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1. Introduction

In this paper, we consider the controllability of the following impulsive neutral stochastic functional differential
inclusions with infinite delayd [x(t)− g (t, xt)] ∈ [Ax(t)+ Bu(t)] dt + F(t, xt)dw(t), t ∈ J, t ≠ tk, k = 1, 2, . . . ,m,

∆x|t=tk ∈ Ik

x(t−k )


, k = 1, 2, . . . ,m,

x0 = ϕ ∈ Bh, t ∈ J0 := (−∞, 0],
(1)

where J := [0, b], A is the infinitesimal generator of an analytic semigroup of bounded linear operators S(t), t ≥ 0 in the
Hilbert space H . In the sequel, P (H) denotes the family of all nonempty subsets of H . Suppose that g : J × Bh → H is a
continuous map, F : J ×Bh → P (L(K ,H)) is a bounded, closed, convex-valuedmulti-valuedmap and Ik : H → P (H) (k =

1, 2, . . . ,m) are multi-valued maps with closed graph. Moreover, the fixed times tk satisfies 0 < t1 < t2 < · · · < tm < b,
x(t−k ) denotes the left limits of x(t) at t = tk. The control function u(·) takes its value in L2(J,U) of admissible control
functions for a separable Hilbert space U , B is a bounded linear operator from U into H . The histories xt : Ω → Bh, t ≥ 0,
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which are defined by setting xt = {x(t + s), s ∈ (−∞, 0]}, belong to the abstract phase space Bh, which will be given in
Section 2. The initial data ϕ = {ϕ(t) : −∞ < t ≤ 0} is an F0-measurable, Bh-valued stochastic process with finite second
moment, and is independent of the Wiener process {w(t) : t ≥ 0} to be specified later.

In the past decades, the theory of impulsive differential equations or inclusions has become an active area of investigation
due to their applications in fields such as mechanics, electrical engineering, medicine biology, ecology and so on. One can
refer to [1,2] and the references therein. The development of the theory of functional differential equations or inclusions
with infinite delay heavily depends on a choice of a phase space. In fact, various phase spaces have been considered and each
different phase space requires a separate development of the theory [3]. The common space is the phase space B proposed
by Hale and Kato in [4], which is widely applied in functional differential equations with infinite delay, one can refer to
Hernández [5] and the references therein. However, the phase space B is not correct for the impulsive case. Generally, the
theory of impulsive functional differential equations or inclusions is based on the phase space Bh defined later (see [1,6]).

In many cases, deterministic models often fluctuate due to noise, which is random or at least appears to be so.
Therefore, we must move from deterministic problems to stochastic ones. Taking the disturbances into account, the theory
of differential inclusions has been generalized to stochastic functional differential inclusions (see [7] and the references
therein). The existence, uniqueness, stability, controllability and other quantitative and qualitative properties of solutions of
stochastic evolution equations or inclusions have recently received a lot of attention (see [8–11] and the references therein).

As one of the fundamental concepts in mathematical control theory, controllability plays an important role both in
deterministic and stochastic control theory. Roughly speaking, controllability generally means that it is possible to steer
a dynamical control system from an arbitrary initial state to an arbitrary final state using the set of admissible controls. The
controllability of nonlinear stochastic systems in infinite dimensional spaces has been extensively studiedby several authors,
see [12] and the references therein. Among them, Balachandran and Ntouyas [13] investigated the controllability for neutral
functional differential inclusionswith finite delay. Further, Liu [14] extended the result of [13] to the case of the infinite delay.
Moreover, Balasubramaniam and Ntouyas [15] gave the controllability of a class of partial stochastic functional differential
inclusions with infinite delay in the space B with the help of the Leray–Schauder nonlinear alternative. In addition, the
model with multi-valued jump sizes may arise in a control problem where we want to control the jump sizes in order to
achieve the given objectives.

To our best knowledge, there is no work reported on the controllability for the neutral stochastic functional differential
inclusions with infinite delay and multi-valued jump operators, which is expressed in the form (1). To close the gap in this
paper, we study this interesting problem. We derive the sufficient conditions for the controllability of the system (1) by
means of the fixed point theorem for discontinuousmulti-valued operators due to Dhage [16]. Especially, the known results
that appear in [17] are generalized to the stochastic settings and the case of infinite delay. Based on the obtained result, we
can establish the controllability of the following impulsive neutral stochastic partial differential inclusion

∂

∂t
v(t, x) ∈

∂2

∂x2
v(t, x)+

∂

∂t
g(t, v(t − h, x))+ b(x)u(t)

+ [Q1(t, v(t − h, x)),Q2(t, v(t − h, x))]dβ(t), 0 ≤ x ≤ π, t ∈ J, t ≠ tk,
v(t+k , x)− v(t−k , x) ∈


−bk|v(t−k , x)|, bk|v(t

−

k , x)|

, t ∈ J, k = 1, 2, . . . ,m,

v(t, 0) = v(t, π) = 0, t ∈ J,
v(t, x) = ϕ(t, x), −∞ < t ≤ 0, 0 ≤ x ≤ π,

(2)

where J := [0, b], bk > 0, k = 1, 2, . . . ,m, v(t+k , x) = lim(h,x)→(0+,x) v(tk + h, x), v(t−k , x) = lim(h,x)→(0−,x) v(tk + h, x),
Q1,Q2 : J × R → R are two given functions, and β(t) is a one-dimensional standard Wiener process. We assume that for
each t ∈ J,Q1(t, ·) is lower semi-continuous and for each t ∈ J,Q2(t, ·) is super semi-continuous.

The paper is organized as follows. In Section 2, we introduce some preliminaries. Section 3 is devoted to the main result.
In Section 4, an example is given to illustrate the obtained result. In the last section, concluding remarks are given.

2. Preliminaries

Let (K , ‖ · ‖K ) and (H, ‖ · ‖H) be two separable Hilbert spaces with inner product ⟨·, ·⟩K and ⟨·, ·⟩H , respectively. In a
case without confusion, we just use ⟨·, ·⟩ for the inner product and ‖ · ‖ for the norm. Let (Ω,F , P; F) (F = {Ft}t≥0) be a
complete filtered probability space satisfying thatF0 contains all P-null sets ofF . Suppose that {w(t) : t ≥ 0} is a cylindrical
K -valued Wiener process with a finite trace nuclear covariance operator Q ≥ 0. We also use the same notation ‖ · ‖ for the
norm of L(K ,H), which denotes the space of all Q -Hilbert–Schmidt operators from K to H . For details of this paragraph, the
reader may refer to [18] and the references therein.

Now, we present the abstract phase space Bh. Assume that h : (−∞, 0] → (0,∞) is a continuous function with l = 0
−∞

h(t) dt < ∞. For each a > 0, define

Bh =


ψ : (−∞, 0] → H :


E‖ψ(θ)‖21/2 is a bounded and measurable

function on [−a, 0] and
∫ 0

−∞

h(s) sup
s≤θ≤0


E‖ψ(θ)‖21/2 ds < ∞


.
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If Bh is endowed with the norm

‖ψ‖Bh =

∫ 0

−∞

h(s) sup
s≤θ≤0


E‖ψ(θ)‖21/2 ds, for all ψ ∈ Bh,

then (Bh, ‖ · ‖Bh) is a Banach space [3].
Assume that S(t) is a uniformly bounded and analytic semigroup with infinitesimal generator A such that 0 ∈ ρ(A).

Then, it is possible to define the fractional power (−A)α, 0 < α ≤ 1 as a closed linear invertible operator with its domain
D ((−A)α) being dense in H . We denote by Hα the Banach space D ((−A)α) endowed with the norm ‖x‖α = ‖(−A)αx‖,
which is equivalent to the graph norm of (−A)α . In the sequel, we represent Hα the space D ((−A)α) with the norm ‖ · ‖α .
Then, we have the following well-known properties that appear in [19].

Lemma 2.1. (i) If 0 < β < α ≤ 1, then Hα ⊂ Hβ and the embedding is compact whenever the resolvent operator of A is
compact.

(ii) For each 0 < α ≤ 1, there exists a positive constant Cα such that

‖(−A)αS(t)‖ ≤
Ca

tα
, t > 0.

Let us introduce the following notations:

Pcl(H) = {y ∈ P (H) : y is closed}, Pbd(H) = {y ∈ P (H) : y is bounded},

Pcv(H) = {y ∈ P (H) : y is convex}, Pcp(H) = {y ∈ P (H) : y is compact}.

Consider Hd : P (H)× P (H) → R ∪ {∞} given by

Hd(A, B) = max

sup
a∈A

d(a, B), sup
b∈B

d(A, b)

,

where d(A, b) = infa∈A d(a, b), d(a, B) = infb∈B d(a, b). Then, (Pbd,cl(H),Hd) is a metric space and (Pcl(H),Hd) is a general-
ized metric space [20].

In what follows, we briefly introduce some facts on multi-valued analysis. For more details, one can see [21].

• A multi-valued map Γ : H → P (H) is convex (closed) valued, if Γ (x) is convex (closed) for all x ∈ H . Γ is bounded on
bounded sets if Γ (B) = ∪x∈B Γ (x) is bounded in H , for any bounded set B of H , that is, supx∈B sup{‖y‖ ∈ Γ (x)} < ∞.

• Γ is called upper semi-continuous (u.s.c., in short) on H , if for any x ∈ H , the set Γ (x) is a non-empty, closed subset of
H , and if for each open set B of H containing Γ (x), there exists an open neighborhood N of x such that Γ (N) ⊆ B.

• Γ is said to be completely continuous if Γ (B) is relatively compact, for every bounded subset B ⊆ H.
• If the multi-valued map Γ is completely continuous with nonempty compact values, then Γ is u.s.c. if and only if Γ has

a closed graph, i.e., xn → x, yn → y, yn ∈ Γ (xn) imply y ∈ Γ (x).
• Γ has a fixed point if there is x ∈ H such that x ∈ Γ (x).
• A multi-valued map Γ : J → Pbd,cl,cv is said to be measurable if for each x ∈ H , the mean-square distance between x

and Γ (t) is measurable.

The consideration of this paper is based on the following fixed point theorem due to Dhage [16].

Theorem 2.2. Let H be a Hilbert space, Φ1 : H → Pcl,cv,bd(H) and Φ2 : H → Pcp,cv(H) be two multi-valued operators
satisfying that

(i) Φ1 is a contraction, and
(ii) Φ2 is completely continuous.

Then, either

(1) the operator inclusion x ∈ Φ1x + Φ2x has a solution, or
(2) the set G = {x ∈ H : x ∈ λΦ1x + λΦ2x} is unbounded for λ ∈ (0, 1).

Definition 2.3. The multi-valued map F : J × Bh → P (H) is said to be L2-Carathéodory if

(i) t → F(t, v) is measurable for each v ∈ Bh;

(ii) v → F(t, v) is u.s.c. for almost all t ∈ J;
(iii) for each q > 0, there exists hq ∈ L1(J,R+) such that

‖F(t, v)‖2
:= sup

f∈F(t,v)
E‖f ‖2

≤ hq(t), for all ‖v‖2
Bh

≤ q and for a.e. t ∈ J.
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The following lemma that appears in [22] is crucial in the proof of our main result.

Lemma 2.4. Let I be a compact interval and H be a Hilbert space. Let F be an L2-Carathéodory multi-valued map with NF ,x ≠ ∅

and let Γ be a linear continuous mapping from L2(I,H) to C(I,H). Then, the operator

Γ ◦ NF : C(I,H) → Pcp,cv(H), x → (Γ ◦ NF )(x) = Γ (NF ,x),

is a closed graph operator in C(I,H)× C(I,H), where NF ,x is known as the selectors set from F and given by

f ∈ NF ,x =

f ∈ L2 (L(K ,H)) : f (t) ∈ F(t, xt) for a.e. t ∈ J


.

Now, we consider the space

Bb =

x : (−∞, b] → H, xk ∈ C(Jk,H) and there exist x(t−k ) and x(t+k )

with x(tk) = x(t−k ), x0 = ϕ ∈ Bh, k = 0, 1, 2, . . . ,m

,

where xk is the restriction of x to Jk = (tk, tk+1], k = 0, 1, 2, . . . ,m. Set ‖ · ‖b a semi-norm in Bb defined by

‖x‖b = ‖x0‖Bh + sup
0≤s≤b


E‖x(s)‖21/2 , x ∈ Bb.

Now, we give a useful lemma that appears in [23].

Lemma 2.5. Assume that x ∈ Bb, then for t ∈ J, xt ∈ Bh. Moreover,

l

E‖x(t)‖21/2

≤ ‖xt‖Bh ≤ l sup
0≤s≤t


E‖x(s)‖21/2

+ ‖x0‖Bh ,

where l =
 0
−∞

h(s) ds < ∞.

Lemma 2.6 ([5]). Let ν(·), ω(·) : [0, b] → [0,∞) be continuous functions. If ω(·) is nondecreasing and there exist two con-
stants θ > 0 and 0 < α < 1 such that

ν(t) ≤ ω(t)+ θ

∫ t

0

ν(s)
(t − s)1−α

ds, t ∈ J,

then

ν(t) ≤ eθ
n(Γ (α))ntnα/Γ (nα)

n−1−
j=1


θbα

α

j

ω(t),

for every t ∈ [0, b] and every n ∈ N such that nα > 1 and Γ (·) is the Gamma function.

3. Main result

In the sequel, let J1 = (−∞, b]. Before stating and proving themain result, we present the definition of themild solution
to the system (1).

Definition 3.1. A stochastic process x : J1 ×Ω → H is called a mild solution of the system (1) if

• x(t) is measurable and Ft-adapted, for each t ≥ 0;
• x(t) ∈ H has càdlàg paths on t ∈ [0, b] a.s., for every 0 ≤ s < t ≤ b, the function AS(t − s)g(s, xs) is integrable and there

exist f ∈ NF ,x and Tk ∈ Ik

x(t−k )


(k = 1, 2, . . . ,m) such that the following integral equation holds

x(t) = S(t) [ϕ(0)− g(0, ϕ)] + g (t, xt)+

∫ t

0
AS(t − s)g (s, xs) ds

+

∫ t

0
S(t − s)(Bu)(s)ds +

∫ t

0
S(t − s)f (s)dw(s)+

−
0<tk<t

S(t − tk)Tk, t ∈ J; (3)

• x0(·) = ϕ ∈ Bh on J0 satisfies ‖φ‖Bh < ∞.

Definition 3.2. The system (1) is said to be controllable on the interval J1, if for every initial stochastic process ϕ ∈ Bh
defined on J0, there exists a stochastic control u ∈ L2(J,U), which is adapted to the filtration {Ft}t≥0 such that the mild
solution x(t) of the system (1) satisfies x(b) = ς , where ς and b are preassigned the terminal state and time respectively.
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In this paper, we will work under the following assumptions.

(H1) A is the infinitesimal generator of an analytic semigroup of bounded linear operators S(t), t ≥ 0 and there exists a
constantM1 such that

‖S(t)‖2
≤ M1, for all t ≥ 0.

(H2) The linear operatorW : L2(J,U) → L2(Ω;H), defined by

Wu =

∫ b

0
S(b − s)Bu(s)ds

has an induced inverseW−1 which takes values in L2(J,U)/ker W (see [24]) and there exist two positive constantsM2
and M3 such that

‖B‖2
≤ M2 and ‖W−1

‖
2

≤ M3.

(H3) Ik : H → Pc,cp(H) (k = 1, 2, . . . ,m) are multi-valued maps with closed graph and there exist constants ck > 0, k =

1, 2, . . . ,m such that for all x, y ∈ H

Hd (Ik(x), Ik(y)) ≤ ck‖x − y‖.

(H4) The function g is xβ-valued, (−A)βg : J ×Bh → H is completely continuous and such that the operator g1 : Bh → Bh
defined by (g1ϕ)(t) = g(t, ϕ) is compact and there exist constantsMg , β, θ1 and θ2 such that

E‖(−A)βg(t, ϕ)‖2
≤ θ1‖ϕ‖

2
Bh

+ θ2, t ∈ J, ϕ ∈ Bh,

E‖g(t, ϕ1)− g(t, ϕ2)‖
2

≤ Mg‖ϕ1 − ϕ2‖
2
Bh

t ∈ J, ϕ1, ϕ2 ∈ Bh.

(H5) (i) F : J × Bh → P (H) is an L2-Carathédory function.
(ii) There exists a constantMF such that

Hd(F(t, u1), F(t, u2)) ≤ MF‖u1 − u2‖, t ∈ J, u1, u2 ∈ H.
(iii) There exists an integrable function p : J → [0,∞) such that

E‖F(t, ϕ)‖2
= sup

v∈F(t,ϕ)
‖v‖2

≤ p(t)Θ(‖v‖2
Bh
), t ∈ J, v ∈ Bh,

whereΘ : R+ → (0,∞) is a continuous nondecreasing function with

B0K3

∫ b

0
p(s)ds <

∫
∞

B0K3

ds
Θ(s)

,

where

B0 = eK
n
2 (Γ (2β−1))nbn(2β−1)/Γ (n(2β−1))

·

n−1−
j=0


K3b2β−1

2β − 1

j

, (4)

N0 = 2l2

49‖(−A)−β‖2θ1 + 492M1M2M3b2


‖(−A)−β‖2θ1M1 + 2m2M1

m−
k=1

ck


+ 98m2M1

m−
k=1

ck


, (5)

N1 = 2‖ϕ‖
2
Bh

+ 2l2

M + 492M1M2M3b2


bC2

1−βθ1

∫ b

0

µ(s)
(b − s)2(1−β)

ds

+M1Tr(Q )
∫ b

0
p(s)Θ(µ(s)) ds


, (6)

N2 = 98l2bC2
1−βθ1, N3 = 98l2M1Tr(Q ), (7)

K1 = N1/(1 − N0), K2 = N2/(1 − N0), K3 = N3/(1 − N0), (8)

M = 49M1‖ϕ‖
2
Bh

+ 49‖(−A)−β‖2M1

θ1‖ϕ‖

2
Bh

+ θ2

+ 49‖(−A)−β‖2M1θ2 + 49b

C2
1−βθ2b

2β

2β − 1

+ 492M1M2M3b2


‖ς‖
2
+ M1‖ϕ‖

2
Bh

‖(−A)−β‖2
+ M1


θ1‖ϕ‖

2
Bh

+ θ2

+ ‖(−A)−β‖2M1θ2

+
C2
1−βθ2b

2β

2β − 1
+ 2m2M1

m−
k=1

ckE‖Ik(0)‖2


+ 98m2M1

m−
k=1

ckE‖Ik(0)‖2, (9)
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and

C0 = 32bM1M2M3Mg + 32b2M1M2M3Mg‖(−A)−β‖2Cβ
b1−β

1 − β

+ 32bm2M2
1M2M3

m−
k=1

ck + 32b2M2
1M2M3MF + 2m2M1

m−
k=1

ck. (10)

The main result of the paper is the following theorem.

Theorem 3.3. Assume that the assumptions (H1)–(H5) hold. If N0 < 1 and C0 < 1, then the system (1) is controllability on J1.
Proof. For an arbitrary process x(·), define the control process

ub
x(t) = W−1


ς − S(b) [ϕ(0)− g(0, ϕ)] −

∫ b

0
AS(b − s)g (s, xs) ds

− g (b, xb)−

∫ b

0
S(b − s)f (s)dw(s)−

−
0<tk<t

S(b − tk)Tk


(t), (11)

where f ∈ NF ,x and Tk ∈ Ik

x(t−k )


, k = 1, 2, . . . ,m.

Consider the multi-valued mapΦ : Bb → P (Bb) defined byΦx the set of ρ ∈ Bb such that

ρ(t) =


ϕ(t), t ∈ J0

S(t) [ϕ(0)− g(0, ϕ)] + g (t, xt)−

∫ t

0
AS(t − s)g (s, xs) ds

+

∫ t

0
S(t − s)Bub

x(s)ds +

∫ t

0
S(t − s)f (s)dw(s)+

−
0<tk<t

S(t − tk)Tk, t ∈ J,

(12)

where f ∈ NF ,x and Tk ∈ Ik

x(t−k )


k = 1, 2, . . . ,m. In what follows, we aim to show that the operatorΦ has a fixed point,

which is a solution of the system (1).
For ϕ ∈ Bh, define

ϕ(t) =


ϕ(t), t ∈ J0
S(t)ϕ(0), t ∈ J, (13)

thenϕ(t) ∈ Bb. Set

x(t) = z(t)+ϕ(t), −∞ < t ≤ b.

It is clear that x satisfies (3) if and only if z satisfies z0 = 0 and

z(t) = −S(t)g(0, ϕ)+ g (t, zs +ϕs)+

∫ t

0
AS(t − s)g (s, zs +ϕs) ds

+

∫ t

0
S(t − s)Bub

z+ϕ(s)ds +

∫ t

0
S(t − s)f (s)dw(s)+

−
0<tk<t

S(t − tk)Tk, t ∈ J, (14)

where uz+ϕ is obtained from (11) by replacing xt by zt +ϕt .

Let B0
b = {y ∈ Bb : y0 = 0 ∈ Bh}. For each y ∈ B0

b , we have

‖y‖b = ‖y0‖Bh + sup
0≤s≤b


E‖y(s)‖21/2

= sup
0≤s≤b


E‖y(s)‖21/2 .

Thus, (B0
b , ‖ · ‖b) is a Banach space. Set

Bq = {y ∈ B0
b : ‖y‖b ≤ q} for some q ≥ 0,

then Bq ⊆ B0
b is uniformly bounded. Moreover, for z ∈ Bq, Lemma 2.5 shows that

‖zt +ϕt‖
2
Bh

≤ 2

‖zt‖2

Bh
+ ‖ϕt‖

2
Bh


≤ 2l2 sup

0≤s≤t
E‖z(s)‖2

+ 2‖z0‖2
Bh

+ 2l2 sup
0≤s≤t

E‖ϕ(s)‖2
+ 2‖ϕ0‖

2
B

≤ 2l2q2 + 2‖ϕ‖
2
Bh

+ 2l2 sup
0≤s≤t

‖S(s)‖2E‖ϕ(0)‖2

≤ 2l2

q2 + M1E‖ϕ(0)‖2

+ 2‖ϕ‖
2
Bh

:= q′. (15)
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Let the operator Φ : B0
b → P (B0

b ) defined by Φz the set of ρ̂ ∈ B0
b such that

ρ̂(t) =


0, t ∈ J0

−S(t)g(0, ϕ)+ g (t, zt +ϕt)−

∫ t

0
AS(t − s)g (s, zt +ϕt) ds

+

∫ t

0
S(t − s)Bub

z+ϕ(s) ds +

∫ t

0
S(t − s)f (s)dw(s)+

−
0<tk<t

S(t − tk)Tk, t ∈ J.

(16)

Now, we consider the following multi-valued operators Φ1 and Φ2 defined by

Φ1z(t) :=


0, t ∈ J0∫ t

0
S(t − s)Bub

z+ϕ(s)ds +

−
0<tk<t

S(t − tk)Tk, Tk ∈ Ik

z(t−k )+ϕ(t−k ) , t ∈ J

and

Φ2z(t) :=


0, t ∈ J0

−S(t)g(0, ϕ)+ g (t, zt +ϕt)−

∫ t

0
AS(t − s)g (s, zt +ϕt) ds +

∫ t

0
S(t − s)f (s)dw(s), t ∈ J.

It is clear thatΦ = Φ1 + Φ2.

The problem of finding mild solutions of (1) is reduced to find the solutions of the operator inclusion x ∈ Φ1(x)+ Φ2(x). In
what follows, we show that the operators Φ1 and Φ2 satisfy the conditions of Theorem 2.2.
Step 1.Φ1 is a contraction.

Let y1, y2 ∈ Bl. By the assumptions, we have

EH2
d

Φ1(y1),Φ1(y2)


≤ 2EH2
d

 −
0<tk<t

S(t − tk)Ik(y1(t−k )),
−

0<tk<t

S(t − tk)Ik(y2(t−k ))



+ 2EH2
d

∫ t

0
S(t − s)BW−1


−g(b, y1,b)−

∫ b

0
AS(b − s)g(s, y1,s)ds

−

∫ b

0
S(b − s)F(s, y1,s)dW (s)−

−
0<tk<s

S(b − tk)Ik(y1(t−k ))


(s)ds,

∫ t

0
S(t − s)BW−1


−g(b, y2,b)−

∫ b

0
AS(b − s)g(s, y2,s)ds

−

∫ b

0
S(b − s)F(s, y2,s)dW (s)−

−
0<tk<s

S(b − tk)Ik(y2(t−k ))


(s)ds


≤ C0E ||y1 − y2||2 ,

where C0 is given in (10). Hence, Φ1 is a contraction.
Step 2. Φ2 has compact, convex values and it is completely continuous. This will be divided into the following claims.

Claim 1. Φ2z is convex for each z ∈ B0
b .

In fact, if ρ̂1, ρ̂2 ∈ Φ2z, then, there exist f1, f2 ∈ NF ,z such that

ρ̂i(t) = −S(t)g(0, ϕ)+ g (t, zs +ϕs)+

∫ t

0
AS(t − s)g (s, zs +ϕs) ds

+

∫ t

0
S(t − s)fi(s)dw(s), i = 1, 2, t ∈ J. (17)

Let λ ∈ [0, 1]. Since the operators B and W−1 are linear, we have
λρ̂1(t)+ (1 − λ)ρ̂2(t)


= −S(t)g(0, ϕ)+ g (t, zs +ϕs)+

∫ t

0
AS(t − s)g (s, zs +ϕs) ds

+

∫ t

0
S(t − s) [λf1(s)+ (1 − λ)f2(s)] dw(s). (18)

Since NF ,z is convex (because F has convex values), we have λρ̂1(t)+ (1 − λ)ρ̂2(t) ∈ Φ2.
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Claim 2. Φ2 maps bonded sets into bounded sets in B0
b .

Indeed, it is enough to show that there exists a positive constant Λ such that for each ρ̄ ∈ Φ2z, z ∈ Bq = {z ∈ B0
b :

‖z‖0
b ≤ q}, one has ‖ρ̄‖

2
b ≤ Λ.

If ρ̂ ∈ Φ2z, then there exists f ∈ NF ,z such that, for each t ∈ J

ρ̂(t) = −S(t)g(0, ϕ)+ g (t, zt +ϕt)+

∫ t

0
AS(t − s)g (s, zs +ϕs) ds +

∫ t

0
S(t − s)f (s)dw(s). (19)

Therefore, by the assumptions, for each t ∈ J , we have

E‖ρ̂(t)‖2
≤ 16E‖S(t)g(0, ϕ)‖2

+ 16E ‖g (t, zt +ϕt)‖
2
+ 16E

∫ t

0
AS(t − s)g (s, zs +ϕs) ds

2
+ 16E

∫ t

0
S(t − s)f (s)dw(s)

2
≤ 16‖(−A)−β‖2M1


θ1‖ϕ‖

2
Bh

+ θ2

+ 16‖(−A)−β‖2(θ1q′

+ θ2)

+ 16bq′

∫ b

0

C2
1−βθ1

(t − s)2(t−s)
ds +

16C2
1−βθ2b

2β

2β − 1
+ 16M1Tr(Q )‖hq′‖L1

:= Λ.

Then, for each ρ̄ ∈ Φ2z, we have ‖ρ̄‖
2
b ≤ Λ.

Claim 3. Φ2 maps bounded sets into equicontinuous sets of B0
b .

Let 0 < τ1 < τ2 ≤ b. Then, we have for each z ∈ Bq and ρ̄ ∈ Φ2z, there exists f ∈ NF ,z such that (19) holds. Therefore,

E‖ρ̂(τ2)− ρ̂(τ1)‖
2

≤ 36‖(−A)−β‖2
(S(τ1)− S(τ2))


θ1‖ϕ ‖

2
Bh

+θ2
2

+ 36‖(−A)β‖2
(−A)−βg


τ2, zτ2 +ϕτ2− (−A)−βg


τ1, zτ1 +ϕτ12

+ 36‖(−A)−β‖2b
∫ τ2

0
‖S(τ1 − s)− AS(τ2 − s)‖2 θ1q′

+ θ2

ds

+ 36(τ2 − τ1)

∫ τ2

τ1

C2
1−β

(τ1 − s)2(β−1)


θ1q′

+ θ2

ds

+ 36Tr(Q )
∫ τ2

0
‖S(τ1 − s)− S(τ2 − s)‖2

‖f (s)‖2ds

+ 36Tr(Q )E
∫ τ2

τ1

‖S(τ1 − s)‖2
‖f (s)‖2ds.

The right-hand side of the above inequality is independent of z ∈ Bq and tends to zero as τ2 → τ1, the fact of g is completely
continuous and the compactness of S(t) for t > 0 imply the continuity in the uniform operator topology. Thus, the set
{Φ2z : z ∈ Bq} is equicontinuous.

Claim 4. Φ2 is a compact multi-valued map.

From the above claims, we see that family Φ2Bq is a uniformly bounded and equicontinuous collection. Therefore, it
suffices to show by the Arzelá–Ascoli theorem that Φ2 maps Bq into a precompact set in B0

q . That is for each fixed t ∈ J , the
set V (t) = {Φ2z(t) : z ∈ Bq} is precompact in H .

Obviously, V (0) = {Φ̂(0)}. Let t > 0 be fixed and for 0 < ε < t , define

Φε
2z(t) = −S(t)g(0, ϕ)+ g(t − ε, zt−ε +ϕt−ε)+

∫ t−ε

0
AS(t − s)g(s, zs +ϕs)ds +

∫ t−ε

0
S(t − s)f (s)dw(s).

Since S(t) is a compact operator, the set Vε(t) = {Φε
2z(t) : z ∈ Bq} is precompact in z for each ε, 0 < ε < t . Moreover,

E‖Φ2z(t)− Φε
2z(t)‖

2
≤ 16‖g(t, zt +ϕt)− g(t − ε, zt−ε +ϕt−ε)‖

2
+ 16

∫ t

t−ε
AS(t − s)g(s, zs +ϕs)ds

2
+ 16M1Tr(Q )

∫ t

t−ε
hq′(s)ds.
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Therefore,

E‖Φ2z(t)− Φε
2z(t)‖

2
→ 0, as ε → 0+,

and there are precompact sets arbitrary close to the set {Φ2z(t) : z ∈ Bq}. Hence, the Arzelá–Ascoli shows that Φ2 is a
compact multi-valued map.

Claim 5. Φ2 has a closed graph.

Let y(n) → y∗, ρ̄n ∈ Φ2y(n) and ρ̄n → ρ̄∗. We aim to show that ρ̄∗ ∈ Φ2y∗. Indeed, ρ̄n ∈ Φ2y(n) means that there exists
fn ∈ NF ,y(n) such that

ρ̄n(t) = −S(t)g(0, ϕ)+ g(t, y(n)t +ϕt)+

∫ t

0
AS(t − s)g(s, y(n)s +ϕs)ds +

∫ t

0
S(t − s)fn(s)dw(s), t ∈ J.

We need to prove that there exists f∗ ∈ NF ,y∗ such that

ρ̄∗(t) = −S(t)g(0, ϕ)+ g(t, y∗

t +ϕt)+

∫ t

0
AS(t − s)g(s, y∗

s +ϕs)ds +

∫ t

0
S(t − s)f∗(s)dw(s), t ∈ J.

Since g is continuous, we getρ̄n(t)+ S(t)g(0, ϕ)− g(t, y(n)t +ϕt)−

∫ t

0
AS(t − s)g(s, y(n)s +ϕs)ds

−


ρ̄∗(t)+ S(t)g(0, ϕ)− g(t, y∗

t +ϕt)−

∫ t

0
AS(t − s)g(s, y∗

s +ϕs)ds
 → 0, as n → ∞.

Consider the linear continuous operator

Γ : L2(J,H) → C(J,H), f : Γ (f )(t) =

∫ t

0
S(t − s)f (s)dw(s).

From Lemma 2.4, it follows that Γ ◦ NF is a closed graph operator. Furthermore, we have

ρ̄n(t)+ S(t)g(0, ϕ)− g(t, y(n)t +ϕt)−

∫ t

0
AS(t − s)g(s, y(n)s +ϕs)ds ∈ Γ (NF ,y(n)).

Since y(n) → y∗, it follows from Lemma 2.4 that

ρ̄∗(t)+ S(t)g(0, ϕ)− g(t, y∗

t +ϕt)−

∫ t

0
AS(t − s)g(s, y∗

s +ϕs)ds =

∫ t

0
S(t − s)f ∗(s)dw(s),

for some f ∗
∈ NF ,y∗ .

Therefore, Φ2 is a completely continuous multi-valued map, u.s.c. with convex closed, compact values.
Step 3. A priori estimate.

Now it remains to show that the set

G = {x ∈ H : x ∈ λΦ1x + λΦ2x for some 0 < λ < 1}

is bounded.
Let x ∈ G, then there exist f ∈ NF ,x and Tk ∈ Ik(x(t−k )) such that

x(t) = λS(t) [ϕ(0)− g(0, ϕ)] + λg (t, xt)+ λ

∫ t

0
AS(t − s)g (s, xs) ds

+ λ

∫ t

0
S(t − s)(Bu)(s)ds + λ

∫ t

0
S(t − s)f (s)dw(s)+ λ

−
0<tk<t

S(t − tk)Tk, t ∈ J

for some 0 < λ < 1. Then, by the assumptions, we have

E‖x(t)‖2
≤ 49M1‖ϕ‖

2
Bh

+ 49‖(−A)−β‖2M1

θ1‖ϕ‖

2
Bh

+ θ2

+ 49‖(−A)−β‖2M1


θ1‖xt‖2

Bh
+ θ2


+ 49b

∫ t

0

C2
1−βθ1

(t − s)2(1−β)
‖xs‖2

Bh
ds +

C2
1−βθ2b

2β

2β − 1


+ 492M1M2M3b2


‖ς‖

2
+ M1‖ϕ‖

2
Bh

‖(−A)1−β‖2

+M1

θ1‖ϕ‖

2
Bh

+ θ2

+ ‖(−A)−β‖2M1


θ1‖xb‖2

Bh
+ θ2


+ b

∫ b

0

C2
1−βθ1

(b − s)2(1−β)
‖xs‖2

Bh
ds +

C2
1−βθ2b

2β

2β − 1
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+M1Tr(Q )
∫ b

0
p(s)Θ(‖xs‖2

Bh
)ds + 2m2M1

m−
k=1

ckE‖x(t−k )‖
2

+ 2m2M1

m−
k=1

ckE‖Ik(0)‖2


+ 49M1Tr(Q )

∫ t

0
p(s)Θ(‖xs‖2

Bh
)ds

+ 98m2M1

m−
k=1

ckE‖x(t−k )‖
2
+ 98m2M1

m−
k=1

ckE‖Ik(0)‖2.

Now, we consider the function µ defined by

µ(t) = sup
0≤s≤t

E‖x(s)‖2, 0 ≤ t ≤ b.

From Lemma 2.4 and the above inequality, we have

E‖x(t)‖2
≤ 2l2 sup

0≤s≤t
E‖x(s)‖2

+ 2‖ϕ‖
2
Bh
.

Therefore, we get

µ(t) ≤ 2‖ϕ‖
2
Bh

+ 2l2

M + 49‖(−A)−β‖2θ1µ(t)+ 49bC2

1−βθ1

∫ t

0

µ(s)
(t − s)2(1−β)

ds

+ 492M1M2M3b2

‖(−A)−β‖2θ1µ(t)M1 + bC2

1−βθ1

∫ b

0

µ(s)
(b − s)2(1−β)

ds

+M1Tr(Q )
∫ b

0
p(s)Θ(µ(s))ds + 2m2M1

m−
k=1

ckµ(t)



+ 49M1Tr(Q )
∫ t

0
p(s)Θ(µ(s))ds + 98m2M1

m−
k=1

ckµ(t)


,

whereM is given in (9). Thus, we obtain

µ(t) ≤ K1 + K2

∫ t

0

µ(s)
(t − s)2(1−β)

ds + K3

∫ t

0
p(s)Θ(µ(s))ds,

where K1, K2 and K3 are given in (8). By Lemma 2.6, we have

µ(t) ≤ B0


K1 + K3

∫ t

0
p(s)Θ(µ(s))ds


,

where

B0 = eK
n
2 (Γ (2β−1))nbn(2β−1)/Γ (n(2β−1))

·

n−1−
j=0


K3b2β−1

2β − 1

j

.

Let us take the right hand of the above inequality as ν(t). Then, ν(0) = B0K1, µ(t) ≤ ν(t), 0 ≤ t ≤ b and

ν ′(t) ≤ B0K3p(t)Θ(ν(t)).

This implies that∫ v(t)

v(0)

1
Θ(s)

ds ≤ B0K3

∫ b

0
p(s)ds <

∫
∞

B0K1

1
Θ(s)

ds.

This inequality shows that there is a constant K such that ν(t) ≤ K , t ∈ J . So,

‖xt‖2
Bh

≤ µ(t) ≤ ν(t), t ∈ J,

where K depends only on b and on the functions p(·) andΘ(·).
This indicates that the set G is bounded. As a consequence of Theorem 2.2, we deduce that Φ1 + Φ2 has a fixed point

which is the mild solution of the system (1). Thus, the system (1) is controllable on J1. �
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4. An example

As an application, we consider the impulsive neutral stochastic partial differential inclusion of the following form

∂

∂t
v(t, x) ∈

∂2

∂x2
v(t, x)+

∂

∂t
g(t, v(t − h, x))+ b(x)u(t)

+ [Q1(t, v(t − h, x)),Q2(t, v(t − h, x))]dβ(t), 0 ≤ x ≤ π, t ∈ J, t ≠ tk,
v(t+k , x)− v(t−k , x) ∈


−bk|v(t−k , x)|, bk|v(t

−

k , x)|

, t ∈ J, k = 1, 2, . . . ,m,

v(t, 0) = v(t, π) = 0, t ∈ J,
v(t, x) = ϕ(t, x), −∞ < t ≤ 0, 0 ≤ x ≤ π,

(20)

where J := [0, b], bk > 0, k = 1, 2, . . . ,m, v(t+k , x) = lim(h,x)→(0+,x) v(tk + h, x), v(t−k , x) = lim(h,x)→(0−,x) v(tk + h, x),
Q1,Q2 : J × R → R are two given functions, and β(t) is a one-dimensional standard Wiener process. We assume that for
each t ∈ J,Q1(t, ·) is lower semi-continuous and for each t ∈ J,Q2(t, ·) is super semi-continuous.

Let J1 = (−∞, b] and H = L2([0, π])with the norm ‖ · ‖. Define A : H → H by Az = z ′′ with domain

D(A) =

z ∈ H, z, z ′ are absolutely continuous z ′′

∈ H, z(0) = z(π) = 0

.

Then,

Az =

∞−
n=1

n2(z, zn), z ∈ D(A),

where zn(s) =


2
π
sin(ns), n = 1, 2, . . . is the orthogonal set of eigenvectors in A. It is well known that A is the infinitesimal

generator of an analytic semigroup S(t), t ≥ 0 in H given by

S(t)z =

∞−
n=1

exp−n2t(z, zn)zn, z ∈ H.

Since the analytic semigroup S(t) is compact, there exists a constantM1 such that ‖S(t)‖2
≤ M1. In particular, ‖A−1/2

‖
2

= 1.
Now, we give a special Bh-space. Let h(s) = e2s, s < 0, then l =

 0
−∞

h(s) ds =
1
2 and let

‖ϕ‖Bh =

∫ 0

−∞

h(s) sup
s≤θ≤0


E‖ϕ(θ)‖21/2 ds.

It follows from [3] that (Bh, ‖ · ‖Bh) is a Banach space.
Let B ∈ L(R,H) be defined as

Bu(t) = b(x)u, 0 ≤ x ≤ π, u ∈ R, b(x) ∈ L2([0, π]).

Moreover, the operator

Wu =

∫ b

0
e−(t−s)Bu(s)ds,

is a bounded linear one. Let Ker W = {u ∈ L2(J,U);Wu = 0} be the null space of W , Then, the invertible operator W−1 is
bounded and takes values in L2(J,U)/ker W. For more details, one can see [15].

Hence, let

ϕ(θ)x = ϕ(θ, x), (θ, x) ∈ (−∞, 0] × [0, π], v(t)(x) = v(t, x),
Ik(v(t−k ))(x) =


−bk|v(t−k , x)|, bk|v(t

−

k , x)|

, x ∈ [0, π], k = 1, 2, . . . ,m,

and

F(t, ϕ)(x) = [Q1(t, ϕ(θ, x)),Q2(t, ϕ(θ, x))] , −∞ < θ ≤ 0, x ∈ [0, π].

Then, (20) can be rewritten as the abstract form as the system (1). Moreover, we can define g,Q1 and Q2 as [15] to satisfy
the assumptions stated in Theorem 3.3. We omit it here. Therefore, the system is controllable on J1.

5. Conclusions

In this paper, we study the controllability of a class of neutral stochastic functional differential inclusions with infinite
delay and multi-valued jump operators in Hilbert spaces. Sufficient conditions for the controllability are derived with the
help of the fixed point theorem for discontinuous multi-valued operators due to Dhage. An example is provided to illustrate
the feasibility of the obtained result.
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