 〈R, X, Y 〉 more suggestively byR : X � Y .

A split relation R : X � Y is a split equivalence when R is an equivalence relation. We denote by part(R) the
partition of Xs ∪ Yt corresponding to the split equivalenceR : X � Y .

A split equivalenceR : X � Y is Brauerian when every member of part(R) is a two-element set. ForR : X � Y
a Brauerian split equivalence, every member of part(R) is either of the form{us, vt }, in which case it is called a
transversal, or of the form {us , vs}, in whichcase it is called acup, or, finally, of the form{ut , vt }, in whichcase it is
called acap.

For X, Y, Z ∈M, we want to define the compositionP ∗ R : X � Z of the split relationsR : X � Y andP : Y � Z
of M. For that we need some auxiliary notions.

For X, Y ⊆M, let the functionϕs : X ∪ Y t → Xs ∪ Y t be defined by

ϕs(u) =
{

us if u ∈ X
u if u ∈ Y t ,

and let the functionϕt : Xs ∪ Y → Xs ∪ Y t be defined by

ϕt (u) =
{

u if u ∈ Xs

ut if u ∈ Y.

For a split relation R : X � Y , let the tworelationsR−s ⊆ (X ∪ Y t )2 andR−t ⊆ (Xs ∪ Y )2 be defined by

(u, v) ∈ R−i iff (ϕi (u), ϕi (v)) ∈ R

for i ∈ {s, t}. Finally, for an arbitrary binary relationR, let Tr(R) be the transitive closure ofR.
Then we defineP ∗ R by

P ∗ R =df Tr(R−t ∪ P−s ) ∩ (Xs ∪ Zt )2.

It is easy to conclude thatP ∗ R : X � Z is a split relation ofM, and that if R : X � Y andP : Y � Z are (Brauerian)
split equivalences, thenP ∗ R is a (Brauerian) split equivalence.

We now define the categoryBr. The set ofobjects ofBr is N , the set of finite ordinals. The arrows ofBr are the
Brauerian splitequivalencesR : m � n of N . The identity arrow1n : n � n of Br is the Brauerian split equivalence
suchthat

part(1n) = {{ms, mt } | m < n}.
Composition inBr is the operation∗ defined above.

ThatBr is indeed a category (i.e. that∗ is associative and that1n is an identity arrow) is proved in [10] and [11].
This proof is obtained via an isomorphic representation ofBr in the categoryRel, whose objects are the finite ordinals
and whose arrows are all the relations between these objects. Composition inRel is the ordinary composition of
relations. A direct formal proof would be more involved, though what we have to prove is rather clear if we represent
Brauerian split equivalences geometrically (as this is done in [5] and [15]).

For example, for R ⊆ (3s ∪ 9t )2 andP ⊆ (9s ∪ 1t )2 suchthat

part(R) = {{0s, 0t }, {1s, 3t }, {2s, 6t }} ∪ {{nt , (n+1)t } | n ∈ {1, 4, 7}},
part(P) = {{2s, 0t }} ∪ {{ns , (n+1)s} | n ∈ {0, 3, 5, 7}},

the compositionP ∗ R ⊆ (3s ∪ 1t )2, for which we have

part(P ∗ R) = {{0s, 0t }, {1s, 2s}},
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is obtained from the following diagram:

�
�

��

�
�

��

��������

�
� � � � � � � � �
� � �

��
��

����
��

��
��

0

0 1 2 3 4 5 6 7 8

0 1 2

R

P

Every bijection f from Xs to Y t corresponds to a Brauerian split equivalenceR : X � Y such that the members
of part(R) are of the form {u, f (u)}. The composition of such Brauerian split equivalences, which correspond to
bijections, is then a simple matter: it amounts to composition of these bijections. If inBr we keep as arrows only such
Brauerian split equivalences, then we obtain a subcategory ofBr isomorphic to the categoryBij whose objects are
again the finite ordinals and whose arrows are the bijections between these objects. The categoryBij is a subcategory
of the categoryRel, whose objects are the finite ordinals and whose arrows are all the relations between these objects.
Composition inBij andRel is the ordinary composition of relations. The categoryRel (which played an important role
in [12]) is isomorphic to a subcategory of the category whose arrows are split relations of finite ordinals, of whomBr
is also a subcategory.

We define afunctor G from PN¬ to Br in the following way. On objects, we stipulate thatG A is the number of

occurrencesof letters inA. On arrows, we have first thatGα is an identity arrow ofBr for α being1A,
ξ

b→A,B,C ,
ξ

b←A,B,C
anddA,B,C , whereξ ∈ {∧,∨}.

Next, for i, j ∈ {s, t}, we have that{mi , n j } belongs to part(G
∧
c A,B ) iff {ni , m j } belongs to part(G

∨
c A,B ), iff i is s

and j is t , while m, n < G A+G B and

(m−n−G A)(m−n+G B)= 0.

In the following example, we haveG(p ∨ q) = 2= {0, 1} andG((q ∨ ¬r) ∨ q)= 3 = {0, 1, 2}, and wehave the
diagrams

�
�

�
�
�

��

�
�

�
�
�

��

�
�

�
�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

� � � � � � � � � �

� � � � � � � � � �

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

G
∧
c p∨q,(q∨¬r)∨q G

∨
c p∨q,(q∨¬r)∨q

(p ∨ q) ∧ ((q ∨ ¬r) ∨ q)

((q ∨ ¬r) ∨ q) ∧ (p ∨ q)

((q ∨ ¬r) ∨ q)∨ (p ∨ q)

(p ∨ q) ∨ ((q ∨ ¬r) ∨ q)

We have that{mi , n j } belongs to part(G
∧
∆B,A) iff either

i is s and j is t , while m, n < G A andm = n, or
i and j are both t , while m, n ∈ {G A, . . . , G A+2G B−1} and
|m−n| = G B.

In the following example, for A being(q ∨ ¬r) ∨ q andB beingp ∨ q, we have
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� � � � � � �

� � �

0 1 2 3 4 5 6

0 1 2

����G
∧
∆p∨q,(q∨¬r)∨q

((q ∨ ¬r) ∨ q) ∧ (¬(p ∨ q) ∨ (p ∨ q))

(q ∨ ¬r) ∨ q

We have that{mi , n j } belongs to part(G
∨
Σ B,A) iff either

i is s and j is t , while m ∈ {2G B, . . . , 2G B+G A−1}, n < G A and
m−2G B = n, or

i and j are boths, while m, n < 2G B and|m−n| = G B.

For A andB being as in the previous example, we have

� � � � � � �

� � �

0 1 2 3 4 5 6

0 1 2

� 	� 	
G
∨
Σ p∨q,(q∨¬r)∨q

(q ∨ ¬r) ∨ q

((p ∨ q) ∧ ¬(p ∨ q)) ∨ ((q ∨ ¬r) ∨ q)

Let G( f ◦ g) = G f ∗ Gg. To defineG( f ξ g), for ξ ∈ {∧,∨}, we need an auxiliary notion.
SupposebX is a bijection fromX to X1 andbY a bijection from Y to Y1. Then for R ⊆ (Xs ∪ Y t )2 we define

RbX
bY
⊆ (Xs

1 ∪ Y t
1)2 by

(ui , v j ) ∈ RbX
bY

iff (i(b−1
U (u)), j (b−1

V (v))) ∈ R,

where(i, U), ( j, V ) ∈ {(s, X), (t, Y )}.
If f : A � D andg : B � E , then for ξ ∈ {∧,∨} the set ofordered pairsG( f ξ g) is

G f ∪ Gg+G A
+G D

where+G A is the bijection fromG B to {n+G A | n ∈ G B} that assignsn+G A to n, and+G D is the bijection from
G E to {n+G D | n ∈ G E} that assignsn+G D to n.

It is not difficult to check thatG so defined isindeeda functor fromPN¬ to Br. For that, we determine by induction
on the length of derivation that for every equationf = g of PN¬ we haveG f = Gg in Br. We have shown by this
induction thatBr is a proof-net category, and the existence of a structure-preserving functorG fromPN¬ to Br follows
from the freedom ofPN¬.

We can define analogously toG a functor, which we also callG, from the categoryDS to Br. We just omit from

the definition ofG above the clauses involving
∧
∆B,A and

∨
Σ B,A. The image ofDS by G in Br is the subcategory ofBr

isomorphic toBij, which we mentioned above. The following is proved in [12] (Section 7.6).

DS Coherence. The functor G from DS to Br is faithful.

It follows immediately from this coherence result thatDS is isomorphic to a subcategory ofPN¬ (cf. [12], Section
14.4).

The following result is proved in [13] (Section 2.7) and [14].
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PN¬ Coherence. The functor G from PN¬ to Br is faithful.

5. The category S

The objects of the categoryS are the formulae of the propositional languageL�,⊥,¬,∧,∨ generated byP , where¬,
∧ and∨ are as before, and� and⊥ are nullary connectives, i.e. propositional constants. As primitive arrow terms we

have1A,
∧
b→A,B,C ,

∧
b←A,B,C ,

∧
c A,B ,

∨
b→A,B,C ,

∨
b←A,B,C ,

∨
c A,B , dA,B,C (seeSection 2),

∧
∆B,A,

∨
Σ B,A (seeSection 3), plus

∧
δ→A : A ∧� � A,

∧
δ←A : A � A ∧ �,

∨
δ→A : A ∨⊥ � A,

∨
δ←A : A � A ∨ ⊥,

These primitive arrow terms together with the operations on arrow terms◦ , ∧ and∨ (the same as we had forDS and
PN¬ in Sections 2and3) define the arrow terms ofS.

The equations ofS are obtained by assuming all the equations we have assumed forPN¬, plus

(
∧
δ→ nat) f ◦

∧
δ→A =

∧
δ→B ◦ ( f ∧ 1�),

(
∧
δ
∧
δ )

∧
δ→A ◦

∧
δ←A = 1A,

∧
δ←A ◦

∧
δ→A = 1A∧�,

(
∧
b
∧
δ )

∧
b←A,B,� ◦

∧
δ←A∧B = 1A ∧

∧
δ←B ,

(
∨
δ→ nat) f ◦

∨
δ→A =

∨
δ→B ◦ ( f ∨ 1⊥),

(
∨
δ
∨
δ )

∨
δ→A ◦

∨
δ←A = 1A,

∨
δ←A ◦

∨
δ→A = 1A∨⊥,

(
∨
b
∨
δ )

∨
b←A,B,⊥ ◦

∨
δ←A∨B = 1A ∨

∨
δ←B ,

for ∧σ←A =df
∧
c A,� ◦

∧
δ←A ,

(d
∧
σ ) d�,B,C ◦ ∧σ←B∨C = ∧

σ←B ∨ 1C ,

(d
∨
δ )

∨
δ→C∧B

◦ dC,B,⊥ = 1C ∧ ∨δ→B .

The set of equations ofS is closed under symmetry and transitivity of equality and under the rules (cong ξ ) for
ξ ∈ { ◦ ,∧,∨} (seeSection 2). This defines the equations ofS.

We have the following definitions:

∧
σ→A =df

∧
δ→A ◦ ∧c�,A,

∨
σ→A =df

∨
δ→A ◦ ∨c A,⊥,

∨
σ←A =df

∨
c⊥,A ◦

∨
δ←A ,

which give isomorphisms inS. Note that ∨σ→A : ⊥ ∨ A � A is analogous to
∨
Σ B,A: (B ∧ ¬B) ∨ A � A, though

∨
Σ B,A

is not an isomorphism. The equation (
∧
b
∨
Σ ) of Section 3is analogous to the following equation ofS (an equation of

monoidal categories):

∨
σ→B∨A

◦
∨
b←⊥,B,A = ∨

σ→B ∨ 1A.

The equations (d ∧σ ) and (d
∨
δ ), which amount to the equations (∧σ d L) and (

∨
δ d L) of Section 7.9 of [12] (these equations

stemfrom [7], Section 2.1), are analogous to the equations (d
∧
Σ ) and (d

∨
∆) of Section 3.

With the definitions

τ L
B =df

∧
σ→¬B∨B

◦
∧
∆B,� : � � ¬B ∨ B,

γ R
B =df

∨
Σ B,⊥ ◦

∨
δ←B∧¬B : B ∧ ¬B � ⊥,

in S, on theone hand, and
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∧
∆B,A =df (1A ∧ τ L

B ) ◦
∧
δ←A : A � A ∧ (¬B ∨ B),

∨
Σ B,A =df

∨
σ→A ◦ (γ R

B ∨ 1A): (B ∧ ¬B) ∨ A � A,

on the other hand, it can easily be established thatS is isomorphic to the freesymmetric linearly (alias weakly)
distributive category with negation in the sense of [7] (Section 4, Definition 4.3) generated byP.

6. The gentzenization of S

We will now define a new language of arrow terms to denote the arrows of the categoryS. We call these arrow
termsGentzen terms, and we prove for Gentzen terms a result analogous to Gentzen’s cut-elimination theorem, which
we will use to prove that the categoryPN¬ is isomorphic to a full subcategory ofS.

As the arrow terms ofS, Gentzen terms will be defined inductively starting from primitive Gentzen terms. As
primitive Gentzen terms we have1A : A � A, for A being aletter, or�, or⊥. To define the operations on Gentzen
terms, calledGentzen operations, whichare mostly partial operations, we need some preparation.

We define inductively a notion that forξ ∈ {∧,∨} we call aξ -context:

is a ξ -context;
if Z is a ξ -context andA an object ofS, thenZ ξ A andA ξ Z areξ -contexts.

A ξ -context is calledproper when it is not .
Next we define inductively what it means for aξ -contextZ to be applied to an objectB of S, whichwe writeZ(B),

or to an arrow termf of S, whichwe write Z( f ):

(B) = B, ( f ) = f ,

(Z ξ A)(B)= Z(B) ξ A, (Z ξ A)( f ) = Z( f ) ξ 1A,

(A ξ Z)(B)= A ξ Z(B); (A ξ Z)( f ) = 1A ξ Z( f ).

We useX , perhaps with indices, as a variable for∧-contexts, andY , perhaps with indices, as a variable for∨-contexts.

Then we have the Gentzen operation
∧
B←X , which involves types specified by

f : X (A ∧ (B ∧ C)) � D
∧
B←X f : X ((A ∧ B)∧ C) � D

This is read “if f is a Gentzen term, then
∧
B←X f is a Gentzen term”, all that of therequired types. We use this rule

notation for operations also in the future. The Gentzen term
∧
B←X f denotes the arrow ofS named on the right-hand

sideof the=dn signbelow:

∧
B←X f =dn f ◦ X (

∧
b←A,B,C).

We also have the following Gentzen operation:

f : D � Y (A ∨ (B ∨ C))

∨
B→Y f =dn Y (

∨
b→A,B,C) ◦ f : D � Y ((A ∨ B) ∨ C)

and the following four analogous Gentzen operations, where the types can be easily guessed:

∧
B→X f =dn f ◦ X (

∧
b→A,B,C),

∨
B←Y f =dn Y (

∨
b←A,B,C) ◦ f ,

∧
C X f =dn f ◦ X (

∧
c A,B),

∨
CY f =dn Y (

∨
c A,B) ◦ f .
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We also have the Gentzen operations in the following list:

f : A � B

�→ f =dn f ◦ ∧σ→A : � ∧ A � B

f : B � A

⊥← f =dn
∨
δ←A ◦ f : B � A ∨⊥

g : � ∧ A � B

�←g =dn g ◦ ∧σ←A : A � B

g : B � A ∨ ⊥
⊥→g =dn

∨
δ→A ◦ g : B � A

for
∨
e ′D,C,B,A =df (

∧
cC,D ∨ 1B∨A) ◦

∨
b←C∧D,B,A

◦ ((dC,D,B ◦
∧
c D∨B,C) ∨ 1A) ◦

◦ dD∨B,C,A : (D ∨ B) ∧ (C ∨ A) � (D ∧ C) ∨ (B ∨ A),

f1 : B1 � A1 ∨ C1 f2 : B2 � A2 ∨ C2

∧( f1, f2) =dn
∨
e ′A1,A2,C1,C2

◦ ( f1 ∧ f2) : B1 ∧ B2 � (A1 ∧ A2) ∨ (C1 ∨ C2)

for
∧
e ′A,B,C,D =df dA,C,B∧D ◦ (1A ∧ (

∨
cC,B∧D ◦ dB,D,C)) ◦

∧
b←A,B,D∨C

◦

◦ (1A∧B ∧ ∨c D,C) : (A ∧ B) ∧ (C ∨ D) � (A ∧ C) ∨ (B ∧ D),

f1 : C1 ∧ A1 � B1 f2 : C2 ∧ A2 � B2

∨( f1, f2) =dn ( f1 ∨ f2) ◦
∧
e ′C1,C2,A1,A2

: (C1 ∧ C2) ∧ (A1 ∨ A2) � B1 ∨ B2

(see [12], Section 7.6, for
∨
e ′ and

∧
e ′),

f : B � A ∨ C

¬L f =dn
∨
Σ
′
A,C

◦ d¬A,A,C ◦
∧
c A∨C,¬A ◦ ( f ∧ 1¬A) : B ∧ ¬A � C

f : C ∧ A � B

¬Rf =dn (1¬A ∨ f ) ◦
∨
c¬A,C∧A ◦ dC,A,¬A ◦

∧
∆
′
A,C : C � ¬A ∨ B

To define the remaining Gentzen operations, we need some preparation. For every proper∧-contextX we define
inductively as follows an objectEX of S:

E ∧B = EB∧ = B,

EX∧B = EX ∧ B, for X proper,

EB∧X = B ∧ EX , for X proper.

For every proper ∧-context X and every objectA of S we define inductively as follows an arrow term
∧
τ X,A: EX ∧ A � X (A) S:

∧
τ B∧ ,A =df 1B∧A : B ∧ A � B ∧ A,

∧
τ B∧X,A =df (1B ∧ ∧τ X,A) ◦

∧
b←B,EX ,A : (B ∧ EX ) ∧ A � B ∧ X (A),

for X proper,
∧
τ ∧B,A =df

∧
c B,A : B ∧ A � A ∧ B,

∧
τ X∧B,A =df (

∧
τ X,A ∧ 1B) ◦

∧
b→EX ,A,B

◦ (1EX ∧ ∧c B,A) ◦
∧
b←EX ,B,A:

(EX ∧ B)∧ A � X (A) ∧ B, for X proper.

For everyproper∨-contextY wedefine inductively as follows an objectDY of S:
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D ∨B = DB∨ = B,

DY∨B = DY ∨ B, for Y proper,

DB∨Y = B ∨ DY , for Y proper.

For every proper ∨-context Y and every objectA of S we define inductively as follows an arrow term
∨
τY,A: Y (A) � A ∨ DY of S:

∨
τ ∨B,A =df 1A∨B : A ∨ B � A ∨ B,

∨
τY∨B,A =df

∨
b←A,DY ,B

◦ (∨τY,A ∨ 1B) : Y (A) ∨ B � A ∨ (DY ∨ B),

for Y proper,
∨
τ B∨ ,A =df

∨
c A,B : B ∨ A � A ∨ B,

∨
τ B∨Y,A =df

∨
b←A,B,DY

◦ (
∨
c A,B ∨ 1DY ) ◦

∨
b→B,A,DY

◦ (1B ∨ ∨τY,A) :
B ∨ Y (A) � A ∨ (B ∨ DY ), for Y proper.

For f : A � B, the following equations hold inS:

(
∧
τ nat) X ( f ) ◦

∧
τ X,A = ∧

τ X,B ◦ (1EX ∧ f ),

(
∨
τ nat) ( f ∨ 1DY ) ◦

∨
τY,A = ∨

τY,B ◦ Y ( f );

they are proved by applying naturality equations.

It is clear that forξ ∈ {∧,∨} and
ξ
τ X,A: A1 � A2 there is an arrow term

ξ
τ−1

X,A: A2 � A1 of S, which isa “mirror

image” of
ξ
τ X,A, such that inS we have

ξ

τ−1
X,A

◦ ξ

τ X,A = 1A1,
ξ

τ X,A ◦
ξ

τ−1
X,A = 1A2.

For example, with

∧
τ F∧((C∧ )∧B),A = (1F ∧ (

∧
b→C,A,B

◦ (1C ∧ ∧c B,A) ◦
∧
b←C,B,A)) ◦

∧
b←F,C∧B,A

we have

∧
τ−1

F∧((C∧ )∧B),A =
∧
b→F,C∧B,A

◦ (1F ∧ (
∧
b→C,B,A

◦ (1C ∧ ∧c A,B) ◦
∧
b←C,A,B)).

Officially,
ξ

τ−1
X,A is defined inductively as

ξ

τ X,A, in adual manner.
Next, we introduce the following abbreviation:

dX,A,Y =df
∨
τ−1

Y,X (A)
◦ (∧τ X,A ∨ 1DY ) ◦ dEX ,A,DY

◦ (1EX∧ ∨τY,A) ◦ ∧τ−1
X,Y (A) :

X (Y (A)) � Y (X (A)).

When X or Y is , then we assume thatdX,A,Y stands for 1X (Y (A)), which is of type X (Y (A)) � Y (X (A)), i.e.
Y (A) � Y (A) or X (A) � X (A).

We can finally define the remaining Gentzen operations, which are all of the following form:

g : B � Y (A) f : X (A) � C

cutX,Y ( f, g) =dn Y ( f ) ◦ dX,A,Y ◦ X (g) : X (B) � Y (C)

This concludes the definition of Gentzen operations. The set of Gentzen terms is the smallest set containing primitive
Gentzen terms and closed under the Gentzen operations above.

It is easy to infer fromDS Coherence ofSection 4that the followingequations hold inS:
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(d∧X) dA∧X,C,Y = dA∧ ,X (C),Y ◦ (1A ∧ dX,C,Y ),

(d X∧) dX∧A,C,Y = d ∧A,X (C),Y ◦ (dX,C,Y ∧ 1A),

(d∨Y ) dX,C,A∨Y = (1A ∨ dX,C,Y ) ◦ dX,Y (C),A∨ ,

(dY∨) dX,C,Y∨A = (dX,C,Y ∨ 1A) ◦ dX,Y (C), ∨A.

The equation (d∧X) is analogous to the equation(d∧) of Section 2, while (d∨Y ) is analogous to(d∨) of Section 2.
We can then prove the following.

Gentzenization Lemma. Every arrow of S is denoted by a Gentzen term.

Proof. We first show by induction on the complexity ofA that for every A the arrow 1A : A � A is denoted by a
Gentzen term. For A being aletter, or�, or⊥, this is trivial. For the induction step we use the following equations
of S:

(∧) ⊥→⊥→ ∨
B→∧(⊥← f1,⊥← f2) = f1 ∧ f2,

(∨) �←�← ∧
B→∨(�→ f1,�→ f2) = f1 ∨ f2.

For (∧) we use

∨
e ′A1,A2,⊥,⊥ = (1A1∧A2 ∨

∨
δ←⊥ ) ◦

∨
δ←A1∧A2

◦ (
∨
δ→A1
∧ ∨δ→A2

),

which follows essentially from (
∨
b
∨
δ ) and (d

∨
δ ) of Section 5(we may apply here the Symmetric Bimonoidal Coherence

of [12], Section 6.4, which reduces to Mac Lane’s symmetric monoidal coherence of [19]; see [20], Section VII.7,
and [12], Section 5.3). We proceed analogously for (∨).

We also have for the induction step the following equations ofS:

⊥→¬R ∧
C ¬L⊥←1A = �←¬L ∨

C ¬R�→1A = 1¬A,

for which we use (d
∨
δ ) and (

∨
Σ ′

∧
∆′), among other equations. The Gentzen term that denotes1A is written1A.

Next we have the following in S:
∧
B→1(A∧B)∧C =dn

∧
b→A,B,C ,

∨
B→1A∨(B∨C) =dn

∨
b→A,B,C ,

∧
B←1A∧(B∧C) =dn

∧
b←A,B,C ,

∨
B←1(A∨B)∨C =dn

∨
b←A,B,C ,

∧
C 1B∧A =dn

∧
c A,B ,

∨
C 1B∨A =dn

∨
c A,B ,

cutA∧ , ∨C (1A∧B , 1B∨C) =dn dA,B,C ;

by using abbreviations according to (∧) and (∨) above,

�← ∧
C (1A ∧ ¬R�→1B) =dn

∧
∆B,A,

⊥→ ∨
C (¬L⊥←1B ∨ 1A) =dn

∨
Σ B,A,

∧
C �→1A =dn

∧
δ→A , ⊥→1A∨⊥ =dn

∨
δ→A ,

�← ∧
C 1A∧� =dn

∧
δ←A , ⊥←1A =dn

∨
δ←A .

For the equations involving
∧
∆B,A and

∨
Σ B,A we rely on (d ∧σ ) and (d

∨
δ ) of Section 5, andon other equations, called

stem-increasing equations in [13] (Section 2.5) and [14] (Section 6).
For composition we have the following equation ofS:

cut , ( f, g) = f ◦ g,

and for the operations∧ and∨ on arrows we have the equations (∧) and (∨) above. �
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7. Cut elimination in S

For the proof of the Cut-Elimination Theorem below we willintroduce analogues of Gentzen’s notions of rank and
degree. We need some preliminary definitions to define these notions.

For ξ ∈ {∧,∨}, we define first by induction the notion ofξ -superficial subformula of a formula ofL�,⊥,¬,∧,∨:

A of the formp,⊥, A1 ∨ A2, or¬A′, is a∧-superficial subformula ofA;
A of the formp,�, A1 ∧ A2, or¬A′, is a∨-superficial subformula ofA;
if A is a ξ -superficial subformula ofB, thenA is a ξ -superficial subformula ofB ξ C andC ξ B.

Consider a Gentzen termf of the form

∧( f1, f2) : B1 ∧ B2 � (A1 ∧ A2) ∨ (C1 ∨ C2).

The∨-superficial subformulaA1 ∧ A2 that is the left disjunct of the target off is called theleaf of f . All the other
∨-superficial subformulae of the target off , whichare subformulae ofC1 or C2, and all the∧-superficial subformulae
of the source off , whichare subformulae ofB1 or B2, are called lower parameters of f .

To every lower parameterx of f , there corresponds unambiguously a subformulay in the target or the source
of either f1 : B1 � A1 ∨ C1 or f2 : B2 � A2 ∨ C2, which wecall theupper parameter of f corresponding to x. The
lower parameterx is a∧-superficial subformula of the source off if f the corresponding upper parametery is a
∧-superficial subformula of the source of eitherf1 or f2 (it cannot be in both), and analogously for parameters that
are∨-superficial subformulae of targets. Ify is in the type of f1, then f1 is called thesubterm of f for the upper
parameter y, and analogously forf2.

For example, iff is

∧(1p∨q ,⊥←1r ) : (p ∨ q) ∧ r � (p ∧ r) ∨ (q ∨⊥),

thenp∧r in the target is the leaf of f , while q in the target off andp ∨ q andr in the source of f are lower parameters
of f . To the lower parameterq of f corresponds the upper parameter off that is the occurrence ofq in the target of
the subterm1p∨q : p ∨ q � p ∨ q for this upper parameter; to the lower parameterp ∨ q of f corresponds the upper
parameter off that is the source of the subterm1p∨q for this upper parameter; and to the lower parameterr of f
corresponds the upper parameter off that is the source of the subterm⊥←1r : r � r ∨ ⊥ for this upper parameter.
Note that the subformula⊥ in the target off is not a∨-superficial subformula of this target, and hence is not a lower
parameter off .

If the Gentzen termf is of the form

∨( f1, f2) : (C1 ∧ C2) ∧ (A1 ∨ A2) � B1 ∨ B2,

then the∧-superficial subformulaA1 ∨ A2 that is the right conjunct of the source off is the leaf of f , while all the
other∧-superficial subformulae of the source off and the∨-superficial subformulae of the target off are the lower
parameters off . The upper parameters off corresponding to these lower parameters, and the subterms off for these
upper parameters, are defined analogously to what we had in the previous case.

The leaf of¬L f : B ∧ ¬A � C is the∧-superficial subformula¬A that is the right conjunct of its source, while
the leaf of¬R f : C � ¬A ∨ B is the∨-superficial subformula¬A that is the left disjunct of its target. In both cases,
the remaining∧-superficial subformulae of the source or the remaining∨-superficial subformulae of the target are
lower parameters, to whom correspond, analogously to what we had before, upper parameters in the source or target
of the subtermf for these upper parameters.

If our Gentzen term is of the form
∧
B←X f,

∧
B→X f,

∨
B→Y f,

∨
B←Y f,

∧
C X f,

∨
CY f,�→ f,�← f,⊥← f,⊥→ f, or cutX,Y ( f, g),

then it has no leaves, and all the∧-superficial subformulae of its source and all the∨-superficial subformulae of its
target are lower parameters, to which upper parameters correspond in an obvious manner.

Finally, the Gentzen term1p : p � p has two leaves, which are its sourcep and its targetp. There are no parameters
of 1p, either lower or upper. The Gentzen term1� : � � � has asits leaf the target�, andno parameters (the source
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� of 1� is not a∧-superficial subformula of itself). The Gentzen term1⊥ : ⊥ � ⊥ has asits leaf the source⊥, andno
parameters (the target⊥ of 1⊥ is not a∨-superficial subformula of itself).

Let x be a∧-superficial subformula of the source of a Gentzen termf or a∨-superficial subformula of the target
of f . Then thecluster of x in f is a sequence of occurrences of formulae defined inductively as follows:

if x is a leaf of f , then the cluster ofx in f is x ,
if x is not a leaf of f , thenx is a lower parameter off , and fory1 being the upper parameter off corresponding
to x , take theclustery1 . . . yn, wheren ≥ 1, of y1 in the proper subterm f ′ of f that is the subterm off for the
upper parametery1 (the sequencey1 . . . yn is already defined, by the induction hypothesis); the cluster ofx in f is
the sequencexy1 . . . yn.

All occurrences of formulae in a cluster areξ -superficial subformulae forξ being one of∧ and∨. If ξ is ∧, then
the cluster is asource cluster, and ifξ is∨, then it is atarget cluster.

A cut is a Gentzen term of the formcutX,Y ( f, g). Forg : B � Y (A) and f : X (A) � C let the formula A be called
the cut formula of the cutcutX,Y ( f, g). Let x be the displayed occurrence ofA in the sourceX (A) of f , and let
s be the length of the cluster ofx in f (we write s because we have here a source cluster). Lety be the displayed
occurrence ofA in the targetY (A) of g, and lett be the length of the cluster ofy in g (we write t because we have
here a target cluster).

Depending on the form ofA, we definea numberr , which wecall the rank of the cutcutX,Y ( f, g). If the cut
formula A is of the formp or¬A′, then

r = min(s, t)−1, if A is p,

r = s+t−2, if A is¬A′.

(As a matter of fact, whenA is p, we could stipulate thatr is eithers+t−2, as when it is¬A′, or s−1, ort−1, but the
computation of rank that we have introduced makes the cut-elimination procedure run faster, and does not complicate
the proof.)

If the cut formulaA is of the form� or A1 ∧ A2, thenr = t−1. If, finally, the cut formulaA is of the form⊥ or
A1 ∨ A2, thenr = s−1.

We define thedegree d of a cut as the number of occurrences of∧, ∨ and¬ in its cut formula. Thecomplexity of
a cut isthe ordered pair(d, r), whered is its degree andr its rank. The complexities of cuts are lexicographically
ordered (i.e.,(d1, r1) < (d2, r2) iff d1 < d2, or d1 = d2 andr1 < r2).

A Gentzen term is calledcut-free when no subterm of it is a cut. A cutcutX,Y ( f, g) is topmost when f andg
are cut-free. (Since in the proof below, we compute the rank only for topmost cuts, our definition of cluster can be
shortened a little bit by not considering the parameters of cuts; but this is not a substantial shortening.)

We can then prove the following.

Cut-Elimination Theorem. For every Gentzen term h there is a cut-free Gentzen term h′ such that h = h′ in S.

Proof. It suffices to prove the theorem whenh is a topmost cut. We proceed by induction on the complexity(d, r) of
this topmost cut.

Supposer = 0 andd = 0. Thenh can be of one of the following forms:

cutX, ( f, 1A) for A beingp or�,

cut ,Y (1A, g) for A beingp or⊥,

and we have inS

cutX, ( f, 1A) = f ,

cut ,Y (1A, g) = g.

This settles the basis of the induction.
Supposer = 0 andd > 0. Then the cut formula must be of the formA1 ∧ A2 or A1 ∨ A2 or¬A′. In the firstcase,

for f : X (A1 ∧ A2) � D, g1 : B1 � A1 ∨ C1 andg2 : B2 � A2 ∨ C2 we have the equation

cutX, ∨(C1∨C2)( f,∧(g1, g2)) =
∨
B←cutX ′′, ∨C2(cutX ′, ∨C1( f, g1), g2)
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whereX ′(C) is X (C ∧ A2) andX ′′(C) is X (B1 ∧ C). To prove this equation we apply naturality equations andDS
Coherence ofSection 4.

The complexity of the topmost cutcutX ′, ∨C1( f, g1) is (d ′, r ′) with d ′ < d, and we can apply the induction
hypothesis to obtain a cut-free Gentzen termf ′ equal to it inS. The complexity of the topmost cutcutX ′′, ∨C2( f ′, g2)

is (d ′′, r ′′) with d ′′ < d, and we can again apply the induction hypothesis.
In the case where the cut formula isA1 ∨ A2, we have an analogous equation, for which we use againDS

Coherence, and we reason analogously, applying the induction hypothesis twice.
In the case where the cut formula is¬A′, for f : D ∧ A′ � E andg : B � A′ ∨ C we have the equation

cutB∧ , ∨E (¬Lg,¬R f ) = ∨
C

∧
C cutD∧ , ∨C ( f, g),

which holds by naturality equations andPN¬ Coherence ofSection 4. Then we apply the induction hypothesis to the
topmost cut on the right-hand side, which has a smaller degree.

Suppose nowr > 0. If r was computed ass−1, or ass+t−2, wheres > 1, then we may apply equations ofS of
the following form

(∗) cutX,Y (γ f ′, g) = γ1 . . . γncutX ′,Y ( f ′, g)

for γ , γ1, . . . , γn unary Gentzen operations. If(d, r) is the complexityof the topmost cutcutX,Y (γ f ′, g), then the
complexity of the topmost cutcutX ′,Y ( f ′, g) is (d, r − 1), and so we may apply to it the induction hypothesis.

If γ is aunary Gentzen operation different from�→, �←, ⊥← and⊥→, then so areγ1, . . . , γn , and toprove(∗)
we apply naturality equations andPN¬ Coherence (sometimesDS Coherence suffices, depending onγ ). We have
analogous equations involving binary Gentzen operations, which are proved analogously, relying onDS Coherence
(cf. [12], Section 11.2, Case (6), where on p. 251, in the second line∧R( f, cut(g, h)) should be replaced by
∧R(g, ( f, h)), and inthe third linecut(g, h) should be replaced bycut( f, h)).

If γ in (∗) is�→, thenn = 1 andγ1 is�→. To prove(∗), we then apply essentially the equation

Y (
∧
σ→X (A))

◦ dT∧X,A,Y = dX,A,Y ◦
∧
σ→X (Y (A)),

which we obtain with the help of (d∧X) of the preceding section, (d
∧
σ ) of Section 3.3, and (∨τ nat) of the preceding

section (as a matter of fact, we may apply here the Symmetric Bimonoidal Coherence of [12], Section 6.4). We
proceed analogously ifγ is�←.

If γ in (∗) is ⊥← or ⊥→, then we apply essentially Mac Lane’s symmetric monoidal coherence of [19] (see
also [20], Section VII.7, and [12], Section 5.3).

If r was computed ast−1, or ass+t−2, wheret > 1, then we proceed in a dual manner. Instead of(∗), we have
equations ofS of the following form:

cutX,Y ( f, γ g′) = γ1 . . . γncutX,Y ′( f, g′).

This concludes the proof of the theorem. �

8. Sc coherence

There is a functorG from the categoryS to Br, which isdefined as the functorG from PN¬ to Br (seeSection 4)

with the additional clauses that say thatGα is an identity arrow ofBr for α being
ξ

δ→A and
ξ

δ←A , whereξ ∈ {∧,∨}. It
follows from the existence of these functors andPN¬ Coherence ofSection 4thatPN¬ is isomorphic to a subcategory
of S (cf. [12], Section 14.4).

The following theorem can be proved with the help of theCut-Elimination Theoremof the preceding section.

Conservativeness Theorem. If A and B are objects of PN¬, then for every arrow f : A � B of S there is an arrow
term f ′ : A � B of PN¬ such that f = f ′ in S.

This theorem implies thatPN¬ is isomorphic to a full subcategory ofS. In these isomorphisms every object ofPN¬
is mapped to itself,and so every object ofPN¬ in S is in the image ofPN¬.
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Let S′ be the full subcategory ofS whose objects are all the objectsA of S such that there is an isomorphism of
type A � A′ of S for A′ an object ofPN¬. Then wecan restrict the functorG from S to Br to a functorG from S′ to
Br, for which wecan prove the following, relying on the Conservativeness Theorem.

S′ Coherence. The functor G from S′ to Br is faithful.

Proof. SupposeA andB are objects ofS′, and let jA : A � A′ and jB : B � B ′ be isomorphisms ofS for A′ andB ′
objects ofPN¬. Suppose thatf1, f2 : A � B are arrows ofS, i.e. ofS′, such thatG f1 = G f2.

SincePN¬ is isomorphic to a full subcategory ofS such that every object ofPN¬ in S is in the image ofPN¬, we
have inS that

jB ◦ fi ◦ j−1
A = f ′i

for i ∈ {1, 2} and f ′i an arrow term ofPN¬. It follows thatG f ′1 = G f ′2, and, according to what we said immediately
after the definition of the functorG from S to Br, by PN¬ Coherence we have thatf ′1 = f ′2 in PN¬, andhence also in
S. So f1 = f2 in S. �

The categoryS′ is a category equivalent toPN¬, andits coherence is a consequence ofPN¬ Coherence. We can
find full subcategories ofS′ that are notonly equivalent, but also isomorphic, toPN¬.

Let Sc be the full subcategory ofS whose objects are all the objectsA of S such that there is an isomorphism of
type A � A′ of S for A′ being either an object ofPN¬, or�, or⊥. Then wecan restrict the functorG from S to Br to
a functorG from Sc to Br, for which wecan prove the following, relying on the Conservativeness Theorem and onS′
Coherence.

Sc Coherence. The functor G from Sc to Br is faithful.

Proof. There is no arrow of type� � ⊥ in S. (Otherwise, classical propositional logic would be inconsistent.) There
is also no arrow of type⊥ � � in S. If f : ⊥ � � were such an arrow, then we would have inS the arrow

((
∧
δ→p ◦ (1p ∧ f )) ∨ 1q) ◦ dp,⊥,q ◦ (1p ∧ ∨

σ←q ) : p ∧ q � p ∨ q.

Hence, by the Conservativeness Theorem, there would be an arrow termf ′ : p ∧ q � p ∨ q of PN¬, and thatsuchan
f ′ doesnotexist can be shown by appealing to the connectedness condition of proof nets (see [8]).

SupposeA and B are objects ofSc; so A and B are isomorphic inS to respectivelyA′ and B ′ each of which is
either an object ofPN¬, or�, or⊥. Suppose thatf1, f2 : A � B are arrows ofS, i.e. ofSc, such thatG f1 = G f2.

As we have seen above, it is excluded that one ofA′ andB ′ is� while the other is⊥. If A′ andB ′ are objects of
PN¬, then we apply S′ Coherence.

Let S+p be S generated byP ∪ {p} for a letter p foreign toP, andhence also toA and B. Let S′+p be theS′
subcategory ofS+p. In the remaining cases, if eitherA′ or B ′ is �, thenG( f1 ∧ 1p) = G( f2 ∧ 1p). It is easy to
see thatf1 ∧ 1p, f2 ∧ 1p : A ∧ p � B ∧ p are arrows ofS′+p, and so f1 ∧ 1p = f2 ∧ 1p in S+p by S′ Coherence
applied toS′+p . Then inS generated byP we havef1 ∧ 1� = f2 ∧ 1� (we just substitute� for p in the derivation of
f1 ∧ 1p = f2 ∧ 1p in S+p), and so we have inS

f1= f1 ◦
∧
δ→A ◦

∧
δ←A , by (

∧
δ
∧
δ),

= ∧
δ→B ◦ ( f1 ∧ 1�) ◦

∧
δ←A , by (

∧
δ→ nat),

= ∧
δ→B ◦ ( f2 ∧ 1�) ◦

∧
δ←A

= f2.

If either A′ or B ′ in the remaining cases is⊥, thenG( f1 ∨ 1p) = G( f2 ∨ 1p), and we proceed analogously. �
LetL�,∧,→ be the propositional language generated byP with the nullary connective� and the binary connectives

∧ and→. The formulae ofL�,∧,→ are the objects of the free symmetric monoidal closed categorySMC generated
byP (see [20], Section VII.7, and [13], Section 3.1).
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We call a formulaA of L�,∧,→ consequential when for everysubformulaB → C of A we have that eitherB is
letterless orC has letters occurringin it. An alternative way to characterize consequential formulae is to say that these
are formulaeA of L�,∧,→ for which there is an isomorphism of typeA � A′ of SMC such that either� does not
occur inA′ or A′ is�. (To establish the equivalence of these two characterizations, one may rely on the results of [9].)

Let SMCc be the full subcategory ofSMC whose objects are consequential formulae. With an appropriate
definition of the functorG from SMCc to Br, Kelly and Mac Lane’s coherence theorem for symmetric monoidal
closed categories of [17] amounts to the assertion that the functorG from SMCc to Br is faithful. BothS′ Coherence
andSc Coherence are analogous to this result of Kelly and Mac Lane. ForSc Coherence the analogy is complete.

The proof of the Conservativeness Theorem is accomplished with the help of a technical lemma, for whose
formulation we introduce the following terminology.

An object ofS, i.e. a formula ofL�,⊥,¬,∧,∨, is constant-free when neither� nor⊥ occurs in it. In other words, the
constant-free objects ofS are the objects ofPN¬.

An object ofS is calledliterate when at least one letter occurs in it; otherwise, it isletterless. Every constant-free
formula is literate (but not conversely).

For ξ ∈ {∧,∨}, we define inductively when a formula ofL�,⊥,¬,∧,∨ is ξ -nice:

� is∧-nice and⊥ is∨-nice;

constant-free objects ofS areξ -nice;

if A andB areξ -nice, thenA ξ B is ξ -nice.

For a ξ -nice formulaA we define inductively an arrow term
ξ
ρA: A � Ar of S suchthat Ar is constant-free ifA is

literate,Ar is� if A is letterless and∧-nice, andAr is⊥ if A is letterless and∨-nice:

∧
ρ� = 1�,

∨
ρ⊥ = 1⊥,

ξ

ρA = 1A, for A constant-free,
ξ

ρAξ B =
ξ

ρA ξ
ξ

ρB , for A andB literate,

ξ

ρAξ B =
ξ

δ→A ◦ (
ξ

ρA ξ
ξ

ρB), for B letterless,
ξ

ρAξ B =
ξ

σ→B ◦ (
ξ

ρA ξ
ξ

ρB), for A letterless.

It is clear that
ξ

ρ A is an isomorphism ofS, with inverse
ξ

ρ−1
A : Ar � A.

The Conservativeness Theorem is a corollary of the following lemma (we just instantiate statement (1) of this
lemma).

Lemma. Let f : A � B be an arrow of S such that A is ∧-nice and B is ∨-nice.

(1) If both A and B are literate, then there is an arrow term f r : Ar � Br of PN¬ such that in S we have

∨
ρB

◦ f ◦ ∧ρ−1
A = f r.

(2) If A is letterless and B is literate, then for every constant-free C there is an arrow term f r : C � C ∧ Br of PN¬
such that in S we have

(1C ∧ (
∨
ρB

◦ f ◦
∧
ρ−1

A )) ◦
∧
δ←C = f r.

(3) If A is literate and B is letterless, then for every constant-free C there is an arrow term f r : Ar ∨ C � C of PN¬
such that in S we have

∨
σ→C ◦ (( ∨ρB

◦ f ◦ ∧ρ−1
A ) ∨ 1C) = f r.

The proof of this lemma, which may be found in [13] (Section 4.3), is based on the Gentzenization Lemma and the
Cut-Elimination Theorem of the preceding two sections. We take thatf in the lemma is a cut-free Gentzen term, and
we proceed by induction on the complexity off .
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