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We construct a model in which there are no +n -Aronszajn trees for any finite
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1. INTRODUCTION

We will prove the following theorems.

Theorem 1. If ``ZFC+there exist infinitely many supercompact
cardinals '' is consistent, then ``ZFC+there are no +n-Aronszajn trees for
2�n<|'' is also consistent.

Theorem 2. If ``ZFC+there exists a supercompact cardinal with a
weakly compact cardinal above it '' is consistent then ``ZFC+there exists }
a strong limit cardinal of cofinality | such that there are no }++-Aronszajn
trees '' is also consistent.

We start by recalling the definition of ``}-Aronszajn tree'' and some
related concepts.
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Definition 1.1. Let } be regular:

1. A }-tree is a tree of height } whose every level has size less than }.

2. A }-Aronszajn tree is a }-tree with no cofinal branch.

3. } has the tree property iff there is no }-Aronszajn tree.

4. A *+-tree T is special iff there is a function F : T � * such that
x<T y implies F(x){F( y).

Aronszajn trees arise naturally in infinitary combinatorics, and the tree
property has been investigated by many set theorists. We list a few classical
results:

v (Ko� nig [6]) +0 has the tree property.

v (Aronszajn, see [9]) +1 does not have the tree property.

v (Specker [15]) If {<{={ then there is a special {+-tree. In
particular CH implies that +2 fails to have the tree property.

v If } is strongly inaccessible, } has the tree property if and only if
} is weakly compact.

v (Mitchell [14]) The theories ``ZFC+there exists a weakly compact
cardinal'' and ``ZFC++2 has the tree property'' are equiconsistent.

The construction from [14] is quite general. Let $<} with $ regular and
} weakly compact; there is a forcing which preserves cardinals up to $+,
makes 2$=$++=}, and preserves the tree property of } in the generic
extension. In the other direction, any cardinal with the tree property in V
will be weakly compact in L.

It is natural to ask whether two small cardinals can simultaneously have
the tree property. It turns out that starting from two weakly compact
cardinals it is fairly easy to make a model where (for example) 2+0=2+1=
+2 , 2+2=2+3=+4 , and both +2 and +4 have the tree property. However a
naive approach will fail if one starts with two weak compacts and tries to
make them into successive cardinals with the tree property.

This is more than just a technical problem; Magidor (see [1]) showed
that getting a pair of successive cardinals to have the tree property requires
at least a measurable cardinal. This result was improved by Foreman and
Magidor to show that a strong cardinal is required. Abraham [1] showed
that using large enough cardinals this situation is consistent; he started
with $<}<* wich are respectively regular, supercompact, and weakly
compact and forced to make 2$=$++=}, 2$+

=$+++=*, preserving the
tree property at } and *.

In the first part of this paper we will start with | supercompact cardinals
(}n : n<|) and will collapse so that }n becomes +n+2 and still enjoys the
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tree property. The idea is essentially to iterate Abraham's forcing from [1],
although there are several new technical problems that have to be coped
with. The authors discovered the construction independently in slightly
different versions; Cummings' version is the one given there.

We will also discuss the tree property for }++, where } is singular strong
limit. Since 2}=}+ O (}+)<}+

=}+, there will be a special }++-tree
unless the Singular Cardinals Hypothesis fails at }. Foreman showed that
the tree property can hold in this situation, and in the second part of the
paper we will give the proof. The method can be used to show that +|+2

can have the tree property.
The tree property at successors of singulars is a problem with a different

flavour, since here there are connections with the existence of weak squares
and much larger cardinals are used in the consistency proofs. It is proved
in [11] that +|+1 can have the tree property. The consistency of +|+1

and +|+2 having the tree property simultaneously (or even of +|+1 having
the tree property with 2+|>+|+1) is open. We also do not know whether
``the tree property holds for all +n with 2�n<| and for +|+1'' is
consistent.

We would like to thank Menachem Magidor for a very helpful discus-
sion of the material of Section 7.

2. PRELIMINARIES

In this section we collect some technical definitions and facts for later
use. The impatient reader is advised to skip ahead to the next section and
refer back if necessary.

2.1. Forcing Conventions

We mostly follow the notation and forcing conventions of [7]. In
particular a forcing P is a preordering with a distinguished maximum
element 1P , ``p�q'' means that p is stronger than q, and ``}-closed'' means
that descending sequences of length less than } have lower bounds. We will
write ``p� P q'' when there is a possibility of confusion about which ordering
is meant. For iterated forcing we mostly follow the conventions of [2].

Recall that a forcing is separative iff p�q � p &&q̂ # G4 . Not all of the
forcings in this paper will have this property.

We will use VP to denote the class of P-names and will use V[P] to
denote a generic extension by some unspecified P-generic filter. When we
have a particular generic filter G in mind we will use V[G] to denote the
extension by G.

We will need several refinements and variations of the standard chain
condition and closure properties.

3TREE PROPERTY
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Definition 2.1. Let } be regular; let P be some forcing:

1. P is }-Knaster if and only if for all sequences (p: : :<}) from P
there is X unbounded in } such that ( p: : : # X) consists of pairwise com-
patible elements.

2. P is }-directed closed if and only if every directed subset of P of
size less than } has a lower bound.

3. P is canonically }-directed closed if and only if every directed sub-
set of P of size less than } has a greatest lower bound.

4. P is <}-distributive if and only if every family of fewer than }
many dense open sets has a nonempty intersection. This is equivalent to
the property that no sequence of ordinals of length less than } is added
by P.

The following easy fact will be useful later.

Lemma 2.2. Let P be canonically }-directed closed, let G be a P-generic
filter over V, and let A�G, where V[G]<|A|<}. Then A # V, A is directed,
and the greatest lower bound of A is a member of G.

2.2. Trees and Forcing

It will be important in what follows to know that certain kinds of forcing
cannot add branches to a tree.

Lemma 2.3 (Kunen and Tall [8]). Let } be regular, let P be }-Knaster,
and suppose that T is a tree of height } with no cofinal branch. Then T has
no cofinal branch in V[P].

Proof. Suppose not, and let b4 # VP be a name for a cofinal branch of
the tree T. Choose for each : a condition p: such that p: forces the element
of b on level : to be a particular point x: . Now using the Knaster property
we may find X�} of cardinality } such that [ p: : : # X] is pairwise com-
patible. But then [x: : : # X] is a cofinal linearly ordered subset of T in V,
which can easily be extended to a cofinal branch. Contradiction. K

It is crucial to the intended application of Lemma 2.3 that it applies to
all trees of height }, not just to }-trees. By contrast, the next lemma is
specific to }-trees.

Lemma 2.4 (Silver). Let {, } be regular and suppose {<}�2{. Let P be
{+-closed, let T be a }-tree. Then every branch of T in V[P] is in fact a
member of V.
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Proof. We may assume that { is minimal with 2{�}. Let b4 # VP name
a new branch. Now we may build by induction for each s #�{+1 2 condi-
tions ps and points xs of T with the following properties:

1. If s properly extends t then ps�pt , xs>T xt .

2. ps forces xs is on the branch b4 .
3. For each : the points [xs : s # :2] are all on the same level of T,

say level ': .

4. For each s # <{2 the points xs � 0 and xs � 1 are incompatible.

The minimal choice of { ensures that for :<{ the set [xs : s # :2] has size
less than }, so that we can choose ':+1 . The closure of P guarantees that
the construction works at limit stages.

This leads to a contradiction, because the level '{ of T must have fewer
than } elements, yet we have constructed 2{ many distinct ones. K

2.3. Cohen Forcing

We need a careful analysis of the properties of Cohen forcing, as this for-
cing will be the key building-block in the main construction.

Definition 2.5. Let } be regular; let X be a set of ordinals. Then
Add(}, X ) is the forcing whose conditions are functions p such that
dom( p)�X, rge( p)�2, |dom( p)|<}. The ordering is by extension.

When we have defined P=Add(}, *) and '<*, we will often use ``P � '''
as a convenient shorthand for Add(}, '). Notice that Add(}, ') is a
complete subordering of Add(}, *).

It is easy to see that Add(}, *) is canonically }-directed closed, and a
standard 2-system argument (see [7]) shows that Add(}, *) is (2<})+-
Knaster. It turns out that if we want to add subsets to } in a model where
2<} is big, via a forcing which has some reasonable chain condition, then
it can be helpful to look at Cohen forcing defined in some inner model
where 2<} is small. This is the motivation behind the following lemma,
which is implicit in [1].

Lemma 2.6 (Abraham). Let {<} and assume that V < ``{ is regular''
and V < ``} is inaccessible.'' Let P=Add({, '). Let W$V be a model of
ZFC such that

1. } and { are still cardinals in W.

2. If X # W is a set of ordinals such that W <|X |<}, then there is
Y$X such that Y # V and V <|Y |<}.

Then P has the }-Knaster property in W.

5TREE PROPERTY
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Proof (Sketch). Working in W, mimic the usual 2-system argument.
Use the inaccessibility of } in V and the ``covering'' property to show that
the argument goes through. K

2.4. Projections

Another key idea in [1] is to use the concept of a projection from one
forcing to another. We collect some more or less standard information
about projections in a series of definitions and lemmas. The proofs are
routine.

Definition 2.7. Let P and Q be forcings. Then ? : P � Q is a projec-
tion if and only if

1. p1�p0 O ?( p1)�?( p0).

2. ?(1P )=1Q .

3. \p # P \q�?( p) _p1�p ?( p1)�q.

Notice that ? ``P is dense in Q, by setting p=1P in clause 3.

Lemma 2.8. Let ? : P � Q be a projection. Then

1. If G is P-generic over V, then H=[q : _p # G ?( p)�q] is Q-generic
over V.

2. Let H be Q-generic over V. Let P� =[ p : ?( p) # H], ordered as a
suborder of P. Then P� is nonempty, and if G is P� -generic over V[H] then
G is P-generic over V. Moreover, ?``G generates H.

3. Let G be P-generic, and define H as in 1 and then P� as in 2. Then
G�P� , and G is P� -generic over V[H]. That is, we can factor forcing with
P as forcing with Q followed by forcing with P� over V[Q].

Some projections have a stronger property, which enables us to give a
slightly different factor analysis.

Definition 2.9. Let P and Q be forcings. Then ? : P � Q is a good pro-
jection if and only if

1. p1�p0 O ?( p1)�?( p0).

2. ?(1P )=1Q .

3. For all p # P and q�?( p) there is p1�p such that

(a) ?( p1)=q.

(b) For all r�p, if ?(r)�q then r�p1 .
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Notice that the p1 in part 3 of the definition is essentially unique, because
if p$1 also has these properties then it is easy to see that p1�p$1�p1 . We let
Ext( p, q) denote some extension of p with these properties.

Lemma 2.10. Let ? : P � Q be a good projection and suppose that H is
Q-generic. Let P� =[ p # P : ?( p) # H] and define an ordering �* on P� by

p�* q � _r�?( p)(r # H 7 Ext( p, r)�q).

Then forcing over V[H] with P� ordered as a subset of P is equivalent to
forcing over V[H] with P� ordered by �*.

In the case which we will be using later, P is an iteration, Q=P � ; is
an initial segment of P, and ? : p [ p � ;. In this case Ext( p, q)=q �

( p � dom( p)";).
Suppose that P and Q are two forcings with the same underlying set but

different orderings, and suppose that the identity function projects P to Q.
If G is P-generic, G is directed as a subset of Q and generates a generic
filter H on Q. If H is Q-generic then forcing with H considered as a sub-
order of P produces a P-generic G such that G�H, and G generates H.

It is important to notice that the constructions of this section can
produce nonseparative posets.

2.5. Easton's Lemma

As we mentioned in Section 2.3 we will be interested in analysing the
properties of forcings defined in inner models of the universe. The following
lemmas will be used for this purpose.

Lemma 2.11 (Easton's lemma). Let } be regular. If P has the }-chain
condition and Q is }-closed, then

1. &&Q P has the }-chain condition.

2. &&P Q is <}-distributive.

3. If G is P-generic over V and H is Q-generic over V, then G and H
are mutually generic.

4. With the same assumptions as the last claim, if X # V[G][H ] is a
set of ordinals and V[G][H ] <|X |<}, then there is Y$X in V such that
V <|Y |<}.

5. If R is }-closed, then &&P_Q R is <}-distributive.

7TREE PROPERTY
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Proof (Sketch). We take each claim in turn:

1. If A4 is a Q-name for an antichain of size } in P, we can build a
decreasing sequence of length } in Q such that element : of the chain
decides element : in the antichain. This gives us an antichain of size } in
V, contradiction.

2. If X is a sequence of ordinals of length less than } in V[Q_P]
then the last claim implies that X has a name t* of size less than } in
V[Q]P. Q is }-closed so t* # V and X # V[P].

3. Every maximal antichain of P in V[H] has size less than }, so is
in V.

4. X # V[G] and P is }-c.c.

5. R_Q is <}-distributive in V[P]. K

We make the remark that claims 4 and 5 will actually be true for any
extension intermediate between V and V[P_Q]. The next lemma is an
easy result with the same flavour as Easton's lemma.

Lemma 2.12. Let P be }-closed and let Q be <}-distributive, then

1. &&Q P is }-closed.

2. &&P Q is <}-distributive.

The final lemma is rather ad hoc and will be used to propagate some
inductive claims in the main construction.

Lemma 2.13. Let { be regular, and let A=Add({, ') for some '. Let }
be inaccessible with {<}. Then

1. If Q is }-c.c. and Q is a projection of P_U, where P is {-c.c. and
U is {-closed, then V[Q]< ``A is }-Knaster and <{-distributive.''

2. Suppose that V[Q] < ``Q* is a projection of Add({, `)V_U*'' and
also that V[Q]=``U* is }-closed.'' Then V[Q V Q4 *]< ``A is }-Knaster.''

Proof. A series of routine applications of Easton's lemma and Lem-
ma 2.6. K

2.6. Elementary Embeddings
We will assume familiarity with the theory of large cardinals and elemen-

tary embeddings, as developed, for example, in [5]. The following fact was
proved by Laver in [10] and used by him there as a kind of prediction
principle in a forcing iteration. Our application will be similar; we will use
it to build some degree of ``look-ahead'' into the main construction.

8 CUMMINGS AND FOREMAN
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Lemma 2.14 (Laver). If } is supercompact then there exists f : } � V}

with the following property: for all *, for all x # H*+ , there is j : V � M such
that j(})>*, *M�M, and j( f )(})=x.

We will frequently be interested in lifting elementary embeddings onto
some generic extension. The following lemma gives a necessary and suf-
ficient condition for this to be possible.

Lemma 2.15 (Silver). Let k : M � N be an elementary embedding
between inner models of ZFC. Let P # M be a forcing and suppose that G is
P-generic over M, H is k(P)-generic over N, and

k ``G�H.

Then there is a unique k+: M[G] � N[H] such that k+ � M=k and
k+(G)=H.

Proof. It is clear that if k+ exists, it must be given by the formula

k+(t* G)=k(t* )H

for t* # MP. It is fairly routine to use the truth lemma and elementarity to
check that this definition works. K

It is important to notice that in this result it need not be the case that
M=V, that N�M, or that H # M[G]. We also note a connection with the
theory [12] of proper forcing; if P # NOH% and ? : N � N� is the transitive
collapse map, then p # P is (N, P)-generic precisely when it forces that
G*=def ?``GP & N is ?(P)-generic over N� , and in this case we can lift ?&1

to get an embedding from N� [G*] to N[G].

PART 1. THE TREE PROPERTY FOR | SUCCESSIVE CARDINALS

In this part of the paper we will prove Theorem 1.

3. THE MAIN FORCING

3.1. Defining R

Before we define the main forcing, a few words of motivation may be in
order. The principal aim of the main forcing is to take cardinals {<} with
{ regular and } supercompact, and (while preserving all cardinals up to
{+) to force that 2{=}={++ and that } retains the tree property. We aim
to iterate the main forcing in a certain way, and stage n+1 of the iteration

9TREE PROPERTY
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will be defined using some forcing computed at stage n; this explains why
an inner model is one of the parameters in the definition of the main
forcing. The main forcing is also designed to make } have the tree property
in a very ``indestructible'' way, so the last parameter in the definition is a
function from } to V} whose role is to guess some information about sub-
sequent forcing extensions.

Definition 3.1. Let V�W be two models of set theory and suppose
that we have {, } such that W < ``{=cf({)<} and } is inaccessible.''
Let P=Add({, })V and suppose also that W < ``P is {+-c.c. and
<{-distributive.'' Let F # W be a function with F : } � (V})W . Define in W
a forcing

R=R({, }, V, W, F )

as follows. The definition is by induction; for each ;�} we will define a
forcing R � ;, and we will finally set R=R � }. To start the induction,
R � 0 is the trivial forcing. ( p, q, f ) is a condition in R � ; iff

1. p # P � ;=Add({, ;)V .

2. q is a partial function on ;, |q|�{, dom(q) consists of successor
ordinals, and if : # dom(q) then q(:) # W P � : and &&W

P � : q(:) #
Add({+, 1)W[P � :] .

3. f is a partial function on ;, | f |�{, dom( f ) consists of limit
ordinals, and dom( f ) is a subset of

[: : &&W
R � : F(:) is a canonically {+-directed-closed forcing].

4. If : # dom( f ) then f (:) # WR � : and &&W
R � : f (:) # F(:).

The conditions in R � ; are ordered

( p1 , q1 , f1)�( p, q, f )

if and only if

1. p1�p in P � ;.

2. For all : # dom( f ), p1 � : &&W
P � : q1(:)�q(:).

3. For all : # dom(q), ( p1 , q1 , f1) � : &&W
R � : f1(:)� f (:).

It is important to notice that if ( p, q, f ) # R and :<} then the term q(:)
depends only on P � :, while f (:) depends on R � :. It is also important
that the definition is made in the model W, and the only appearance of V
is as the model where the Cohen forcing P is to be defined.

10 CUMMINGS AND FOREMAN
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One should think of R as aiming to add several objects to W:

1. A P-generic object.

2. For each successor :, an Add({+, 1)W[P � :] -generic object over
W[P � :].

3. For each appropriate limit :, an F(:)-generic object over
W[R � :].

We need to analyze the properties of R, which we will do in a series of
lemmas.

3.2. Easy Properties of R

Lemma 3.2. |R|=}, and R has the }-Knaster property.

Proof. An easy argument counting terms shows that |R|=}, the key
point being that at each : there are fewer than } possibilities for q(:) or
f (:). A standard 2-system argument then shows that R has the }-Knaster
property. K

Lemma 3.3. R can be projected to P, R � : V F(:), and P � : V
Add({+, 1)W[P � :] .

Proof. Define projection maps

?0 : ( p, q, f ) [ p

?1 : ( p, q, f ) [ (( p, q, f ) � :, f (:))

?2 : ( p, q, f ) [ ( p � :, q(:)).

It is routine to check that these are projections (this was, in fact, one
motivation for the definition of R). K

It follows that if G is R-generic then G induces a P-generic object over
V, g say. G also induces an Add({+, 1)V[ g � :] -generic object over V[ g � :]
and a F(:)G � :-generic object over V[G � :].

Lemma 3.4. R adds at least } subsets to {.

Proof. R projects to P, P adds at least } subsets to {. K

Lemma 3.5. R collapses every cardinal between {+ and } to {+.

Proof. Let : be such a cardinal. R projects to a forcing which makes
2{�: and then adds a Cohen subset of {+. This forcing will collapse :
to {+. K

11TREE PROPERTY
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Lemma 3.6. Let '�{. If P is '-closed in W then R is '-closed in W.

Proof. Let +<' and suppose that ( ( p: , a: , f:) : :<+) is a decreasing
sequence in R. By hypothesis we can find p # P such that p�p: for all
:<+. It is easy to see that for each ; the condition p � ; forces the
sequence (q:(;) : :<+) to be decreasing in Add({+, 1)W[P � ;] ;
Add({+, 1)W[P � ;] is {+-closed in W[P � ;] so we may choose a P � ;-
term q(;) which is forced by p � ; to be a lower bound. The domain of q
has cardinality at most {.

Now we will define f (;) by induction on ; in such a way that
( p, q, f ) � ; is a lower bound for ( ( p: , q: , f:) � ; : :<+). If we have this
up to stage ; then ( p, q, f ) � ; forces that ( f:(;) : :<+) is decreasing in
F(;); F(;) is {+-closed in W[R � ;], so we may choose a R � ;-term f (;)
which is forced by ( p, q, f ) � ; to be a lower bound. The domain of f will
also have cardinality at most {, so the induction can proceed and at the
end ( p, q, f ) is the lower bound that we require. K

To sum up, we have seen that R preserves cardinals greater than or
equal to }, collapses all cardinals strictly between {+ and }, and adds }
subsets to {. To understand what is happening in W[R] at {+ and below,
we will analyze R as the projection of P_U for some {+-closed forcing U.

3.3. Factoring R

Definition 3.7. With the same data as for R, U=U=U({, }, V, W, F )
is the ordering with underlying set [(0, q, f ) : (0, q, f ) # R] and the partial
ordering inherited from R.

Lemma 3.8. U has the }-chain condition.

Proof. A standard 2-system argument. K

Lemma 3.9. In W, U is a canonically {+-directed closed poset.

Proof. We write out explicitly the definition of the ordering on U.
(0, q1 , f1)�(0, q0 , f0) if and only if

1. dom(q0)�dom(q1), and <W
P � :q1(:)�q0(:) for all : # dom(q0).

2. dom( f0)�dom( f1), and (0, q1 , f1) � :<W
R � : f1(:)� f0(:) for all

: # dom( f0).

Let [(0, q' , f') : '<{] be a directed set of conditions. Let us define
A1=def �'<{ dom(q'), and observe that |A1 |�{. We will define a function
q with domain A1 . For : # A1 , consider [q'(:) : '<{]. If ', `<{ then for
some +<{ we have that (0, q+ , f+) is a common refinement of (0, q' , f')
and (0, q` , f`). In particular, &&q+(:)�q'(:), q` (:). So we can look at
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[q'(:) : '<{] as a name in WP � : for a directed set of size { in
Add({+, 1)W[P � :] , and find r(:) which is forced to be the greatest lower
bound. In particular, &&r(:)�q'(:) for all '<{.

Now let A2=def �'<{ dom( f'), and observe that |A2 |�{. We will define
by induction on : a function g with domain A2 such that (0, r, g) � : &&
g(:)� f'(:) for all :, '. Fix :. As we remarked already, if ', `<{ then for
some +<{ we have that (0, q+ , f+) is a common refinement of (0, q' , f')
and (0, q` , f`); in particular (0, q+ , f+) � : && f+(:)� f'(:), f` (:). By induc-
tion (0, r, g) � :�(0, q+ , f+) � :, so ((0, r, g) � : && f+(:)� f'(:), f` (:).
Now (0, r, g) � : forces that [ f'(:) : '<{] is directed. We define g(:)
rather carefully to be a name which denotes the greatest lower bound of
[ f'(:) : '<{] if that set is directed, and the trivial condition otherwise. In
particular (0, r, g) � : &&g(:)� f'(:) for all '. At the end we have con-
structed a condition (0, r, g) which is a lower bound for the directed set
[(0, q' , f') : '<{].

It remains to be seen that (0, r, g) is a greatest lower bound. Let (0, s, h)
be any condition such that for all ' (0, s, h)�(0, q' , f'). Clearly
A1 �dom(s) and A2 �dom(h). For each : # dom(s) we have &&s(:)�
f'(:) for all ' and, since r(:) is forced to be a greatest lower bound,
&&s(:)�r(:). We attempt to show by induction that (0, s, h) � : &&
h(:)�g(:). If it is true below : then (0, s, h) � :�(0, r, g) � :, so that
(0, s, h) � : forces that [ f'(:) : '<{] is directed. It also follows from the
hypothesis that (0, s, h) � : &&h(:)� f'(:) for all ', so that by our choice
of g(:), (0, s, h) � : &&h(:)�g(:). So the induction goes through, and at
the end we have shown (0, s, h)�(0, r, g). Hence, (0, r, g) is the greatest
lower bound. K

Lemma 3.10. In R, ( p, q, f ) is the greatest lower bound for ( p, 0, 0) and
(0, q, f ).

Proof. ( p, q, f ) is clearly a lower bound. Suppose that ( p1 , q1 , f1) is
also a lower bound. Then by definition p1�p, p1 � : &&q1(:)�q(:), and
( p1 , q1 , f1) � : && f1(:)� f (:). That is to say, ( p1 , q1 , f1)�( p, q, f ). K

Lemma 3.11. With P and U as above

1. P_U is }-c.c.

2. All {-sequences of ordinals in W[P_U] are in W[P].

Proof. By Easton's lemma, P is {+-c.c. in W[U]. Since U is }-c.c. in
W, P_U is }-c.c. Easton's lemma also shows that all {-sequences of
ordinals from W[P_U] are in W[P]. K
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Definition 3.12. ? : P_U � R is the function given by

? : ( p, (0, q, f )) [ ( p, q, f ).

Lemma 3.13. ? is a projection.

Proof. It is clear that ? preserves the identity and respects the ordering
relation.

Let us have ( p1 , q1 , f1)�( p0 , q0 , f0) in R. Observe that for all : we
have p1 � : &&q1(:)�q0(:). Define q� (:) as a name with the following
property; for G any P � :-generic object, q� (:) interprets as q1(:)G if
p1 � : # G, and interprets as q0(:)G if p1 � : � G. By construction, &&q� (:)�
q0(:) and p1 � : &&q� (:)=q1(:).

Now we attempt to define by induction a term f� (:) such that
( p1 , q� , f� ) � : && f� (:)= f1(:) and (0, q� , f� ) � : &&f� (:)� f0(:). If we have
done this for stages below :, then the conditions ( p1 , q� , f� ) � : and
( p1 , q1 , f1) � : are equivalent in R � :.

By hypothesis, ( p1 , q1 , f1) � : &&f1(:)� f0(:). Define f� (:) as follows:
for any R � :-generic object G, the interpretation of f� (:) is f1(:)G if
( p1 , q� , f� ) � : # G and f0(:)G otherwise. Now ( p1 , q� , f� ) � : && f� (:)= f1(:),
and && f� (:)� f0(:), so we are done.

At the end of this construction we have shown that the conditions
( p1 , q� , f� ) and ( p1 , q1 , f1) are equivalent in R and (0, q� , f� )�(0, q0 , f0),
which is what is needed. K

Recall that we also have projections \ : R � P and _ : P_U � P given
by \ : ( p, q, f ) � p and _ : ( p, (0, q, f )) [ p. These projections commute as
in Fig. 1. Consequently, we may take it that W�W[R]�W[P_U].

Corollary 3.14. Let G be R-generic over W, let g be the P-generic
object added by G. If X # W[G] is a set of ordinals of size {, then
X # W[ g].

Fig. 1. Projections between P_U, R, and P.
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Proof. By Lemma 3.13 we can embed W[G] in a larger extension
W[ g][H], where H is U-generic over W[ g]. As P is {+-c.c. and U is
{+-closed, Easton's lemma implies that X # W[ g]. K

Corollary 3.15. R preserves {+ and forces that 2{=}={++.

Proof. If f # W[G] and f : { � {+
W then by Corollary 3.14 f # W[ g]

and g is generic for {+-c.c. forcing so that f is bounded. Similarly,
P{ & W[G]=P{ & W[ g], and standard arguments show that 2{=} in
W[ g]. Finally, we saw in Lemma 3.5 that R collapses everything in the
interval [{+, }) to {+. K

Corollary 3.16. R is <{-distributive in W, so it preserves cardinals
less than or equal to {.

Proof. If X # W[G] is a set of ordinals of size less than {, then
X # W[ g] by Corollary 3.14. But P is <{�distributive in W, so X # W. K

Corollary 3.17. U is }-c.c. and {+-closed. In W[U] we have {++=}.

Proof. We already saw the closure and chain condition results. U must
collapse } to {++ because W[U] &&``P is {+-c.c. and <{-distributive,''
and } is collapsed to {++ in W[U_P]. K

Corollary 3.18. If X # W[G] is a set of ordinals of size {, then X is
covered by a set of size { in W.

Proof. X # W[ g] and P is {+-c.c. in W, so the claim follows by a
standard chain condition argument. K

3.4. The Forcing S

W[P_U] is a generic extension of W[R], and we need some informa-
tion about this extension.

Definition 3.19. Let G be R-generic over W. Then define in W[G] a
forcing S=S({, }, V, W, F, G) whose conditions are [( p, (0, q, f )) :
( p, q, f ) # G], ordered as a suborder of P_U.

S is a version of the forcing to expand G to an P_U-generic object
which projects to G. We need to analyze the properties of S. For a careful
analysis of this sort of forcing, in a slightly different setting, we refer the
reader to Foreman's paper [3].
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Lemma 3.20. Let G be generic for R and let S=def S({, }, V, W, F, G).
Then W[G] &&``S is <{+-distributive, {-closed and }-c.c.'' In particular
forcing with S over W[G] does not collapse cardinals.

Proof. The }-chain condition and <{+-distributivity follow at once
from our earlier remarks about P_U. It remains to show {-closure.

In W[G], let ( ( p` , (0, q` , f`)) : `<+) be a decreasing +-sequence of
conditions from S for some +<{. By Corollary 3.16, this sequence is a
member of W. Let p=�` p` , then (by Lemma 2.2 or elementary facts
about Cohen forcing) p # g, where g is the P-generic added by R.

Since the sequence ( (0, q` , f`) : `<+) is decreasing in U, we may per-
form the construction of Lemma 3.9 to get (0, q� , f� ) which is a greatest
lower bound in U for this sequence. We now claim that ( p, q� , f� ) # G.

We already know that p # g. Fix a successor :<}, then by the definition
of q� (:) we see that q� g � : is the greatest lower bound for the sequence
(q` (:) g � : : `<+) in the forcing Add({+, 1)W[ g � :] . If we let G0

: be the
Add({+, 1)W[ g � :]-generic filter added by G then we know that
q` (:) g � : # G0

: for all `, and so by another application of Lemma 2.2,
q� (:) g � : # G0

: .
For each relevant limit :<} let G1

: denote the F(:)G � :-generic filter
added by G. We will prove by induction on : that f� (:)G � : # G1

: . Suppose
that we have done this up to stage :, so that in particular
(0, q� , f� ) � : # G � :. Since (0, q� , f� ) is a lower bound for ( (0, q` , f`) : `<+)
the condition (0, q� , f� ) � : forces that ( f` (:) : `<+) is decreasing, so that
( f` (:) G � :) is a decreasing sequence of members of G1

: . What is more
q� (:)G � : is the greatest lower bound of this sequence, so that applying
Lemma 3.9 one more time q� (:)G � : # G1

: and we are done. K

3.5. R* and U*

To conclude the analysis of R, we need to look at the forcing obtained
when we factor R over one of its initial segments. Fix ;<} and consider
the projection ?; : R � R � ; given by restriction. It is easy to see that this
is a good projection, in particular if G; is R � ;-generic then we may con-
sider the forcing to prolong G; to an R-generic object as given by the
following definition.

Definition 3.21. Given ;<} and G; generic over W for R, define

R*=R*({, }, V, W, F, G;)=[r # R : r � ; # G;],

with the ordering on R* given by r1�r0 � _s # G; Ext(r1 , s)�r0 . We
observe that here Ext(r1 , s) is just the extension of r1 in which r1 � ; is
replaced by s.
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Definition 3.22. Given ; and G; as above, define

U*=U*({, }, V, W, F, G;)=[(0, q, f ) : (0, q, f ) # R*],

ordered as a suborder of R*.

Definition 3.23. Given ; and G; as above, let P* be [ p # P :
( p, 0, 0) # R*], ordered as a suborder of P.

It is easy to see that P* is essentially P � }&;=Add({, }&;)V .

Lemma 3.24. If we define ? on domain P*_U* by ? : ( p, (0, q, f )) [
( p, q, f ), then ? is a projection from P*_U* to R*.

Proof. It follows from Lemma 3.10 that ( p, q, f ) # R*. The rest is also
fairly routine. K

Lemma 3.25. U* is {+-closed in W[G;].

Proof. The proof is similar to that of Lemma 2.18 in [1]. Let {* name
a descending {-sequence in U*. Let g; be the P � ;-generic object added by
G; . We may assume that {* # WP � ;, because all {-sequences in W[G;]
come from W[ g;]. {* ' will denote the canonical term for entry ' in the
sequence named by {* . We adopt from [1] the convention that

L(0, q, f )=q

R(0, q, f )=f.

Let G# be R � #-generic, let g# be the associated P � #-generic object.
Then {* g# � ;

' is a condition in U*, so that [R({* g# � ;
' )]G# # F(#)G#. Similarly,

[L({* g# � ;
' )] g# # Add({+, 1)W[ g#] .

We will define in W a condition (0, q*, f *) # R such that

v dom(q*)�}&;, dom( f *)�}&;.

v dom(q*) is the set of #�; such that for some '<{, # is a potential
member of the domain of L({* ').

v dom( f *) is the set of #�; such that for some '<{, # is potential
member of the domain of R({* ').

v For all #�;, if G# is R � #-generic and (0, q*, f *) � # # G# , then
\'<{ {* g# � ;

' � # # G# .

We observe that by {+-c.c. for P in W, the domains are not too big. We
will start by setting (0, q*, f *) � ;=(0, 0, 0). Suppose we have defined
(0, q*, f *) � # successfully. We will now define f *(#). Let G# be R � #-
generic, and assume that (0, q*, f *) � # # G# . By our induction hypothesis,
\'<{ {* g# � ;

' � # # G# . We will work in W[G#].
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Claim. Define a {-sequence of conditions in F(#)G# by p(')=
[R({* g# � ;

' )]G#. Then this is a decreasing sequence.

Proof. Let `<'<{, and suppose that

{* g# � ;
! =(0, q, f )

{* g# � ;
' =(0, q� , f� ).

Notice that p(`)= f (#)G#, p(')= f� (#)G#. What is more (0, q, f ) � # and
(0, q� , f� ) � # are in G# . We may choose s # G# � ; such that s&&{* `=
(0, q, f ), s&&{* '=(0, q� , f� ), and Ext(s, (0, q� , f� )�(0, q, f ) in R. Now
Ext(s, (0, q� , f� )) � # # G# , so that (by the definition of extension in R)
p(')= f� (#)G#� f (#)G#= p(`). This proves the claim. K

Now we choose f *(#) to be a name, forced by (0, q*, f *) � # to be a
lower bound for that sequence p. We observe for the record that if we
assume (0, q*, f *) � # # G# , then f *(#)G#�[R({* g# � ;

' )]G#. The choice of
q*(#) is similar. Let G# , g# be as usual, where we assume that
(0, q*, f *) � # # G# . Working in W[ g#] define a sequence q in Add({+, 1)
by q(')=[L({* g# � ;

' )] g#. Working much as before we can show that q is
decreasing. Now choose q*(#) to be a P � #-name for a lower bound.

We check that the induction hypothesis goes through. Suppose that
(0, q*, f *) � #+1 # G#+1 , and let '<{. Suppose that {* g#+1 � ;

' =t'=
(0, q' , f'). Then t' � # # G# , and by construction we know that
q*(#) g#�q'(#) g# and f *(#)G#�q'(#)G#. So t' � #+1 # G#+1.

Limits do not present a problem, so that the construction of (0, q*, f *)
can proceed. We finish by showing that we have constructed a lower
bound.

Claim. Let G; be R � ;-generic. Then (0, q*, f *) is a lower bound in U*
for the sequence {* g;.

Proof. Let `<{, and suppose {* g;
` =(0, q, f ). Choose r # G; such that

r�(0, q, f ) � ; and r &&{* `=(0, q, f ). Now by construction

r � # &&q*(#)�q(#)

Ext((0, q*, f *) � #, r) &&f *(#)� f (#)

for each #, so that Ext((0, q*, f *), r)�(0, q, f ). K

With the last claim, the proof is done. K
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4. THE FINAL MODEL

4.1. Building the Model

Let (}n : n<|) be an increasing sequence of supercompact cardinals.
We will build a model by iterating the forcing described in the last section,
in such a way that }n becomes +n+2 in the final model.

Definition 4.1. Fix (Fn : n<|) such that Fn : }n � V}n
has the

``diamond'' property described in Lemma 2.14. We will define a forcing
iteration R| of length |:

1. The first stage is Q0=def R(+0 , }0 , V, V, F0), and R1=def Q0 .

2. Define a name F4 1 in V Q0 for a function from }1 to (V}1
)V[Q0] , by

setting F4 G0
1 (:)=F1(:)G0 if F1(:) is a Q0 -name and F4 G0

1 (:)=0 otherwise.
Then define Q4 1 to be the canonical name for R(+V

1 , }1 , V, V[Q0], F*1),
where F*1 is the realisation of F4 1 in V[Q0] and R2=def Q0 V Q4 1 .

3. Suppose that we have defined the iteration up to stage n, where
n�2. Let Rn=def Q0 V } } } V Q4 n&1. As at stage one, define a Rn-name F4 n

by F4 Gn
n (:)=Fn(:)Gn if Fn(:) is a Rn-name and F4 Gn

n (:)=0 otherwise. Then
define Q4 n to name R(}n&2 , }n , V[Rn&1], V[Rn], F*n), where F*n is the
interpretation of Fn in V[Rn].

4. R| is the inverse limit of (Rn : n<|).

It is not yet clear that this definition is legitimate, because we can only
define R({, }, V, W, F ) when we know that certain things are true in W;
namely { must be regular, } must be inaccessible, and Add({, })V must be
{+-c.c. and <{-distributive. We will now do an inductive analysis of Pn

and Q4 n , which will show among other things that the definition is a valid
one. The case n=0 needs special treatment; this case is essentially
Abraham's analysis of the main forcing from [1].

Lemma 4.2. Let P0=def Add(+0 , }0) and U0=def U(+0 , }0 , V, V, F0).

1. |Q0 |=}0 , and Q0 is }0 -Knaster. In particular,

(a) All V-cardinals greater than or equal to }0 are preserved in
V[Q0].

(b) All V-inaccessibles greater than }0 remain inaccessible in
V[Q0].

(c) All sets of size less than }0 in V[Q0] are covered by sets of size
less than }0 in V.
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2. Q0 is a projection of P0 _U0 , and V[P0]�V[Q0]�V[P0 _U0].

3. All |-sequences of ordinals from V[Q0] are in V[P0].

4. Q0 preserves +1 , and 2+0=}0=+2 in V[Q0].

5. Add(+0 , ')V has the +1 -Knaster property in V[Q0].

6. For all ', V[Q0]<``Add(+1 , ')V is<+1-distributive and }0-Knaster.''

Proof. We take the claims in turn:

1. This follows from Lemma 3.2 and standard facts about forcing.

2. This is exactly the content of Lemma 3.13.

3. This follows from 3.14.

4. Immediate by Corollary 3.15.

5. Add(+0 , ')V=Add(+0 , ')V[Q0] .

6. Use clause 1 from Lemma 2.13, with {=+1 , }=}0 , Q=Q0 ,
P=P0 , and U=U0 . K

The definition of Q1 is now seen to be legitimate, because in V[Q0] we
know that +V

1 is regular, }1 is inaccessible, and Add(+1 , }1)V is <+1 -dis-
tributive and +2-Knaster. We now turn to the general case. In the state-
ment of the following lemma, when we refer to ``+i '' we mean + i in the
sense of V[Rn]; a key point is that the values of the cardinals +i for
i�n+1 are already fixed in V[Rn]; namely, +0 and +1 are as in the
ground model and +i=}i&2 for 2�i�n+1.

Lemma 4.3. Let n�1. Let Rn=Q0 V } } } Qn&1 , Rn&1=Q0 V } } } Qn&2 ,
Pn=Add(+n , }n)V[Rn&1] and U4 n=U(+n , }n , V[Rn&1], V[Rn], F*n):

1. In V[Rn], cardinal arithmetic follows the pattern 2+i=+ i+2=}i

for i<n. }i is inaccessible for i�n.

2. V[Rn]< ``Qn is <+n -distributive, }n-Knaster and +n&1-closed,
and also V[Rn]< ``|Qn |=}n .'' In particular,

(a) All V-cardinals greater than or equal to }n are preserved in
V[Rn V Q4 n].

(b) All V-inaccessibles greater than }n remain inaccessible in
V[Rn V Q4 n].

(c) All sets of ordinals of size less than }n in V[Rn V Q4 n] are
covered by sets of size less than }n in V[Rn].

3. All +n&1-sequences of ordinals from V[Rn V Q4 n] are in V[Rn&1 V
P4 n&1].
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4. All cardinals up to +n are preserved in V[Rn V Q4 n].

5. V[Rn]< ``Qn is a projection of Pn_Un ,'' and V[Rn V P4 n]�
V[Rn V Q4 n]�V[Rn V (P4 n _U4 n)].

6. All +n -sequences of ordinals from V[Rn V Q4 n] are in V[Rn V P4 n].

7. +n+1 (which is }n&1) is preserved in V[Rn V Q4 n]. Cardinal
arithmetic in V[Rn V Q4 n] follows the pattern 2+i=+i+2=}i for i�n.

8. Add(+n , ')V[Rn&1] is +n+1 -Knaster in V[Rn V Q4 n], for any ordinal '.

9. V[Rn V Q4 n]< ``Add(+n+1 , ')V[Rn] is <+n+1-distributive and
}n -Knaster,'' for any ordinal '.

Proof. We prove the lemma by induction on n�1, using Lemma 4.2 to
get some information in the case n=1. Notice that by induction the forcing
Pn has the right distributivity and chain condition in V[Rn], and that +n

and }n are respectively regular and inaccessible in V[Rn]; it is therefore
legitimate to define Q4 n :

1. This is immediate by induction.

2. By Lemma 3.2, |Qn |=}n and Qn is }n-Knaster in V[Rn]. By
Lemma 3.16, Qn is <+n-distributive in V[Rn]. For the closure, observe
that Pn is +n -closed in V[Rn&1] and that (by induction) Qn&1 is <+n&1 -
distributive in V[Rn&1], so that Pn is +n&1-closed in V[Rn]. By
Lemma 3.6, Qn is +n&1-closed in V[Rn].

3. Since Qn is <+n -distributive, every +n&1-sequence of ordinals
from V[Rn V Q4 n] is in V[Rn]=V[Rn&1 V Q4 n&1]. By induction, every
+n&1-sequence of ordinals from V[Rn&1 V Q4 n&1] is in V[Rn&1 V P4 n&1].

4. This follows immediately from the last claim.

5. Apply Lemma 3.13 in V[Rn].

6. Apply Corollary 3.14 in V[Rn].

7. By Corollary 3.15, +n+1 is preserved in V[Rn V Q4 n]. Since Qn is
<+n -distributive in V[Rn], it follows that all cardinals up to +n are
preserved and that we still have 2+i=}i=+ i+2 for i<n in V[Rn V Q4 n]. By
Corollary 3.15 again, 2+n=}n=+n+2 in V[Rn V Q4 n].

8. Apply clause 2 of Lemma 2.13 in V[Rn&1] with {=+n , Q=
Qn&1 , Q*=Qn .

9. Apply clause 1 of Lemma 2.13 in V[Rn] with {=+n+1 , Q=Qn . K
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The fact that the closure of Qn in V[Rn] increases with n enables us to
see that the inverse limit R| is well behaved. We make this precise in the
following lemma.

Lemma 4.4. Let G| be R|-generic. Let X # V[G|] be a }n-sequence of
ordinals. Then X # V[G0][ } } } ][Gn][Gn+1][ gn+2], where G0 V } } } Gn+1 V
gn+2 is the initial segment of G| generic for Q0 V } } } Qn+1 V Pn+2.

Proof. It is easy to see that R| �Rm is }m&3-closed, so that
X # V[G0][ } } } ][Gn+3]. Since Qn+3 is <}n+1 -distributive in V[G0]
[ } } } ][Gn+2], X # V[G0][ } } } ][Gn+2]. Finally, all }n -sequences of
ordinals in V[G0][ } } } ][Gn+2] are in V[G0][ } } } ][Gn+1][ gn+2], so we
are done. K

In the interests of brevity, we will denote V[G0][ } } } ][Gn] by Vn .
Notice that gn+2 is generic over Vn+1=Vn[Gn+1] for Pn+2 # Vn , so that
we can consider Gn+1 and gn+2 as mutually generic over Vn .

Corollary 4.5. 2+n=}n=+n+2 in V[G|].

Proof. Immediate from Lemma 4.4 and Lemma 4.3. K

4.2. Why the Model Works

We are now ready to begin in the argument that all of the cardinals }n

have the tree property in V[G|]. By Lemma 4.4, if T # V[G|] is a }n-tree
then T # Vn+1[ gn+2]. We will show that there are no }n-Aronszajn trees
in Vn+1[ gn+2].

We begin our work in V. Let * be some cardinal greater than
sup [}n : n # |]. Using the ``diamond'' property of Fn , choose j : V � M
such that

1. crit( j)=}n , j(}n)>*, *M�M.

2. j(Fn)(}n) is the canonical Rn-name for the canonical Qn-name for
Add(}n , }n+2)V[Rn V Q4 n]_U(+n+1 , }n+1 , V[Rn], V[Rn V Q4 n], F*n+1).

Notice that j(Fn)(}n) is a name for a }n-directed closed forcing in
V[Rn V Q4 n].

Our aim is now to force over Vn+1[ gn+2] to get a new model
Vn+1[ gn+2][X ], in such a way that in Vn+1[ gn+2][X ] we may define an
extension of j to a (generic) elementary embedding j : Vn+1[ gn+2] �
N�Vn+1[ gn+2][X ]. We will break up the construction into a series of
stages. To keep the notation simple, we will denote all the extensions of the
original j : V � M by ``j '' also.
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4.2.1. Stage one. Since j(Rn)=Rn , it is easy to lift the embedding j onto
the extension by Rn . We will then have an embedding j : Vn&1 � Vn&1

extending j : V � M.

4.2.2. Stage two. We force over Vn+1[ gn+2] with

S=def S(+n+1 , }n+1 , Vn&1 , Vn , F*n+1, Gn+1).

Since Gn+1 and gn+2 are mutually generic, we can look at the resulting
extension as being obtained from Vn+1 by forcing first with S and then
with Pn+2.

S (by design) will expand Vn+1 to a new model Vn[ gn+1_un+1], where
gn+1_un+1 is generic for Pn+1 _Un+1. So forcing with S over the model
Vn+1[ gn+2] gives us a model Vn[ gn+1_un+1_gn+2], with gn+1_
un+1_gn+2 generic for Pn+1_Un+1_Pn+2 over Vn .

4.2.3. Stage three. It is at this point that the careful choice of j pays off.
If we consider the construction of j(Qn) in M[G0][ } } } ][Gn&1] then it is
clear that

v j(Qn) � }n=Qn .

v At stage }n , the forcing at the third coordinate will be

Add(}n , }n+2)Vn
_U(+n+1 , }n+1 , Vn&1 , Vn , F*n+1),

v If we let Mi= defM[G0][ } } } ][Gi] then the agreement between V
and M implies that this forcing equals

Add(}n , }n+2)Mn
_U(+n+1 , }n+1 , Mn&1, Mn , F*n+1).

This means that we can look at the model Mn[ gn+2 _un+1] as a generic
extension of Mn&1 by j(Qn) � }n+1. We will now force over Vn[ gn+1_
un+1_gn+2] to get Hn a j(Qn)-generic object, with Hn � }n+1=
Gn V (gn+2_un+1). Notice that gn+1 is generic over Mn&1[Hn] for Pn+1.

Since Qn is }n -c.c it is easy to see that j � Qn is a complete embedding
from Qn into j(Qn), so we may lift j : Vn&1 � Vn&1 to get j : Vn �
Mn&1[Hn].

4.2.4. Stage four. Recall that Pn+1=Add(+n+1 , }n+1)Vn&1
. Pn+1 is

+n+2-Knaster (that is, }n-Knaster) in Vn , so that j � Pn is a complete
embedding of Pn into j(Pn). We can be more precise, Pn is isomorphic via
j � Pn to add(+n+1 , j"}n+1)Mn&1

, which is equal to Add(+n+1 , j"}n+1)Vn&1

by the agreement between V and M.
We force over Vn[Hn][ gn+1] with Add(+n+1 , j(}n+1)& j"}n+1)Vn&1

to
get a generic object hn+1 for j(Pn) such that j"gn+1 �hn . We can now lift
j : Vn � Mn&1[Hn] to get j : Vn[ gn+1] � Mn&1[Hn][hn+1].
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4.2.5. Stage five. By construction and the closure of M, we know that
j"un+1 # Mn&1[Hn]. Hn collapses }n+1 to have cardinality +n+1, and
j(Un) is j(}n)-directed closed where j(}n)=(+n+2)Mn&1[Hn] . Therefore we
may find t such that t� j(q) for all q # un+1.

We now force over Vn[Hn][hn] with j(Un), below the condition t, to get
a generic object xn+1 such that j"un+1 �xn+1. hn+1 and xn+1 are mutually
generic over Mn&1[Hn] by Easton's lemma, and hn+1_xn+1 generates a
filter Hn+1 generic for j(Rn+1) over Mn&1[Hn].

We claim that j"Gn+1 �Hn+1 . To see this recall that Gn+1 is generated
by gn+1_un+1 , so that if ( p, q, f ) # Gn+1 we may find p� # gn+1 and
(0, q� , f� ) # un+1 such that ( p� , q� , f� )�( p, q, f ) in Rn+1 . Now j( p� ) # hn+1 ,
(0, j(q� ), j( f� )) # xn+1 , so that ( j( p� ), 0, 0) and (0, j(q� ), j( f� )) are both in
Hn+1. Their greatest lower bound is j(( p� , q� , f� )), so this condition must
be in Hn+1; moreover, j(( p� , q� , f� ))� j(( p, q, f )) in j(Rn+1), so that
j(( p, q, f )) # Hn+1.

We may now lift j : Vn[ gn+1] � Mn&1[Hn][hn+1], to get an embed-
ding j : Vn+1 � Mn&1[Hn][Hn+1].

4.2.6. Stage six. j"gn+2 # Mn&1[Hn] by construction and the closure of
M, so if we let s=def � j"gn+2 then s is a condition in j(Pn+2)=Add( j(}n),
j(}n+2))Mn&1[Hn] . So we can force over Vn[Hn][hn][xn+1] with j(Pn+2)
below s and get a generic object hn+2 such that j"gn+2 �hn+2.

We finish the construction by lifting j : Vn+1 � Mn&1[Hn][Hn+1], to
get j : Vn+1[ gn+2] � Mn&1[Hn][Hn+1][hn+2].

Now that we have lifted j, we can return to the proof that }n has the tree
property in Vn+1[ gn+2]. Suppose that T is a }n-Aronszajn tree in
Vn+1[ gn+2]. If we apply j to T we get a tree j(T) of height j(}n)>}n ,
which has an initial segment j(T ) � }n that is isomorphic to T. It follows
that T # Mn&1[Hn][Hn+1][hn+2], and T has a branch b in that model.

Now we will locate the tree T and its branch more precisely. Because of
the resemblance between V and M, T # Mn+1[ gn+2]. }n+1 is collapsed to
+n+1 in Mn&1[Hn][Hn+1][hn+2], so applying some familiar arguments
b # Mn&1[Hn][hn+1].

Notice that Mn+1[ gn+2]=Mn&1[Gn][Gn+1][ gn+2] and

Mn&1[Hn][hn+1]=Mn&1[Gn][ gn+2_un+1][H*n][ gn+1_h*n+1],

decomposing Hn as Gn V (gn+2_un+1) V H*n and hn+1 as gn+1 _h*n+1. We
will analyze the forcing that takes us from Mn+1[ gn+2] to Mn&1[Hn]
[hn+1], and show that this forcing cannot add a cofinal branch to a
}n -Aronszajn tree. This contradiction will finish the proof that }n has the
tree property in Vn+1[ gn+2].

In the analysis that follows, we will use repeatedly and without comment
the resemblance between V and M.
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We begin by considering what happens when we force over Mn+1[ gn+2]
with S to get the model Mn[ gn+1_un+1_gn+2] (see stage two above).
By Lemma 3.20, Mn+1 < ``S is +n+1-closed, <+n+2-distributive and
+n+3-c.c.'' Since gn+2 is generic over Mn+1 for <+n+2-distributive forcing,
S is still +n+1-closed in Mn+1[ gn+2]. It follows that forcing with S over
Mn+1[ gn+2] preserves cardinals up to +n+1 ; since 2+n=+n+2=}n in
Mn+1[ gn+2], it follows from Lemma 2.4 that T has no cofinal branch in
Mn[ gn+1_un+1_gn+2].

gn+2_un+1 is generic over Mn for +n+2-directed closed forcing and
gn+1 is generic over Mn for +n+2-Knaster forcing, so by Easton's lemma
it follows that all +n+1-sequences of ordinals from Mn[ gn+1_un+1_
gn+2] are in Mn+1[ gn+2]. In particular }n is still a cardinal (namely
+n+2) in Mn[ gn+1_un+1_gn+2], and so T is still a }n-Aronszajn tree in
that model.

Now we will force over Mn[ gn+1 _un+1_gn+2] to add h*n+1; h*n+1 is
generic for P*n+1=def Add(+n+1 , j(}n+1)& j"}n+1), and we know by
Lemma 2.13 that Mn < ``P*n+1 is <+n+1-distributive and }n -Knaster.''

We claim that P*n+1 is still }n-Knaster in Mn[ gn+1_un+1 _gn+2]. We
will use Lemma 2.6 to see this. +n+1 is still regular in Mn[ gn+1_un+1_
gn+2], so to finish the proof of the claim suppose that X # Mn[ gn+1_
un+1_gn+2] is a set of ordinals with |X|<}n . Then |X|�+n+1 in
Mn[ gn+1_un+1_gn+2], and so as we proved already X # Mn[ gn+1].
Since gn+1 is generic over Mn for +n+2-c.c. (that is }n-c.c.) forcing and Gn

is generic over Mn&1 for }n -c.c. forcing, there is Y # Mn&1 such that
|X|<}n in Mn&1 and X�Y.

We also claim that P*n+1 is still <+n+1-distributive in Mn[ gn+1_
un+1_gn+2]. To see this suppose that Y is an +n-sequence of ordinals in
Mn[hn+1_un+1_gn+2]. By Easton's lemma un+1_gn+2 is generic for
<+n+2-distributive forcing over Mn[hn+1], so Y # Mn[hn+1]. Since j(Pn)
is <+n+1-distributive in Mn , Y # Mn and we are done.

It follows from these claims that }n is still a cardinal (in fact is still +n+2)
in Mn[hn+1 _un+1_gn+2]. Since P*n+1 is }n-Knaster in Mn[ gn+1 _
un+1_gn+2], Lemma 2.3 implies that T is still a }n-Aronszajn tree in
Mn[hn+1_un+1_gn+2].

Finally we will force over Mn[hn+1_un+1_gn+2] with R*n= j(Pn)�
Gn V (un+1_gn+2), to get the model Mn&1[Hn][hn+1]. We know from
Lemmas 3.24 and 3.25 that Mn[un+1_gn+2]< ``R*n is a projection of
P*n_U*n ,'' where P*n=Add(+n , j(}n)&}n)Mn&2

and Mn[un+1_gn+2]<
``U*n is +n+1-closed.'' We will finish the argument by showing that T can
have no branch in any extension of Mn[hn+1 _un+1_gn+2] by P*n_U*n .

We have already shown that every +n-sequence of ordinals in
Mn[hn+1_un+1_gn+2] is in Mn , so U*n is still +n+1-closed in
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Mn[hn+1_un+1_gn+2]. Since 2+n=+n+2=}n in Mn[hn+1 _un+1_
gn+2], another application of Lemma 2.4 shows that T has no cofinal
branch in Mn[hn+1 _un+1_gn+2][U*n]. Forcing with U*n preserves
cardinals up to +n+1 and collapses +n+2 (that is }n) to be an ordinal of
cofinality +n+1 , so that in the extension by U*n we may find a tree T0 of
height +n+1 and a cofinal map from T0 to T.

We now claim that P*n is +n+1-Knaster in the model Mn[hn+1 _un+1 _
gn+2][U*n]. To see this we apply Lemma 2.6. +n is still regular in
Mn[hn+1_un+1_gn+2][U*n], so let X # Mn[hn+1_un+1_gn+2][U*n]
be a set of ordinals of size less than +n+1 (that is, }n&1). Then |X|�+n

in Mn[hn+1_un+1_gn+2][U*n], and so by the closure of U*n we have
X # Mn[hn+1_un+1_gn+2]. We saw already that this implies X # Mn ,
and actually we can go further and see that X # Mn&1[ gn]; this is a
}n&1-c.c. extension of Mn&2 , so that X is covered by a set in Mn&2 of size
less than }n1

.
By Lemma 2.3, forcing with P*n over Mn[hn+1_un+1_gn+2][U*n] adds

no cofinal branch to T0 , and therefore adds no cofinal branch to T. This
concludes the proof of Theorem 1.

PART 2. THE TREE PROPERTY AT THE DOUBLE SUCCESSOR
OF A SINGULAR

In this part of the paper we will give Foreman's proof that it is consistent
to have a double successor of a singular cardinal with the tree property. It
is possible to modify the construction along the lines of [3] or [4] to get
a model in which +|+2 has the tree property.

5. PRELIMINARIES

Starting with }<*, where } is supercompact and * is weakly compact,
we will build a generic extension in which

1. } is a singular cardinal of cofinality |.

2. }+ is preserved.

3. 2}=}++=*.

4. * has the tree property.

We start by doing Laver's construction from [10] to make } indestruc-
tibly supercompact under any }-directed-closed forcing. Laver's poset has
cardinality }, so it will preserve the weak compactness of *. We will denote
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by V the resulting model in which } is indestructibly supercompact and *
is weakly compact.

Now let P=def Add(}, *), so that by construction } is supercompact in
V[P]. Let U4 be a P-name for a normal ultrafilter on } in the model V[P].

Lemma 5.1. There is A�* a set of Mahlo cardinals such that

1. If : # A and G is Add(}, *)-generic over V then U4 G & V[G � :] #
V[G � :].

2. A is in the weakly compact filter on *.

Proof. Given ;<*, we can use the inaccessibility of * and the }+-c.c.
for P to find F (;)<* such that for every canonical P � ;-name A4 for a
subset of } we have [A4 # U4 ]RO(P) # RO(P � F (;)). A standard argument
shows that the set of Mahlo limit points of F is in the weakly compact
filter, so we define A to be this set. K

For each : # A, let U:=def U4 G & V[G � :]. Clearly, U: is a normal
measure on } in the model V[G � :].

Working in V[P] we define Q to be the Prikry forcing constructed from
the normal measure U. We also define Q: to be the Prikry forcing con-
structed from the measure U: in V[P � :].

Lemma 5.2. Let x be a cofinal |-sequence in }, which is Q-generic over
V[G]. Then for each : # A, x is Q: -generic over V[G:].

Proof. This is immediate from Mathias' theorem [13] that an
|-sequence is Prikry generic for a measure U if and only if every set of
U-measure one contains a final segment of the |-sequence. K

Let ?: denote the natural projection map from P V Q4 to RO(P � : V Q:).

Lemma 5.3. P V Q has the }+-Knaster property.

Proof. Let ( ( p: , q:) : :<}+) be a }+-sequence of conditions. Refining
if necessary, we may as well assume that p: decides the lower part of q: for
each :. Since there are only } possible lower parts, we may find a sub-
sequence of length }+ on which the lower part of q: is constant, say with
value s.

Now Add(}, *) has the }+-Knaster property, so we may thin out even
further to find A unbounded in }+ such that if :, ; # A then p: is com-
patible with p; and the lower parts of q: and q; are equal. This implies that
( p: , q:) is compatible with ( p; , q;), so we are done. K

Notice that the same proof applies to P � : V Q: .
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6. THE MAIN FORCING

Let G be P-generic over V and let x be Q-generic over V[G]. We have
seen that for each : # A we may view the submodel V[G � :][x] of
V[G][x] as a generic extension of V by P � : V Q: . For each :, we define
R:=Add(}+, 1)V[P � : V Q:] .

Now we are ready to define the main forcing R.

Definition 6.1. Conditions in R are triples of the form ( p, q, r), where

1. ( p, q) # P V Q4 .

2. r is a partial function with dom(r)�A, |dom(r)|�}.

3. For each : # dom(r), r(:) is a P � : V Q:-name for a condition in R: .

Given conditions ( p0 , q0 , r0) and ( p1 , q1 , r1), ( p1 , q1 , r1)�( p0 , q0 , r0) iff

1. ( p1 , q1)�( p0 , q0) in P V Q.

2. dom(r0)�dom(r1), and ?:(( p1 , q1))<r1(:)�r0(:) for every : #
dom(r0).

We observe that the definition is very similar to that of the main forcing
from Mitchell's paper [14]. The only difference is that P � : is replaced by
the more complex forcing P � : V Q: . Lemmas 6.2, 6.3, and 6.4 are proved
as for the main forcing from [14] (see [1] or the first part of this paper).

Lemma 6.2. Let U be the partial ordering consisting of elements of R of
the form (0, 0, r) with the induced partial ordering. Let \ : (P V Q)_U � R
be given by \ : (( p, q), (0, 0, r)) [ ( p, q, r). Then

1. U is }+-closed.

2. \ is a projection map which commutes with the natural projections
from R and P V Q_U to P V Q (so that in a natural way V[P V Q]�
V[R]�V[P V Q_U]).

3. V[R] and V[P V Q] have the same }-sequences.

Lemma 6.3. R is *-Knaster. It preserves all cardinals except for those in
the interval (}+, *), which it collapses to }+. In the model V[R],
2}=*=}++.

Given ; # A, we will define R � ; in the following way: conditions are
triples of the form ( p, q, r), where
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1. ( p, q) # P � ; V Q4 ; .

2. r is a partial function with dom(r)�A & ;, |dom(r)|�}.

3. For each : # dom(r), r(:) is a P � : V Q:-name for a condition in R: .

The ordering is defined just as for R. It is easy to see that if ; is in A
then R � ; preserves all cardinals except those in (}+, ;) and forces
2}=}++=;. Moreover, V[R � ;] is a submodel of V[R], and if
X # V[R] is a bounded subset of * then X # V[R � ;] for all sufficiently
large ;.

Lemma 6.4. Let ; be in A. Then R�R � ; is (in V[R � ;]) a projection
of (P V Q�P � ; V Q;)_U* for some }+-closed forcing U*.

To finish the proof it will suffice to prove (P V Q�P � ; V Q;) is
}+-Knaster in V[R � ; V U*].

Lemma 6.5. If (P V Q�P � ; V Q;) is }+-Knaster in V[R � ; V U*] for
every ; # A, then there is no }++-Aronszajn tree in V[R].

Proof. The proof follows exactly the same lines as the proof of
Theorem 1. If T is a }++-Aronszajn tree in V[R] then, by the reflection
properties of *, there is ; # A such that T � ; is an Aronszajn tree in
V[R � ;].

Clearly T � ; has a branch in V[R] (fix a point on level ; of T and look
at the points below). Since R�R � ; is a projection of (P V Q�P � ; V Q;)
_U*, T � ; will have a branch in V[R � ;][P V Q�P � ; V Q; _U*].

Since U* is }+-closed, T will have no branch in V[R � ;][U*]. U*
collapses ; to be some ordinal of cardinality and cofinality }+, so that
there is a tree T0 of height }+-which embeds cofinally into T � ;. Now sup-
posedly forcing with P V Q�P � ; V Q; will add a branch to T and (there-
fore a branch to T0), but this is impossible because }+-Knaster forcing
cannot add a branch to a branchless tree of height }+. K

7. ANALYSING P V Q�P � ; V Q;

We saw in the last section that to finish the proof of Theorem 2 we just
need to prove the following result.

Lemma 7.1. (P V Q�P � ; V Q;) is }+-Knaster in V[R � ; V U*] for
every ; # A.

Proof. We start with a claim in the same spirit as Lemma 2.6.
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Claim. Let V�W be two inner models of set theory. Suppose that

1. } is a limit cardinal in W.

2. }+
V =}+

W .

3. If X # W is a set of ordinals, W < |X |�}, then _Y # V such that
X�Y and V < |Y |�}.

4. V < }<}=}.

Let (x: : :<}+) # K be a }+-sequence of sets of ordinals such that
x: # V, |x: |<}. Then there exists X�}+ unbounded such that (x: : : # X)
forms a 2-system.

Proof. We work in W. Let A=�:<}+ x: , and let F # W be a bijection
F : A$}+. Let y:=F ``x: . Thinning out we may assume that | y: | W=+ for
some fixed +<}.

Let T0 be the stationary set [:<}+: cf(:)=++]. For each : # T0 we
have sup ( y: & :)<:, so by Fodor's lemma there is T1 �T0 stationary and
a fixed ;<}+ such that \: # T1sup ( y: & :)=;.

Now F&1``; is a set of size } lying in W, so by our assumptions there
is Z$F&1``; such that |Z|=} and Z # V. Now since V < }<}=} there
are only } possibilities for x: & Z, so we may find T2 �T1 stationary and
a fixed v such that \: # T2 x: & Z=v. Then \: # T2 y: 7 :=y: & ;=
F ``x: & Z=F ``v.

It is now easy to finish, building inductively an unbounded set T3 �T2

such that ( y: : : # T3) (and hence (x: : : # T3) ) is a 2-system. This
finishes the proof of the claim. K

We observe that the assumptions of the claim hold if we set
W=V[R � ;][U*].

Our next task is to analyze the forcing P V Q�P � ; V Q; . It is important
to notice that this forcing is not just Add(}, *&;)V , although it does add
a generic object for that forcing. The point is that given g V x which is
P � ; V Q;-generic, the forcing P V P�P � ; V Q; will add an Add(}, *&;)-
generic object H with the property that x is actually Q-generic over
V[ g_H].

Claim. Let p*=( p, (x, X4 )) # P � ; V Q; , and let q*=(q, (s, A4 )) #
P V Q. Then p* forces that q* is not a condition in P V Q�P � ; V Q; if and
only if one of the following conditions holds:

1. q � ; is incompatible with p.

2. q � ; is compatible with p, s�3 x, and x�3 s.

30 CUMMINGS AND FOREMAN



File: DISTIL 168031 . By:DS . Date:14:01:98 . Time:15:41 LOP8M. V8.B. Page 01:01
Codes: 4003 Signs: 2425 . Length: 45 pic 0 pts, 190 mm

3. q � ; is compatible with p, x extends s and q _ p forces that x&s
is not a subset of A4 .

4. q � ; is compatible with p, s extends x and (q � ;) _ p forces that
s&x is not a subset of X4 .

Proof. To say that p* &&q* � P V Q�P � ; V Q; is to say that there is no
generic object G V x % q* such that G � ; V x % p*. It is easy to check that
each of the conditions above rules out the existence of such a G. On the
other hand, if they all fail then we can force below an appropriate condi-
tion r to manufacture an appropriate G; r is ( p _ q, (t, A4 & X4 )), where t is
the longer of x and s. K

To finish the proof of Lemma 7.1, suppose for a contradiction that we
have a condition (( p, (x, X4 ), f ), u) # R � ; V U* which forces that (r* : : :<
*+) is a counterexample to the }+-Knaster property for P V P�P � ; V Q; .

Working in V[R � ; V U*] for the moment, suppose that r: is a name
for a condition (q: , (s: , A4 :)). We may refine and thin out to assume that
there is a fixed s such that q: &&s:=s for all :. Refining (( p, (x, X4 ), f ), u)
if necessary we may assume that it decides the value of s and, what is more,
that x extends s and p _ q: &&x&s�X4 for every :.

So now (( p, (x, X4 ), f ), u) forces (r*: : :<}+) is a counterexample to the
Knaster property, where r*: names a condition of the form (q: , (s, A4 :)) and
s�x. Applying the first claim in V[R � ; V U*] we may assume that
(( p, (x, X4 ), f ), u) forces the sequence (q: : :<}+) to consist of mutually
compatible conditions in P.

We claim that (( p, (x, X4 ), f ), u) forces (r*: : :<}+) to be mutually
compatible. Otherwise we can find : and ; and a refinement
((q, ( y, Y4 ), g), v) of ( p, (x, X4 ), f ), u) which decides r*: and r*; and forces
them incompatible. Let us say that the condition ((q, ( y, Y4 ), g), v) forces
that r*:=(q: , (s, A4 :)) and r*;=(q; , (s, A4 ;)).

It follows that (q, ( y, Y4 )) must force that (q: , (s, A4 :)) and (q; , (s, A4 ;))
are conditions in P V Q�P � ; V Q; , and that (q: _ q; , (s, A4 : & A;)) is not
a condition. But now q _ q: _ q; is a condition in P because q, q: , and q;

are pairwise compatible, so that it must be the case that q _ q: _ q; &&
y&s�3 Y4 . This is absurd because (q _ q: _ q; , ( y, Y4 )) refines (q, ( y, Y4 )) so
it should force that (q: , s, A4 :)) # P V Q�P � ; V Q; . This concludes the
proof of Lemma 7.1 and, with it, the proof of Theorem 2. K
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