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Abstract

We discuss di$erential-algebraic equations driven by Gaussian white noise, which are assumed to have
noise-free constraints and to be uniformly of DAE-index 1.

We 5rst provide a rigorous mathematical foundation of the existence and uniqueness of strong solu-
tions. Our theory is based upon the theory of stochastic di$erential equations (SDEs) and the theory of
di$erential-algebraic equations (DAEs), to each of which our problem reduces on making appropriate simpli5-
cations.

We then consider discretization methods; implicit methods are necessary because of the di$erential-algebraic
structure, and we consider adaptations of such methods used for SDEs. The consequences of an inexact solution
of the implicit equations, roundo$ and truncation errors, are analysed by means of the mean-square numerical
stability of general drift-implicit discretization schemes for SDEs. We prove that the convergence properties
of our drift-implicit Euler scheme, split-step backward Euler scheme, trapezoidal scheme and drift-implicit
Milstein scheme carry over from the corresponding properties of these methods applied to SDEs.

Finally, we show how the theory applies to the transient noise simulation of electronic circuits.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Stochastic di$erential equations; Di$erential algebraic equations; Numerical methods; Mean square numerical
stability; Transient noise analysis; Circuit simulation

1. Introduction

In this paper we deal with Stochastic Di$erential Algebraic Equations (SDAEs) of the type

Ax′(t) + f(x(t); t) + G(x(t); t)�(t) = 0; (1.1)
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Fig. 1.

where f is a vector-valued function of dimension n, A is a constant singular n× n matrix with rank
r, � stands for an m-dimensional vector of independent Gaussian white noise processes and G is
an n× m-dimensional matrix-function. For a mathematical treatment of (1.1) we understand it as a
stochastic integral equation

Ax(s)|tt0 +
∫ t

t0

f(x(s); s) ds +
∫ t

t0

G(x(s); s) dw(s) = 0; (1.2)

where the second integral is an Itô integral, and w denotes an m-dimensional Wiener process given
on the probability space (;F; P) with a 5ltration (Ft)t¿t0 .

A solution x is a vector-valued stochastic process of dimension n that depends both on the time
t and an element ! of the probability space . The argument ! is omitted in the notations above.
The unknown x(t) = x(t; ·) is a vector-valued random variable in L2(;F; P;Rn), and the identity
in (1.2) means identity for all t and almost surely in !. The short-hand notation (1.1) emphasizes
the relations of (1.1) to its deterministic counterparts, but it may be misleading for readers who are
less familiar with the stochastic background. Though the notation x′(t) is used in (1.1), a typical
realization x(·; !) of the solution is nowhere di$erentiable.

The application we have in mind is the transient noise simulation of electronic circuits. In the
deterministic case the circuits are modelled by large, specially structured DAEs. Noise in the system
is modelled by adding Gaussian white noise sources.

Here, we give a simple linear example with dimensions n = 2, m = 1:(
c1 −c1

−c1 c1

)(
x′1(t)

x′2(t)

)
+

(
g1 −g1

−g1 g1 + g2

)(
x1(t)

x2(t)

)

+

(−i(t)

0

)
+

(
�1

−�1

)
�1(t) = 0 (1.3)

with parameters c1, g1, g2, �1 ¿ 0 and a given continuous scalar function i. The SDAE (1.3) serves
as a mathematical model of the nodal potentials in the linear electrical network described in Fig. 1.

Now, we come back to our general problem (1.1). Due to the singularity of the matrix A the
deterministic part of (1.1)

Ax′(t) + f(x(t); t) = 0; (1.4)

where the solution x is a deterministic function of t, forms a DAE. Solutions have to ful5l the
constraints of the equation. The solution components belonging to ker A (we call them the algebraic
components) do not occur under the di$erential operator, and the inherent dynamics live only in a
lower-dimensional subspace.
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The deterministic part of our simple example (1.3) reads(
c1 −c1

−c1 c1

)(
x′1(t)

x′2(t)

)
+

(
g1 −g1

−g1 g1 + g2

)(
x1(t)

x2(t)

)
+

(−i(t)

0

)
= 0: (1.5)

The constraints are given only implicitly. Combining both rows one obtains the constraint g2x2(t)−
i(t) = 0. The solution component x2(·) is as smooth as the input function i(·). If i(·) is not di$eren-
tiable, neither is x2(·). At 5rst glance this seems to contradict the DAE (1.5). At a closer look one
sees that only the di$erence x1(·) − x2(·) has to be di$erentiable and a more exact formulation of
(1.5) would be(

c1 −c1

−c1 c1

)((
1 −1

0 0

)(
x1(t)

x2(t)

))′
+

(
g1 −g1

−g1 g1 + g2

)(
x1(t)

x2(t)

)
+

(−i(t)

0

)
= 0:

The solution may be represented as the sum of di$erentiable and algebraic components in the form(
x1(t)

x2(t)

)
=

(
x1(t) − x2(t)

0

)
+

(
x2(t)

x2(t)

)
:

DAEs are usually classi5ed by their index. The literature on DAEs contains a number of di$erent
de5nitions of this term pointing to di$erent properties of the considered DAEs. Fortunately, they
widely coincide in characterizing the special type of DAEs (1.4) to be of index 1. Let us sketch the
possibly best-known de5nitions:

The DAE (1.4) has di$erential index 1 i$ di$erentiating the constraints once leads to an
(implicit) ODE.

The DAE (1.4) has perturbation index 1 i$ perturbations in the solutions caused by perturbations
in the right-hand side can be estimated by the latter, or, in other words, the solution does not
depend on derivatives of input signals.

The DAE (1.4) has tractability index 1 i$ the constraints are locally solvable for the algebraic
components.

We consider the tractability index de5nition to be most suitable for our purposes. It is the one
with the lowest smoothness suppositions (e.g. it is applicable to the example of Eq. (1.5) with a
continuous input function i), it allows to prove that (1.4) has perturbation index 1, too, and it is
equivalent to the de5nition of the di$erential index 1 if the function f in (1.4) is suGciently smooth.

If a DAE has tractability index 1, it involves a coupling of an integration task and a nonlinear
equation solving task. If a DAE is of higher index, the constraints are not locally solvable for the
algebraic components, and there exist solution components that are determined by a hidden di$er-
entiation step only. For a detailed analysis of DAEs and their numerics we refer to the monographs
[2,5,12,14,16] or to the review papers [22,23,27].

SDAEs are a generalization of deterministic di$erential-algebraic equations (DAEs) as well as
stochastic di$erential equations (SDEs). Much research has been devoted to the numerical solution
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of SDEs. Let us refer to the monographs [19,25] and the recent overview in [28], where more
than 300 references are comprised. As an example of questions treated recently we refer to [6] in
this journal. However, only 5rst attempts have been made towards a numerical analysis of SDAEs:
In [29,30] linear SDAEs are analysed and the convergence of the drift-implicit Euler scheme is
proved. In [26] a scheme with strong order 1 is developed for the specially structured SDAEs that
arise in transient noise simulation for electronic circuits. Later we will point out its relation to the
drift-implicit Milstein scheme.

In the present paper we will prove the existence and uniqueness of solutions of general nonlinear
SDAEs of index 1, and develop and analyse a number of numerical schemes for SDAEs. We put
special emphasis on estimating the inKuence of computational as well as truncation errors. We use
the mean-square numerical stability, which we prove for general drift-implicit discretization schemes
for SDEs.

In Section 2 we de5ne SDAEs of index 1 and present an analysis of such systems. We formulate
initial value problems, prove the existence and uniqueness of strong solutions, and give estimates
for the growth of solutions. This generalizes results in [29,30] to nonlinear systems.

In Section 3 we provide a proof of mean-square numerical stability for drift-implicit discretization
methods for (ordinary) SDEs. Numerical stability allows to estimate the inKuence of computational
and truncation errors in the discrete systems.

In Section 4 we present and discuss discretization schemes suitable for SDAEs, which are obtained
by adapting drift-implicit schemes used for SDEs. In particular, we consider the drift-implicit Euler
scheme, the split-step backward Euler scheme, the trapezoidal rule, and the drift-implicit Milstein
scheme. Finally, in Section 5 we describe the SDAEs arising in transient noise simulation for elec-
trical circuits. We give suGcient conditions for these systems to ful5l the assumptions made in the
previous sections.

2. SDAEs of index 1

We consider the SDAE

Ax(s)|tt0 +
∫ t

t0

f(x(s); s) ds +
∫ t

t0

G(x(s); s) dw(s) = 0; t ∈J; (2.1)

where A is a constant nonsingular matrix in Rn×n, J=[t0; T ], f :Rn×J → Rn, G :Rn×J → Rn×m

are continuous functions, and, moreover, f possesses continuous derivatives with respect to x, w
denotes an m-dimensional Wiener process given on the probability space (;F; P) with a 5ltration
(Ft)t¿t0 . We are interested in strong solutions de5ned as follows:

De�nition 1. A strong solution of (2.1) is a process x(·) = (x(t))t∈J with continuous sample paths
that ful5ls the following conditions:

• x(·) is adapted to the 5ltration (Ft)t∈J,
• ∫ t

t0
|fi(x(s); s)| ds¡∞ a.s., ∀i = 1; : : : ; n, ∀t ∈J,∫ t

t0
g2
ij(x(s); s) dw(s)¡∞ a.s., ∀i = 1; : : : ; n, ∀j = 1; : : : ; m, ∀t ∈J,

• (2.1) holds a.s.
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In [29,30] it is shown that special conditions are needed to ensure solution processes that are not
directly a$ected by white noise. Then the SDAEs are called SDAEs without direct noise, otherwise
with direct noise. To avoid a solution process that is directly a$ected by white noise we have to
assume that the noise sources do not appear in the constraints. This means that

im G(x; t) ⊆ im A ∀(x; t)∈Rn ×J:

Further, we assume here that the deterministic part

Ax′(t) + f(x(t); t) = 0; t ∈J; (2.2)

is globally an index 1 DAE in the sense that the constraints are regularly and globally uniquely
solvable for the algebraic variables, the components of x belonging to the kernel of the matrix A.
The globally unique solvability is stronger than the tractability index 1 condition, which requires
only the nonsingularity of the corresponding Jacobian and guarantees only local solvability of the
constraints for the algebraic variables. Summarizing both assumptions we de5ne:

De�nition 2. The SDAE (2.1) is said to be an index 1 SDAE if

• the noise sources do not appear in the constraints, and
• the constraints are globally uniquely solvable for the algebraic variables.

To be more precise we will distinguish the di$erential and algebraic solution components as well as
the constraints by means of the special projectors

Q onto ker A; P := I − Q along ker A; R along im A:

(A matrix Q is a projector i$ Q2 =Q. It projects onto its image and along its kernel.) Now we split
the solution components into di$erential and algebraic components

x = Px + Qx= : u + v; x∈Rn; u∈ im P; v∈ im Q

and, applying the projectors (I − R) and R, the equations of the DAE (2.2) into di$erential ones
and constraints:

Ax′(t) + (I − R)f(x(t); t) = 0; (2.3)

Rf(x(t); t) = 0: (2.4)

Solving the constraints for the algebraic solution components means solving Rf(u + v; t) = 0, where
Av = 0 for v, or, equivalently, solving

Av + Rf(u + v; t) = 0 (2.5)

for v. We denote the solution by

v = v̂(u; t): (2.6)
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With these notations we have the following characterization of index 1 SDAEs: The SDAE (2.1) is
an index 1 SDAE if, for all (x; t)∈Rn ×J,

• RG(x; t) = 0, and
• the Jacobian J (x; t) := A + Rf′

x(x; t) of (2.5) is nonsingular and the implicitly de5ned function v̂
exists globally and uniquely.

The latter condition is guaranteed if the inverse (A+Rf′
x(x; t))−1 is uniformly bounded. Furthermore,

then also perturbed constraints

Rf(u + v; t) = Rd; d∈Rn;

are uniquely solvable for the algebraic variables. We will denote the solution by

v = v̂(u; t; d) with the convention that v̂(u; t; 0) = v̂(u; t):

Next, let us point out that the above manipulations are applicable to the SDAE (2.1), too. This is
due to the special structure of the considered SDAE, where the matrix A, and, hence, the projectors
P, Q, R are constant. For any constant n× n matrix B we have

B ·
∫ t

t0

G(x(s); s) dw(s) =
∫ t

t0

B · G(x(s); s) dw(s)

for the Itô-integral in (2.1). Applying R and (I − R), using the identity RA = 0 and the condition
RG(x; t) = 0, we are able to split (2.1) analogously to its deterministic counterpart into

Ax(s)|tt0 +
∫ t

t0

(I − R)f(x(s); s) ds +
∫ t

t0

G(x(s); s) dw(s) = 0 (2.7)∫ t

t0

Rf(x(s); s) ds = 0: (2.8)

A solution of (2.1) has to satisfy (2.8) for all t ∈J almost surely. Since f is continuous and the
solution paths have to be almost surely continuous we can conclude

Rf(x(t); t) = 0; t ∈J; a:s: (2.9)

Solving these deterministic constraints for the algebraic variables we obtain

x(t) = Px(t) + Qx(t) := u(t) + v̂(u(t); t): (2.10)

Now, let us consider initial conditions to the SDAE (2.1). To 5nd a solution to a given Ft0 -measurable
initial value x0, this value has to ful5l the constraints at the initial time-point almost surely, i.e.,

Rf(x0; t0) = 0 a:s: (2.11)

The random variable x0 is said to be a consistent initial value for the index 1 SDAE i$ (2.11) is
ful5lled. Eq. (2.11) represents n-rank A independent scalar conditions. There are only rank A free
initial parameters. One way to determine a consistent initial value x0 with given Ax0 := Ax0 for any
Ft0 -measurable Rn-valued random variable x0 is to solve the system

A(x0 − x0) = 0; Rf (x0; t0) = 0;
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or, equivalently,

A(x0 − x0) + Rf(x0; t0) = 0:

Using function (2.6) the solution of this system can be represented as

x0 := Px0 + Qx0 := Px0 + v̂(Px0; t0):

In general, unless Qx0 = v̂(Px0; t0), the consistent initial value x0 will di$er from the given value x0.
According to this setting initial value problems can be formulated as

A(x(t) − x0) +
∫ t

t0

f(x(s); s) ds +
∫ t

t0

G(x(s); s) dw(s) = 0; t ∈J; (2.12)

or, abbreviated according to (1.1), as

Ax′(t) + f(x(t); t) + G(x(t); t)�(t) = 0; t ∈J; A(x(t0) − x0) = 0: (2.13)

In this section we aim at the existence and uniqueness of solutions of (2.13) and related properties.
The main tool will be a theoretical equivalence between (2.13) and a so-called inherent regular SDE.
To 5nd the inherent regular SDE we follow the steps:

• Applying the projectors P and Q along and onto ker A we split the solution vector into di$erential
and algebraic components. We solve the constraints (2.9) for the algebraic components to obtain
representation (2.10) for the solution:

x(t) = Px(t) + Qx(t) := u(t) + v̂(u(t); t):

• We insert v(t)=v̂(u(t); t) into the stochastic di$erential equations (2.7) and use Ax=Au; Ax0=APx0

to obtain

A(u(t) − Px0) +
∫ t

t0

(I − R)f(u + v̂(u; s); s) ds +
∫ t

t0

G(u + v̂(u; s); s) dw(s) = 0: (2.14)

• We scale the system by a suitable nonsingular matrix D such that DA = P. Then A− := D(I −R)
is a pseudo-inverse with A−A = P, AA− = (I − R). Using Pu = u, u0 := Px0 we obtain

u(t) − u0 +
∫ t

t0

A−f(u + v̂(u; s); s)︸ ︷︷ ︸
:=f̂(u; s)

ds +
∫ t

t0

A−G(u + v̂(u; s); s)︸ ︷︷ ︸
:=Ĝ(u; s)

dw(s) = 0: (2.15)

Eq. (2.15) is a regular SDE in the di$erential part u of the solution with im P as an invariant
subspace. This becomes obvious by the following:

Since DA = P, we have QDA = QP = 0 and thus QD(I − R) = 0.
Applying the projector Q to (2.15) with the initial value u(t0) we obtain

Q(u(t) − u(t0)) + 0 + 0 = 0; t ∈J:

Hence, Qu(t0) = 0 implies that Qu(t) = 0 for all t ∈J, or, in other words, u(t0)∈ im P implies that
u(t)∈ im P for all t ∈J.

De�nition 3. Eq. (2.15) is called an inherent regular SDE of the SDAE (2.12).
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The inherent regular SDE (2.15) together with the assembling of the solution (2.10) is equivalent
to the original initial value problem for the SDAE (2.12).

Based on this fact we are now able to prove our main theorem on the existence and uniqueness
of strong solutions of index 1 SDAEs:

Theorem 4. Suppose that (2.1) is an index 1 SDAE and that the Jacobian J (x; t) := A+Rf′
x(x; t)

of (2.5) possesses a globally bounded inverse.
Suppose that f and G are globally Lipschitz-continuous with respect to x, continuous with

respect to t, and that Ax0 is Ft0 -measurable, independent of the Wiener process w, and with :nite
second moments.
Then there exists a solution process x(·) of (2.12) that is pathwise unique. Moreover, the solution

process x(·) is square-integrable and ful:ls
E|x(t)|26 c0(t) + c1(1 + E|Px0|2) · ec2L(t−t0)

with a continuous function c0(·) (resulting from the inhomogeneity in the constraints), and constants
c1; c2. If, additionally, the function Rf is Lipschitz-continuous with respect to t, then there exist
constants c3; c4 such that

E|x(t) − x0|26 c3(t − t0)2 + c4(1 + E|Px0|2) · (t − t0) · ec2L(t−t0):

Proof. First, we note that, for continuous functions and compact time-intervals, the global Lipschitz
continuity with respect to x implies the usual growth condition: One has

|f(x; t)|6max(‖f(0; ·)‖∞; Lf)(1 + |x|) ∀x∈Rn; ∀t ∈J;

where ‖y(·)‖∞ := maxt∈J |y(t)| denotes the Chebychev-norm and Lf denotes the Lipschitz constant
of f with respect to x.

An analogous argument applies to the matrix-valued function G.
Next, the implicit function v̂ from (2.6) is globally Lipschitz-continuous, too. The function v̂ solves

h(v; u; t) := Av + Rf(u + v; t) = 0:

Since the function h is continuously di$erentiable and Lipschitz-continuous with respect to v and u,
also v̂ is continuously di$erentiable with respect to u and

v̂′u(u; t) =−h′v(v̂(u; t); u; t)−1h′u(v̂(u; t); u; t)

=−(A + Rf′
x(u + v̂(u; t); t))−1Rf′

x(u + v̂(u; t); t):

Since the Jacobian h′v(v; u; t) = J (u + v; t) is supposed to have a uniformly bounded inverse, i.e.,
‖J (x; t)−1‖6M holds with a uniform constant M , ‖v̂′u(u; t)‖ is bounded by a constant Lv̂6M‖R‖Lf.
Hence, v̂ is Lipschitz-continuous with respect to u with this constant. If, additionally, the function
Rf is Lipschitz-continuous with respect to t, then v̂ is Lipschitz-continuous with respect to t with
a constant Lv̂; t . Considering the dependence of the function v̂ = v̂(u; t; d) on perturbations of the
constraints Rd, d∈Rn, we note that v̂ is Lipschitz-continuous with respect to d with a constant
Lv̂;d = M‖R‖.
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Now, we have the conditions of the usual existence and uniqueness theorem for SDEs (see e.g.
[1,18]) for the inherent regular SDE (2.15)):

• Lipschitz condition: The coeGcient f̂ with f̂(u; t) := A−f(u + v̂(u; t); t) is Lipschitz-continuous
with respect to u with a constant Lf̂6 ‖A−‖Lf(1 + Lv̂). An analogous argument applies to Ĝ.

• Growth condition: Since f and v̂ depend continuously on t, also f̂ depends continuously on t.
Hence, the growth condition follows from the global Lipschitz condition. Again, an analogous
argument applies to Ĝ.

• Initial condition: Since Ax0 is Ft0 -measurable, independent of the Wiener process w, and has
5nite second moments, the same is true for Px0 = DAx0.

Applying the usual existence and uniqueness theorem for SDEs to the inherent regular SDE we
obtain: The inherent regular SDE (2.15) has a pathwise unique continuous solution process u that
is square-integrable and ful5ls

E|u(t)|26 (1 + E|u0|2) · ec5L̂(t−t0); ∀t ∈J; (2.16)

E|u(t) − u0|26 c6(1 + E|u0|2) · (t − t0) · ec5L̂(t−t0); ∀t ∈J; (2.17)

with constants c5; c6, where L̂ is a Lipschitz constant for the functions f̂, Ĝ. Assembling the solution
x of the SDAE (2.1) as in (2.10)

x(t) := u(t) + v̂(u(t); t); t ∈J

gives a pathwise unique continuous solution process of the original SDAE. Due to the Lipschitz and
continuity properties of the implicit function v̂ we can estimate:

|x(t)|6 |u(t)| + |v̂(u(t); t) − v̂(0; t)| + |v̂(0; t)|6 (1 + Lv̂)|u(t)| + |v̂(0; t)|:
Hence, the solution x(t) is also square integrable for all t ∈J, and

E|x(t)|2 6 E((1 + Lv̂)|u(t)| + |v̂(0; t)|)2

6 2|v̂(0; t)|2 + 2(1 + Lv̂)2E|u(t)|2

6 2|v̂(0; t)|2 + 2(1 + Lv̂)2(1 + E|u0|2) · ec5L̂(t−t0)

= : c0(t) + c1(1 + E|Px0|2) · ec2L(t−t0);

E|x(t) − x0|2 = E|u(t) + v̂(u(t); t) − (u0 + v̂(u0; t0))|2

6 E((1 + Lv̂)|u(t) − u0| + Lv̂; t|t − t0|)2

6 2L2
v̂; t(t − t0)2 + (1 + Lv̂)2c6(1 + E|u0|2)(t − t0)ec5L̂(t−t0)

= : c3(t − t0)2 + c4(1 + E|Px0|2)(t − t0)ec2L(t−t0):
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3. Numerical stability, consistency and mean-square convergence for discretization methods for
SDEs

The numerical treatment of SDAEs incorporates not only truncation errors and roundo$ errors, but
also defects in solving the constraints or in solving the nonlinear equations in drift-implicit methods.
It is not appropriate to assume that these errors tend to zero if the stepsizes do so.

Analogously to the analysis of SDAEs in Section 2 we will trace back the properties of certain
discretization schemes for SDAEs to those for SDEs. Although there is a well-developed convergence
analysis for discretization schemes for SDEs, less emphasis has been put on a numerical stability
analysis to estimate the e$ect of errors. Therefore, we supplement the known convergence results
by a theorem concerning the numerical stability of discretization schemes for SDEs.

Various stability properties of numerical methods are discussed in the literature (see e.g. [7,15,20]).
Numerical stability for a discretization scheme means that di$erences of the discrete solutions due to
errors on the right-hand side of the discrete system can be estimated by the maximum of these errors
multiplied by a grid-independent stability constant. Numerical stability allows to conclude conver-
gence from consistency. In order to distinguish this stability concept from others, it is sometimes
called zero stability. It should not be mistaken for properties like asymptotic stability, which guaran-
tee that for 5xed stepsizes (and long or unbounded time intervals) qualitative properties of the exact
solutions like damping behaviour in dissipative systems are preserved by the discrete approximations.

We aim at a numerical stability inequality for discretization schemes for SDEs concerning the
mean-square norm of errors of the discrete solution. We will estimate them by the mean-square norm
as well as the conditional mean of the errors perturbing the right-hand sides. This phenomenon is
already known from the convergence proofs, e.g. in [3,25]. In [11,19] it occurs only implicitly due
to the comparison with the truncated Itô–Taylor expansions.

We denote the mean-square norm of a vector-valued square-integrable random variable
z ∈L2(;Rn) by

‖z‖L2 := (E|z|2)1=2:

Let us consider the initial value problem for the SDE

x(s)|tt0 +
∫ t

t0

f(x(s); s) ds +
∫ t

t0

G(x(s); s) dw(s) = 0; t ∈J; x(t0) = x0; (3.1)

where J = [t0; T ]; f :Rn ×J → Rn; G :Rn ×J → Rn×m; w is an m-dimensional Wiener process on
the given probability space (;F; P) with a 5ltration (Ft)t∈J, and x0 is a given Ft0 -measurable
initial value, independent of the Wiener process and with 5nite second moments. We assume that
there exists a pathwise unique strong solution x(·).

Moreover, let us consider a generally drift-implicit numerical scheme of the form

x‘ = x‘−1 + ’(x‘−1; x‘; t‘−1; h‘) +  (x‘−1; t‘−1; h‘; I‘); ‘ = 1; : : : ; N; (3.2)

on the deterministic grid t0 ¡t1 ¡ · · ·¡tN = T with stepsizes h‘ := t‘ − t‘−1, and a collection of
multiple stochastic integrals I‘ = It‘−1 ;h‘ , ‘ = 1; : : : ; N . Here, It;h denotes a collection of M multiple
stochastic integrals

Ii1 ;:::;ik ;t;h =
∫ t+h

t
dwik (s1)

∫ s1

t
dwik−1(s2) · · ·

∫ sk−1

t
dwi1(sk);
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where the indices i1; : : : ; ik are in {0; 1; : : : ; m}, k is bounded by certain 5nite order kmax, and dw0(s)
corresponds to ds.

For example, for the drift-implicit Euler scheme

x‘ := x‘−1 + h‘f(x‘; t‘) + G(x‘−1; t‘−1)Mw‘; ‘ = 1; : : : ; N;

where Mw‘ := (w(t‘) − w(t‘−1)) = (Ii;t‘−1 ;h‘)
m
i=1, one has kmax = 1, M = m, and

’(z; x; t; h) := hf(x; t + h);  (z; t; h; y) := G(z; t)y;

for z; x∈Rn; t; t + h∈J; y∈Rm. A similar setting for explicit schemes is used in [3]. We now
formulate and prove our main theorem on numerical stability.

Theorem 5. Assume that scheme (3.2) for the SDE (3.1) satis:es the following properties:

• For all z, z̃, x, x̃∈Rn; h∈ (0; h1]; t; t + h∈J we have:

(A1) |’(z; x; t; h) − ’(z̃; x̃; t; h)|6 hL1|z − z̃| + hL2|x − x̃|
for some positive constants h1; L1; L2.

• For all h∈ (0; h1]; t; t + h∈J and all Ft-measurable random variables zt ; z̃t we have:

(A2) E( (zt; t; h; It;h) −  (z̃t; t; h; It;h)|Ft) = 0;

(A3) E(| (zt; t; h; It;h) −  (z̃t; t; h; It;h)|2|Ft)6 hL2
3|zt − z̃t|2;

(A4) E| (0; t; h; It;h)|2 ¡∞:

for some positive constant L3.

Then there exists constants a¿ 1, h0 ¿ 0 and a stability constant S ¿ 0 such that the following
holds true for each grid {t0; t1; : : : ; tN} having the property h := max‘=1; :::;N h‘6 h0 and h · N6 a ·
(T − t0):
For all Ft0 -measurable, square-integrable initial values x̃0, x∗0 , for all ‘∈{1; : : : ; N} and all

Ft‘-measurable perturbations d̃‘, d∗
‘ having :nite second moments the perturbed discrete systems

x̃‘ = x̃‘−1 + ’(x̃‘−1; x̃‘; t‘−1; h‘) +  (x̃‘−1; t‘−1; h‘; It‘−1 ;h‘) + d̃‘; (3.3)

x∗‘ = x∗‘−1 + ’(x∗‘−1; x
∗
‘ ; t‘−1; h‘) +  (x∗‘−1; t‘−1; h‘; It‘−1 ;h‘) + d∗

‘ ; (3.4)

‘ = 1; : : : ; N , have unique solutions {x̃‘}N
‘=0, {x∗‘}N

‘=0, and the mean-square norm /‘ := ‖x∗‘ − x̃‘‖L2

of their di>erences can be estimated by

max
‘=1;:::; N

/‘6 S
{
/0 + max

‘=1;:::; N
(‖s‘‖L2h

−1=2 + ‖r‘‖L2h
−1)
}

; (3.5)

where d‘ := d∗
‘ − d̃‘ is splitted such that d‘ = s‘ + r‘ with E(s‘|Ft‘−1) = 0, or

max
‘=1;:::; N

/‘6 S
{
/0 + max

‘=1;:::; N
(‖d‘‖L2h

−1=2 + ‖ Od‘‖L2h
−1)
}

; (3.6)

where Od‘ := E(d‘|Ft‘−1).
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De�nition 6. If scheme (3.2) for the SDE (3.1) ful5ls the assertion of Theorem 5, we call it nu-
merically stable in the mean-square sense.

For the proof of Theorem 5 we need a discrete analogue of Gronwall’s inequality.

Lemma 7. Let a‘; ‘ = 1; : : : ; N , and C1, C2 be nonnegative real numbers and assume that the
inequalities

a‘6C1 + C2
1
N

‘−1∑
i=1

ai; ‘ = 1; : : : ; N;

are valid. Then we have max‘=1; :::;N a‘6C1 exp(C2).

Proof of Theorem 5. The proof is organized in three parts. First, we show the existence of unique
solutions of the perturbed discrete systems. Second, we show that the second moments of these
solutions exist, and, third, we derive a stability inequality.

Part 1 (Existence of solutions x̃‘): We consider scheme (3.3). If the function ’ does not depend
on the variable x, the right-hand side of (3.3) gives the new iterate x̃‘ explicitly. Otherwise, the new
iterate x̃‘ is given by (3.3) only implicitly as the solution of the 5xed point equation

x = ’(x̃‘−1; x; t‘−1; h‘) + b̃‘= : 2‘(x; x̃‘−1; b̃‘); (3.7)

where b̃‘ := x̃‘−1+ (x̃‘−1; t‘−1; h‘; I‘)+d̃‘ is a known Ft‘-measurable random variable. The function
2‘(x; z; b) is globally contractive with respect to x, since, due to the global Lipschitz condition (A1),

|2‘(x; z; b) − 2‘(x̃; z; b)|6 h‘L2|x − x̃|6 1
2
|x − x̃| ∀h‘6 h6 h06

1
2L2

:

Thus, 2‘(·; z; b) has a globally unique 5xed point x = �‘(z; b), and �‘(x̃‘−1; b̃‘) gives the unique
solution x̃‘ of (3.3). Moreover, �‘(z; b) depends Lipschitz-continuously on z and b since

|�‘(z; b) − �‘(z̃; b̃)| = |2‘(�‘(z; b); z; b) − 2‘(�‘(z̃; b̃); z̃; b̃)|
= |’‘(z; �‘(z; b)) − ’‘(z̃; �‘(z̃; b̃)) + b− b̃|
A1
6 h‘L1|z − z̃| + h‘L2|�‘(z; b) − �‘(z̃; b̃)| + |b− b̃|

6 hL1|z − z̃| +
1
2
|�‘(z; b) − �‘(z̃; b̃)| + |b− b̃|;

|�‘(z; b) − �‘(z̃; b̃)|6 2hL1|z − z̃| + 2|b− b̃|:
Part 2 (Existence of :nite second moments E|x̃‘|2 ¡∞): Assume that E|x̃‘−1|2 ¡∞. We compare
x̃‘ = �‘(x̃‘−1; b̃‘) with the deterministic value x0

‘ := �‘(0; 0). Using the Lipschitz continuity of the
implicit function �‘ we obtain

|x̃‘ − x0
‘| = |�‘(x̃‘−1; b̃‘) − �‘(0; 0)|6 2hL1|x̃‘−1| + 2|b̃‘|;

‖x̃‘‖L2 6 ‖x‘ − x0
‘‖L2 + ‖x0

‘‖L2 6 2hL1‖x̃‘−1‖L2 + 2‖b̃‘‖L2 + ‖x0
‘‖L2 :
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It remains to show that ‖b̃‘‖L2 ¡∞, which follows from

‖ (x̃‘−1; t‘−1; h‘; I‘)‖L2

A3

6 h1=2
‘ L3‖x̃‘−1‖L2 + ‖ (0; t‘−1; h‘; I‘)‖L2

A4
¡∞:

Part 3 (Stability inequality): Let x∗‘ and x̃‘, ‘ = 1; : : : ; N , be the unique solutions of the perturbed
discrete systems (3.3), (3.4). We introduce the following notations for i = 1; : : : ; N :

ei := x∗i − x̃i; M’i := ’(x∗i−1; x
∗
i ; ti−1; hi) − ’(x̃i−1; x̃i; ti−1; hi);

di := d∗
i − d̃i; M i :=  (x∗i−1; ti−1; hi; Iti−1 ;hi) −  (x̃i−1; ti−1; hi; Iti−1 ;hi);

and obtain from (3.3), (3.4) and HQolder’s inequality that

e‘ = e‘−1 + M’‘ + M ‘ + d‘ = e0 +
‘∑

i=1

M’i +
‘∑

i=1

M i +
‘∑

i=1

di;

E|e‘|26 4


E|e0|2 + E

∣∣∣∣∣
‘∑

i=1

M’i

∣∣∣∣∣
2

+ E

∣∣∣∣∣
‘∑

i=1

M i

∣∣∣∣∣
2

+ E

∣∣∣∣∣
‘∑

i=1

di

∣∣∣∣∣
2



holds for each ‘ = 1; : : : ; N . For the second summand on the right-hand side of the latter estimate
we continue by using (A1) and ‘h6Nh6Ta := a(T − t0):∣∣∣∣∣

‘∑
i=1

M’i

∣∣∣∣∣
2

6 ‘
‘∑

i=1

|M’i|2
A1
62‘h2

‘∑
i=1

(L2
1|ei−1|2 + L2

2|ei|2)

6 2‘h2(L2
2 |e‘|2 + (L2

1 + L2
2)

‘−1∑
k=0

|ei|2)6 L̂2|e‘|2 + L̂1
1
N

‘−1∑
i=0

|ei|2;

E

∣∣∣∣∣
‘∑

i=1

M’i

∣∣∣∣∣
2

6 L̂2E|e‘|2 + L̂1
1
N

‘−1∑
i=0

E|ei|2;

where L̂1 := 2T 2
a (L2

1 + L2
2), L̂2 := 2TaL2

2h. Using conditions (A2), (A3), and Nh6Ta, we estimate
the third summand:

E

∣∣∣∣∣
‘∑

i=1

M i

∣∣∣∣∣
2

= E

∣∣∣∣∣∣
‘∑

i; j=1

M T
i M j

∣∣∣∣∣∣6
‘∑

i; j=1

E|M T
i M j|A2=

‘∑
i=1

E|M i|2

=
‘∑

i=1

EE(|M i|2|Fti−1)
A3
6hL2

3

‘−1∑
i=0

E|ei|26 L̂3
1
N

‘−1∑
i=0

E|ei|2;

where L̂3 := L2
3Ta. We arrive, altogether, at the estimate

E|e‘|26 4


E|e0|2 + L̂2E|e‘|2 + (L̂1 + L̂3)

1
N

‘−1∑
i=0

E|ei|2 + E

∣∣∣∣∣
‘∑

i=0

di

∣∣∣∣∣
2





448 R. Winkler / Journal of Computational and Applied Mathematics 163 (2004) 435–463

for ‘= 1; : : : ; N . If necessary, we choose h0 smaller such that 4L̂26 1
2 holds if h¡h0. We conclude

that

E|e‘|26 8


E|e0|2 + (L̂1 + L̂3)

1
N

‘−1∑
i=0

E|ei|2 + E

∣∣∣∣∣
‘∑

i=1

di

∣∣∣∣∣
2

 ; ‘ = 1; : : : ; N:

We apply Lemma 7 to a‘ := E|e‘|2, ‘ = 1; : : : ; N , and obtain the semi5nal estimate

max
‘=1;:::; N

E|e‘|26 Ŝ


E|e0|2 + max

‘=1;:::; N
E

∣∣∣∣∣
‘∑

i=1

di

∣∣∣∣∣
2

 ;

with Ŝ := 8 exp(8(L̂2 + L̂3)). It remains to decompose the perturbation di$erence di into di = si + ri
with E(si|Fti−1) = 0 for i = 1; : : : ; N . Then EsTi sj = 0 for i �= j, and

E

∣∣∣∣∣
‘∑

i=1

di

∣∣∣∣∣
2

6 2E

∣∣∣∣∣
‘∑

i=1

si

∣∣∣∣∣
2

+ 2E

∣∣∣∣∣
‘∑

i=1

ri

∣∣∣∣∣
2

= 2
‘∑

i=1

E|si|2 + 2E

∣∣∣∣∣
‘∑

i=1

ri

∣∣∣∣∣
2

6 2
‘∑

i=1

E|si|2 + 2‘
‘∑

i=1

E|ri|26 2

(
N∑
i=1

E|si|2 + E|ri|2 Ta

h

)

6 2 max
i=1;:::; N

(
E|si|2 + E|ri|2 Ta

h

)
Ta

h
:

Summarizing, we obtain

max
‘=1;:::; N

E|e‘|26 Ŝ
{
E|e0|2 + 2 max

‘=1;:::; N

(
E|s‘|2 Ta

h
+ E|r‘|2 T 2

a

h2

)}
:

Extracting the square root leads to

max
‘=1;:::; N

‖e‘‖L2 6
√

2Ŝ

{
‖e0‖L2 + max

‘=1;:::; N

(
‖s‘‖L2

√
Ta

h
+ ‖r‘‖L2

Ta

h

)}
; (3.8)

which yields the 5nal estimate (3.5) with S :=
√

2Ŝ max(1; Ta). The estimate (3.6) follows for the
particular splitting

d‘ = s‘ + r‘ := (d‘ − Od‘) + Od‘; Od‘ := E(d‘|Ft‘−1);

since

‖d‘ − Od‘‖2
L2
6 E|(d‘ − Od‘)|2 + E| Od‘|2 = E|(d‘ − Od‘) + Od‘|2 = ‖d‘‖2

L2
:

Applying Theorem 5 to local discretization errors provides convergence results. Now, we give the
precise notions of strong (mean-square) consistency and strong (mean-square) convergence.

De�nition 8. We call the numerical scheme (3.2) for the SDE (3.1) strongly (mean-square) con-
sistent with order 4¿ 0 if the local error

l‘ := x(t‘) − {x(t‘−1) + ’(x(t‘−1); x(t‘); t‘−1; h‘) +  (x(t‘−1); t‘−1; h‘; I‘)}
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satis5es

‖l‘‖L2 6 c · h4+ 1
2

‘ ; and ‖E(l‘ |Ft‘−1)‖L2 6 Oc · h4+1
‘ ; ‘ = 1; : : : ; N;

with constants c, Oc¿ 0 only depending on the SDE and its solution.
We call the numerical scheme (3.2) for the SDE (3.1) strongly (mean-square) convergent with

order 4¿ 0 if the global error x(t‘) − x‘ satis5es

max
‘=1;:::; N

‖x(t‘) − x‘‖L2 6C · h4; where h := max
‘=1;:::; N

h‘;

with a grid-independent constant C ¿ 0.

With these notions a scheme that is numerically stable in the mean-square sense and strongly
(mean-square) consistent is strongly (mean-square) convergent. As a corollary from Theorem 5 we
have:

Theorem 9. If the numerical scheme (3.2) for the SDE (3.1) is strongly (mean-square) consistent
with order 4¿ 0 and the assumptions of Theorem 5 hold, then (3.2) is strongly (mean-square)
convergent with order 4. For the di>erence of the analytical solution x(t‘) at the discrete time
points and the solution of the perturbed numerical scheme x̃‘ we have the estimate

max
‘=1;:::; N

‖x(t‘) − x̃‘‖L2 6 S
(

(c + Oc)h4 + max
‘=1;:::; N

(6̃‘=h1=2 + Õ6‘=h)
)

; (3.9)

where 6̃‘ := ‖d̃‘‖L2 ,
Õ6‘ := ‖E(d̃‘|Ft‘−1)‖L2 , with d̃‘ from (3.3).

Proof. The assertion follows by applying the triangle inequality

max
‘=1;:::; N

‖x(t‘) − x̃‘‖L2 6 max
‘=1;:::; N

‖x(t‘) − x‘‖L2 + max
‘=1;:::; N

‖x‘ − x̃‘‖L2

and stability estimate (3.6) once to {x(t‘); x‘} related to the perturbations {l‘; 0}, and once again to
{x‘; x̃‘} related to the perturbations {0; d̃‘}.

The strong (mean-square) convergence follows as a special case of (3.9) for d̃‘ = 0.

These general results apply rather easily to well-known schemes for SDEs. We illustrate this for
the family of drift-implicit Euler schemes

x‘ = x‘−1 + h‘(7f(x‘; t‘) + (1 − 7)f(x‘−1; t‘−1)) + G(x‘−1; t‘−1)Mw‘; (3.10)

and for the family of drift-implicit Milstein schemes

x‘ = x‘−1 + h‘(7f(x‘; t‘) + (1 − 7)f(x‘−1; t‘−1)) + G(x‘−1; t‘−1)Mw‘

+
m∑

j=1

(g′jxG)(x‘−1; t‘−1)I(j); ‘; (3.11)

where 7∈ [0; 1] is a parameter, Mw‘ := (w(t‘) − w(t‘−1)) = (Ii;t‘−1 ;h‘)
m
i=1, gj denotes the jth column

of G, and I(j); ‘ = (Ij; i;t‘−1 ;h‘)
m
i=1 denotes the double Itô-integrals.
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With kmax = 1, M = m, and

’(z; x; t; h) := h(7f(x; t + h) + (1 − 7)f(z; t));  (z; t; h; y) := G(z; t)y;

for the family of Euler schemes (3.10), and the same function ’, kmax = 2, M = m + m2, and

 (z; t; h; y; y1; : : : ; ym) = G(z; t)y +
m∑

j=1

((gj)′x · G)(z; t)yj;

for the family of Milstein schemes (3.11), both schemes have form (3.2). Checking the suppositions
of Theorem 5 we see that these methods are numerically stable in the mean-square sense: (A1)
follows from the Lipschitz continuity of the drift coeGcient f, (A2) holds due to the explicit,
nonanticipative discretization of the di$usion term, (A3) follows from the Lipschitz continuity of
the di$usion coeGcient G (and in case of the Milstein scheme of the functions (gj)′x · G), and the
more technical condition (A4) holds true due to the boundedness of the function G(0; ·) (and the
functions (gj)′x · G(0; ·)) on the compact interval J. Summarization we obtain:

Proposition 10. Let the functions f and G be Lipschitz-continuous with respect to x. Then the
Euler schemes (3.10) are numerically stable in the mean-square sense. If, additionally, the partial
derivatives (gj)′x; j=1; : : : ; m, exist, and the functions (gj)′x ·G are Lipschitz-continuous with respect
to x, then the Milstein schemes (3.11) are numerically stable in the mean-square sense.

From the literature (see e.g. [25]) it is known that the Euler schemes (3.10) are strongly con-
sistent with order 1

2 if, additionally, the coeGcients are HQolder-continuous with exponent 1
2 with

respect to t. The Milstein schemes are strongly consistent with order 1 if the functions f;G are
suGciently smooth. Applying Theorem 9 gives the known strong (mean-square) convergence of the
Euler schemes with order 1

2 and the Milstein schemes with order 1.
The Theorems 5 and 9 also apply to the family of split-step Euler schemes

x∗‘ = x‘−1 + h‘(7f(x∗‘ ; t‘) + (1 − 7)f(x‘−1; t‘−1)); (3.12)

x‘ = x∗‘ + G(x∗‘ ; t‘)Mw‘; (3.13)

where 7∈ [0; 1] is a parameter. Unless 7 = 0, (3.12) is an implicit deterministic equation in x∗‘ . For
7 = 1 we obtain the split-step backward Euler scheme (SSBE), which is studied e.g. in [17] for
autonomous SDEs. In [17] strong convergence of order 1

2 is proved under only one-sided Lipschitz
conditions and a polynomial growth condition for the drift coeGcient. The SSBE is also studied in
[24], where it is shown to be e$ective for inheriting ergodicity in special applications.

From the numerical theory for ordinary di$erential equations (ODEs) [8,16] it is known that the
implicit equation in x,

x − z − h(7f(x; t + h) + (1 − 7)f(z; t)) = 0 (3.14)

possesses a unique solution x = 87(z; t; h) for all z ∈Rm; t ∈J; h with h796 1=2 if f is continuous,
has a continuous derivative with respect to x and ful5ls the one-sided Lipschitz condition.

〈f(x; t) − f(x̃; t); x − x̃〉6 9|x − x̃|2 ∀x; x̃∈Rm; t ∈J: (3.15)
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Hence, under the above conditions on f, Eq. (3.12) possesses the unique solution x∗‘ =
87(x‘−1; t‘−1; h‘) and (3.12), (3.13) can be written as the formally explicit scheme

x‘ = x‘−1 + h‘(7f(87(x‘−1; t‘−1; h‘); t‘) + (1 − 7)f(x‘−1; t‘−1))

+G(87(x‘−1; t‘−1; h‘); t‘)Mw‘: (3.16)

With

’(z; x; t; h) := h(7f(87(z; t; h); t + h) + (1 − 7)f(z; t));

 (z; t; h; y) := G(87(z; t; h); t + h)y;

the split-step Euler schemes are of the general form (3.2). Using this form we are able to verify that
(3.12), (3.13) is numerically stable in the mean-square sense and strongly (mean-square) consistent
with order 1

2 if the coeGcients f;G are suGciently smooth.

Proposition 11. Let f;G be continuous and Lipschitz-continuous with respect to x. Then the
split-step Euler methods are numerically stable in the mean-square sense.
If, additionally, f;G are H�older continuous with exponent 1

2 with respect to t, then the split-step
Euler methods are strongly (mean-square) consistent with order 1

2 .

Proof. We check assumptions (A1)–(A4) of Theorem 5.
Let f;G be Lipschitz-continuous with respect to x with constants Lf; LG. Then f trivially ful5ls a

one-sided Lipschitz condition with 9 = Lf. For all h6 1=(27Lf) Eq. (3.14) has the unique solution
x = 87(z; t; h) and the implicit function 87 is Lipschitz-continuous with respect to z with a constant
L8 := 2(1 + h(1 − 7)Lf). Now we see:

(A1) holds with L1 := 7LfL8 + (1 − 7)Lf and L2 := 0.
(A2) holds since x∗‘ = 87(x‘−1; t‘−1; h‘) is Ft‘−1 -measurable.
(A3) holds with L3 := LGL8.
(A4) holds since

E|G(87(0; t‘−1; h‘); t‘)Mw‘|26 h‘‖G(87(0; t‘−1; h‘); t‘)‖¡∞:

Hence, the numerical stability follows by Theorem 5.
Using the Lipschitz properties of the implicit function 87(z; t; h), the strong (mean-square) consis-

tency with order 1
2 is shown in [33].

4. Discretization schemes for index 1 SDAEs

Starting with the Euler Maruyama scheme [21] a wide spectrum of numerical methods for SDEs
has been developed. However, 5rst deriving an inherent regular SDE and then applying numerical
methods to this special SDE would be a very ineGcient procedure for various reasons. In general,
one would have to apply a numerical method to solve the constraints for the algebraic variables.
It would be much more diGcult to exploit special structures and sparseness of the given system.
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Furthermore, implicit methods are necessary anyway if the underlying dynamics are sti$. Here we
aim at numerical methods for SDAEs that should work directly on the given implicit structure, as
in the case of deterministic DAEs.

Not all the discretization schemes for SDEs are suitable for SDAEs as well. Explicit numerical
schemes are not suitable for the nonlinear equation solving task involved in SDAEs. The new iterates
would not be uniquely determined by an explicit scheme. In this section we will formulate methods
for SDAEs that are adaptations of drift-implicit methods used for SDEs. We will formulate them in
such a way that the convergence properties of these methods for SDEs are preserved. Nevertheless,
the iterates are inKuenced more critically by computational errors in the constraints.

4.1. The drift-implicit Euler scheme

The SDAE

Ax(s)|tt0 +
∫ t

t0

f(x(s); s) ds +
∫ t

t0

G(x(s); s) dw(s) = 0; t ∈J; (4.1)

Ax(t0) = Ax0 (4.2)

is discretized by the drift-implicit Euler scheme

A
x‘ − x‘−1

h‘
+ f(x‘; t‘) + G(x‘−1; t‘−1)

Mw‘

h‘
= 0; ‘ = 1; : : : ; N; (4.3)

on the deterministic grid 0 = t0 ¡t1 ¡ · · ·¡tN = T , where h‘ = t‘ − t‘−1;Mw‘ = w(t‘) − w(t‘−1),
and x0 is a given consistent initial value with Ax0 = Ax0. The Jacobian of (4.3) with respect to the
new iterate x‘ is (1=h‘)A + f′

x(x‘; t‘), which is nonsingular for suGciently small stepsizes h‘. Its
condition number behaves like O(1=h‘) (see e.g.[12]).

The crucial point for the good properties of this scheme is that the iterates have to ful5l the
constraints of the SDAE at the current time-point

Rf(x‘; t‘) = 0:

This allows an analogous decoupling procedure as in Section 2 for the continuous problem. Denote

u‘ := Px‘; v‘ := Qx‘; ‘ = 0; : : : ; N:

Then the drift-implicit Euler scheme (4.3) with the consistent initial value x0 for the SDAE (4.1) is
equivalent to the composition

x‘ := u‘ + v̂(u‘; t‘); ‘ = 0; : : : ; N;

and the following scheme in the di$erential solution parts u‘:
u‘ − u‘−1

h‘
+ A−f(u‘ + v̂(u‘; t‘); t‘) + A−G(u‘−1 + v̂(u‘−1; t‘−1); t‘−1)

Mw‘

h‘
= 0

with the initial value u0 := Px0. This is the drift-implicit Euler scheme applied to the inherent
SDE (2.15). In other words, 5rst discretizing, then decoupling leads to the same result as 5rst
decoupling and then discretizing for the drift-implicit Euler scheme. Thus, convergence results for
(4.3) applied to the SDAE (4.1) can be deduced from convergence results of the drift-implicit Euler
scheme applied to SDEs. We can trace back conditions on the coeGcients of the inherent SDE to
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corresponding ones on the coeGcients of the original SDAE. In this way all known convergence
results for the drift-implicit Euler scheme for SDEs apply to index 1 SDAEs, too.

For a more detailed consideration, including also the numerical stability of the method, we compare
the exact solution {x‘} of (4.3) with the solutions of a scheme perturbed by small errors {d‘}.
The measurement of errors in the discrete equations depends on the scaling of these equations. In
contrast to ODEs or SDEs, there is no natural scaling of DAEs or SDAEs. Choosing errors in a
setting corresponding to that of local truncation errors we consider the system

A(x̃l − x̃l−1) + hlf(x̃l; tl) + G(x̃l−1; tl−1)Mwl = dl; l = 1; : : : ; N; (4.4)

or

A
x̃l − x̃l−1

hl
+ f(x̃l; tl) + G(x̃l−1; tl−1)

Mwl

hl
=

dl

hl
; l = 1; : : : ; N;

with the initial value x̃0. Denote ũl := Px̃l, ṽl := Qx̃l.
Applying the projector R we obtain the perturbed constraint

Rf(ũl + ṽl; tl) =
Rdl

hl
; (4.5)

which, together with the condition Pṽl = 0, implies

ṽl = v̂(ũl; tl; Rdl=hl):

For the di$erential parts {ũl} we obtain the scheme

ũl − ũl−1 + hlA−f(ũl + v̂(ũl; tl; Rdl=hl); tl)

+A−G(ũl−1 + v̂(ũl−1; tl−1; Rdl−1=hl−1); tl−1)Mwl = A−dl; (4.6)

which can be written in the form

ũl − ũl−1 + hlf̂(ũl; tl) + Ĝ(ũl−1; tl−1)Mwl = d̂l; (4.7)

where

d̂l = A−{dl − hldf;l − dG;l−1Mwl};
df;l = f(ũl + v̂(ũl; tl; Rdl=hl); tl) − f(ũl + v̂(ũl; tl; 0); tl);

dG;l−1 = G(ũl−1 + v̂(ũl−1; tl−1; Rdl−1=hl−1); tl−1)

−G(ũl−1 + v̂(ũl−1; tl−1; 0); tl−1):

Suppose that the perturbations dl are Ftl-measurable with 5nite second moments and denote

6l := ‖dl‖L2 ; O6l := ‖E(dl|Ftl−1)‖L2 ;

6̂l := ‖d̂l‖L2 ;
Ô6l := ‖E(d̂l|Ftl−1)‖L2 :
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Then df;l is Ftl-measurable, dG;l−1 is Ftl−1 -measurable, and we can estimate

6̂l6 ‖A−‖(‖dl − hldf;l‖L2 + ‖dG;l−1Mwl‖L2)

6 ‖A−‖((1 + LfLv̂;d)6l + ‖dG;l−1‖L2 · h1=2
l )

6 ‖A−‖((1 + LfLv̂;d)6l + LGLv̂;d‖Rdl−1‖L2=h
1=2
l )

=: c16l + c2‖Rdl−1‖L2=h
1=2
l ;

Ô6l6 ‖A−E(dl − hldf;l |Ftl−1)‖L2 6 ‖A−‖( O6l + hl‖E(df;l |Ftl−1)‖L2)

6 ‖A−‖( O6l + LfLv̂;d‖Rdl‖L2)= : c3
O6l + c4‖Rdl‖L2 :

Both quantities 6̂l;
Ô6l are more critically a$ected by perturbations of the constraints. Considering

only local discretization errors these critical terms vanish since the values of the exact solution x(tl)
ful5l the constraints exactly.

Theorem 9 for the drift-implicit Euler scheme applied to the inherent SDE gives the following
estimate for the global errors of the di$erential components Px(tl) − Px̃l:

max
l=1;:::; N

‖Px(tl) − Px̃l‖L2 6 Ŝ(ĉh
1
2 + max

l=1;:::; N
(6̂l=h

1
2 + Ô6l=h))

6 Ŝ(ĉh
1
2 + max

l=1;:::; N
(c16l=h

1
2 + c2‖Rdl−1‖L2=(hlh)

1
2

+c3
O6l=h + c4‖Rdl‖L2=h)): (4.8)

Due to the Lipschitz continuity of the implicit function v̂ we obtain, by the composition of solution
(2.10):

Corollary 12. Let the suppositions of Theorem 2.1 be ful:lled. Furthermore, let f;G be H�older
continuous with exponent 1

2 with respect to t with a H�older constant growing only linearly with
x. Then the estimate

max
l=1;:::; N

‖x(tl) − xl)‖L2 6 S(ĉh
1
2 + c1 max

l=1;:::; N
6l=h

1
2 + c3 max

l=1;:::; N
O6l=h

+c2 max
l=1;:::; N

‖Rdl−1‖L2=(hlh)
1
2 + c5 max

l=0;:::; N
‖Rdl‖L2=hl)

holds for the global errors x(tl) − x̃l of the perturbed drift-implicit Euler scheme (4.4).

Proof. The smoothness assumptions on the coeGcients f;G of the SDAE (4.1) carry over to corre-
sponding smoothness properties of the coeGcients f̂; Ĝ of the inherent regular SDE. The drift-implicit
Euler scheme applied to the inherent regular SDE is strongly (mean-square) consistent with order 1

2
(compare e.g. [25]) and estimate (4.8) holds for the discretization of the inherent regular SDE. The
solution of the SDAE (4.1), and the solution of the perturbed discrete system (4.4) are composed
by

x(t) := Px(t) + v̂(Px(t); t); x̃l := Px̃l + v̂(Px̃l; tl; Rdl=hl):
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Due to the Lipschitz property of the implicit function v̂ we have

|x(tl) − x̃l|6 (1 + Lv̂)|Px(tl) − Px̃l| + Lv̂;d|Rdl|=hl:
In combination with (4.8) we obtain the assertion with S := (1 + Lv̂)Ŝ and c5 := c4 + Lv̂;d=S

4.2. The split-step backward Euler scheme

At the end of Section 3 we considered the split-step backward Euler scheme (SSBE) for SDEs.
Here, we intend to construct a scheme for the SDAE (4.1) that should implicitly realize the SSBE
for the inherent regular SDE (2.15).

The 5rst step (3:12; 7= 1) is realized by applying the backward Euler scheme to the deterministic
part of the SDAE. However, the second step (3.13) causes more e$ort than an assignment since we
have to force the iterates to ful5l the constraints. Here we give a realization of the SSBE for the
index 1 SDAE (4.1), which explicitly uses a projector R along im A:

A(x∗l − xl−1) + hlf(x∗l ; tl) = 0; (4.9)

A(xl − x∗l) + Rf(xl; tl) + G(x∗l ; tl)Mwl = 0; l = 1; : : : ; N: (4.10)

Both Eqs. (4.9), (4.10) are implicit in x∗l and xl, respectively. The Jacobian A + hlf′
x(x

∗
l ; tl) of

(4.9) has the same structure as for the drift-implicit Euler method. Its condition number behaves
like O(l=hl). The Jacobian A + Rf′

x(xl; tl) of (4.10) is nonsingular with bounded condition number
due to the index 1 condition.

The discrete solutions x∗l and xl are both forced to ful5l the constraints. That is why (4.9), (4.10)
realizes the SSBE scheme for the inherent regular SDE. (4.9),(4.10) show the convergence properties
stated in [17] if the inherent regular SDE meets the conditions stated there, where the one-sided
Lipschitz condition for the drift-coeGcient f̂ should be considered on the invariant sub-space im P
only. In terms of the original SDAE that means

〈Px − Px̃; A−(f(x; t) − f(x̃; t))〉6 9|Px − Px̃|2 ∀x; x̃∈M(t);

where 〈·; ·〉 denotes the scalar product and M(t) := {z ∈Rm: Rf(z; t) = 0} denotes the constraint
manifold.

Alternatively, strong (mean-square) convergence with order 1
2 is guaranteed if f̂; Ĝ ful5l the

suppositions of the Proposition 11, i.e., f;G are Lipschitz-continuous with respect to x and HQolder
continuous with respect to t.

4.3. The trapezoidal rule

The trapezoidal rule is widely used to integrate oscillatory solutions of ODEs. It is A-stable and
of order 2 . It is also applied to index 1 DAEs of the form

Ax′(t) + f(x(t); t) = 0 (4.11)

via the following reformulation: Formally transforming (4.11) to the augmented semi-explicit system

x′(t) − y(t) = 0;

Ay(t) + f(x(t); t) = 0;
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discretizing the di$erential equations by the trapezoidal rule

xl − xl−1

h
− 1

2
{yl + yl−1} = 0

Ayl + f(xl; tl) = 0;

and reformulating this system to

yl := −yl−1 + 2
xl − xl−1

h
; A

(
−yl−1 + 2

xl − xl−1

h

)
+ f(xl; tl) = 0

implicitly realizes the trapezoidal rule for the inherent regular ODE. Formally, the augmented system
is no longer of index 1 since the constraints Ay(t) +f(x(t); t) = 0 are not solvable for the variables
y. The components Qy are determined only after a hidden di$erentiation. However, this does not
matter since these components do not enter the implicit formula in xl. They are of no interest here.
Implementing this scheme requires only residuals.

The special member of the family of Euler schemes (3.10) with parameter 7 = 1
2 ,

xl − xl−1

hl
=

1
2

(f(xl; tl) + f(xl−1; tl−1)) + G(xl−1; tl−1)
1
hl

Mwl; (4.12)

forms a stochastic counterpart of the trapezoidal rule for the integration of SDEs (3.1). It is of strong
order 1=2 like the other Euler schemes.

An adaptation of this scheme to SDAEs, analogous to the deterministic case, would lead to an
implicit discretization of the di$usion term. A way out is to create explicit constraints. This can be
done by a suitable scaling of (4.1): We scale the system by a nonsingular matrix D̃ such that

D̃A =

(
D̃1A

D̃2A

)
=

(
Ã1

0

)
or D̃R =

(
0

R̃2

)
; rank Ã1 = rank A;

and denote analogously

D̃f =

(
f̃1

f̃2

)
; D̃G =

(
G̃1

G̃2

)
:

Then the trapezoidal rule is realized by

Ã1
x‘ − x‘−1

h‘
+

1
2
{f̃1(xl; tl) + f̃1(xl−1; tl−1)} + G̃1(xl−1; tl−1)

1
hl

Mwl = 0

f̃2(xl; tl) = 0: (4.13)

The iterates ful5l the constraints at the current time-point. Hence, the trapezoidal rule for the inherent
SDE is realized. Since the di$erential equations and the constraints are now decoupled, it is possible
to use a di$erent scaling for both parts, which leads to a better conditioned system:

Ã1(xl; xl−1) +
hl
2
{f̃1(xl; tl) + f̃1(xl−1; tl−1)} + G̃1(xl−1; tl−1)Mwl = 0

f̃2(xl; tl) = 0: (4.14)
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The Jacobian of (4.14) with respect to the new iterate is(
Ã1 + hlf̃′

1x
(x; t)=2

f̃′
2x

(x; t)

)
;

which is nonsingular for suGciently small stepsizes and whose condition number is bounded inde-
pendently of the stepsizes. If the right-hand side of (4.14) is perturbed by vectors d̃l, the factor
1=hl in the perturbations of the constraints is avoided. Denote by x̃l the solution of this perturbed
system and let the assumptions of Corollary 12 be ful5lled. Then the estimate

max
l=1;:::; N

‖x(tl) − x̃l)‖L2 6 S(c̃0h
1
2 + c̃1 max

l=1;:::; N
6̃l=h

1
2 + c̃3 max

l=1;:::; N

Õ6l=h);

holds, where

6̃l := ‖d̃l‖L2 ;
Õ6l := ‖E(d̃l |Ftl−1)‖L2 :

4.4. The drift-implicit Milstein scheme

In Section 3 we also considered the family of Milstein schemes (3.11) and showed their numerical
stability. Compared to the family of Euler schemes (3.10) they possess a higher order of strong
(mean-square) convergence, namely order 1. This has to be paid for with the use of the double
Itô-integrals and of the Jacobians (gj)′x in the scheme.

Our intention is to construct a scheme for the SDAE (4.1) that should realize the drift-implicit
Milstein scheme (3.11) with parameter 7 = 1 applied to the inherent SDE (2.15), i.e.,

ul − ul − 1
hl

+ f̂(ul; tl) + Ĝ(ul−1; tl−1)
Mwl

hl
−

m∑
j=1

(ĝ′juĜ)(ul−1; tl−1)
I(j);l

hl
= 0;

where Ĝ = (ĝ1; : : : ; ĝm), and I(j);l = (Ij; i;tl−1 ;hl)
m
i=1. This is realized by the scheme

A
xl − xl−1

h
+ f(xl; tl) + G(xl−1; tl−1)

Mwl

h
−

m∑
j=1

(g′jx x
′
uA

−G)(xl−1; tl−1)
I(j);l

hl
= 0; (4.15)

since the iterates ful5l the constraints at the current time-point. We point out the explicit use of the
inner derivative x′u = I + v̂′u and a scaling A− with A−A = P in the last term of (4.15). The inner
derivative can be expressed as

x′u = I + v̂′u = I − (A + :Rf′
x)

−1:Rf′
x = I − I + (A + :Rf′

x)
−1A = (A + :Rf′

x)
−1A

with a free parameter : �= 0. Choosing : = h, it may be approximated via

x′u = (A + hRf′
x)

−1A = (A + hf′
x)

−1A + O(h)

by means of the Jacobian of Newton’s method. Scheme (4.15) is closely related to a scheme de-
veloped in [26] for the application in circuit simulation, where an approximation to such a scaling
is involved.
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For problems with multiple Wiener processes (m¿ 1), m(m − 1)=2 mixed double Itô-integrals
have to be approximated in general. The terms involving these mixed double Itô-integrals disappear
if the di$usion coeGcients are commutative in the sense that

[ĝi; ĝj] = [A−gi; A−gj] := ĝ′iu ĝj − ĝ′ju ĝi = 0 ∀i �= j:

We remark that this condition depends on the inner derivative x′u and the scaling A−, too.
Due to the condition that the iterates ful5l the constraints at the current time-point we obtain an

error estimation similar to that in Corollary 12, but with discretization errors of order 1.

5. Application in circuit simulation

In industry, circuit analysis is a standard tool for the design of integrated circuits. One of the most
used techniques is the charge-oriented Modi5ed Nodal Analysis (MNA). The equations are generated
automatically by combining the network topology, Kirchho$’s Current Law, and the characteristic
equations describing the physical behaviour of the network elements. This results in large systems of
DAEs, whose special structure was analysed in a number of papers, e.g. [10,13,31]. The increasing
scale of integration of electric circuits, among other things, leads to decreasing signal-to-noise ratios.
In special applications, where linear noise analysis is no longer satisfactory, transient noise analysis
becomes necessary.

Here, we deal with models of thermal noise of resistors and shot noise of pn-junctions. Both are
modelled as external Gaussian white noise sources in parallel to the original element (see Figs. 1
and 2).

Nyquist’s theorem (see e.g. [4,9,32]) states that the current through an arbitrary linear resistor
having a resistance R, maintained in thermal equilibrium at a temperature T , can be described
as the sum of the deterministic current and a Gaussian white noise process with spectral density

Ith

Thermal
noise 
of a
resisitor

Shot
noise 
of a
pn-junction

R Ishot
g(u)

Fig. 2.
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Sth := 2kT=R, where k is Boltzmann’s constant. Hence, the additional current is modelled as

Ith = �th · �(t) =

√
2kT
R

· �(t);

where �(t) is a standard Gaussian white noise process. In [32] a thermodynamical foundation to
apply this model to mildly nonlinear resistors and reciprocal networks is given.

Shot noise of pn-junctions, caused by the discrete nature of current due to the elementary charge,
is also modelled by a Gaussian white noise process. Here the spectral density is proportional to the
current I through the pn-junction: Sshot := q|I |, where q is the elementary charge. If the current
through the pn-junction is described by a characteristic I = g(u) in dependence on a voltage u, the
additional current is modelled by

Ishot = �shot(u) · �(t) =
√

q|g(u)| · �(t);

where �(t) is a standard Gaussian white noise process. For a discussion of the model assumptions
we refer to [4,9,32].

Now, we consider an electrical network with nv capacitances, nR resistances, nL inductances,
nV + nI possibly controlled voltage and current sources, and nN additional noise sources. Each
element corresponds to a branch connecting two nodes of the network. Given ne nodes plus the
datum node. The network model is determined by its topology, which is represented by means of
the incidence matrix (AC; AR; AL; AV ; AI ; AN ), and the characteristic equations of its elements. Using
vector-valued characteristics, this extends to multi-ports, too. For a detailed description we refer to
[10,13].

Combining Kirchho$’s Current Law and the characteristic equations of the voltage-controlled
elements, supplemented by the characteristic equations of inductances and voltage sources and the
de5ning equations for the charges and Kuxes, leads to the charge-oriented MNA system with the
following structure (see [10,13] for the deterministic case):

ACq′ + f1(e; jL; jV ; t) + AN diag(�(AT
Ne; t))�(t) = 0; (5.1)

>′ − AT
Le = 0 (5.2)

AT
V e − vs(e; jL; t) = 0 (5.3)

q− qC(AT
Ce; t) = 0 (5.4)

>− >L(jL; t) = 0; (5.5)

where f1(e; jL; jV ; t) := ARg(AT
Re; t) + ALjL + AV jV + AI is(e; jL; jI ; t), and qC; g; >L; vs; is; � are given

functions. The vector of unknowns describing the system behaviour consists of all node potentials
e, the branch currents of current-controlled elements (inductances and voltage sources) jL; jV , and
the charges q of capacitances and the Kuxes > of inductances. � denotes an nN-dimensional vector
of independent standard Gaussian white noise processes. In industry-relevant applications one has to
deal with a large number of unknowns as well as of noise sources.

The 5rst block of equations (5.1) means a stochastic integral equation:

ACq(s)|tt0 +
∫ t

t0

f1(x(s); s) ds +
∫ t

t0

G1(x(s); s) dw(s) = 0;
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where G1 := AN diag(�), and w denotes an nN-dimensional Wiener process. With

A :=




AC

InL

0


 ; G :=




AN diag(�)

0

0


 : (5.6)

Eqs. (5.1)–(5.5) forms a specially structured SDAE of the type (2.1) discussed in the previous
sections. We will start discussing the assumptions of Theorem 4 for the SDAE (5.1)–(5.5).

First, we need suGciently smooth coeGcients f;G. They are globally Lipschitz-continuous with
respect to x and continuous with respect to t if this is true for the model functions qC; r; >L; vs; is; �.

Second, we need to ensure that the noise-sources do not appear in the constraints, i.e., im G(x; t) ⊆
im A.

This is guaranteed if im AN ⊆ im AC , or, in terms of the network topology, if there is always a
path of capacitances in parallel to a noise source.

Third, we need to ensure that the constraints are globally uniquely solvable for the algebraic
variables. This follows if the Jacobian A+Rf′

x is globally bounded invertible, where R is a projector
along im A.

Let QC ∈Rne×ne be a projector onto ker AT
C . Then AT

CQC = 0∈RnC×ne , QT
CAC = 0∈Rne×nC , and QT

C
is a projector along im AC . Hence,

R :=




QT
C

0nL

I


 (5.7)

is a projector along im A. Denote

C(u; t) := (qC)′u(u; t); G(u; t) := r′u(u; t); L(jL; t) := (>L)′jL(jL; t):

If there are no controlled sources, i.e., vs(e; jL; t) = vs(t), is(e; jL; jV ; t) = is(t), we obtain a Jacobian
with the following block structure:

A + Rf′
x =




AC QT
CARGAT

R QT
CAL QT

CAV

InL

AT
V

InC −CAT
C

InL −L




:

Now, we assume:

• The matrices C(u; t); G(u; t); L(jL; t) are symmetric and uniformly positive de5nite.
• The matrix QT

CAV has full column rank, which means that there are no loops of capacitances and
voltage sources.

• The matrix (AC; AR; AV ) has full row rank, which means that there are no cut-sets of inductances
or current sources.
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Then the Jacobian A + Rf′
x is nonsingular and its inverse is uniformly bounded. Following the

lines of [10], this result remains true for controlled sources as long as they ful5l certain conditions
described there.

Summarizing we have:

Corollary 13. Suppose that the functions qC; r; >L; vs; is; � are globally Lipschitz-continuous with
respect to the unknown variables and continuous with respect to t, and that the partial deriva-
tives C(u; t); G(u; t); L(jL; t) are uniformly positive de:nite. Suppose that there is always a path
of capacitances in parallel to a noise source, that there are no loops of capacitances and voltage
sources, and no cut-sets of inductances or current sources, and that controlled voltage or current
sources ful:l the conditions described in [10].

Then system (5.1)–(5.5) has a pathwise unique solution process with properties described in
Theorem 4.

We conclude with a brief discussion of the discretization schemes from Section 4 for the charge-
oriented MNA-system (5.1)–(5.5).

The drift-implicit Euler scheme can be implemented straightforwardly. Realizing the SSBE scheme
(4.9), (4.10) requires a projector R along im A. Such a projector is given in (5.7) based on a
projector QT

C along im AC . Similarly, using a scaling D̃C with D̃CAC = ( ÃC
0 ) one obtains a scaling

D to implement the trapezoidal rule with splitted residuals as described in Section 4.3. Furthermore,
the scaling A− with A−A=P, which is needed in the Milstein scheme in Section 4.4, is determined
by the matrix A from (5.6), basically by AC already, and thus by the topology of the network.

Since the additional smoothness conditions on the coeGcients f resp. G, which are needed to guar-
antee the numerical stability and consistency of the considered discretization schemes, are transferred
to corresponding smoothness conditions on the model functions qC; r; >L; vs; is, and �, respectively,
the following corollary holds:

Corollary 14. Let the suppositions of Corollary 13 hold true. Additionally, suppose that the func-
tions qC; r; >L; vs; is; � are H�older continuous with exponent 1/2 with respect to t.
Then the drift-implicit Euler scheme (4.3), the SSBE scheme (4.9), (4.10) as well as the trape-

zoidal rule (4.13) applied to system (5.1)–(5.5) are numerically stable in the mean-square sense
and strongly (mean-square) convergent with order 1/2.

Under further smoothness conditions an analogous result ensures that the drift-implicit Milstein
scheme (4.15) applied to system (5.1)–(5.5) is strongly (mean-square) convergent with order 1.

6. Conclusions

In contrast to SDEs, in SDAEs the solution has to ful5l constraints. The numerical approximations
also have to be forced to do so. In the present paper an approach to the numerical analysis of
generally nonlinear DAEs driven by Gaussian white noise is developed. Here, the fact that the
leading Jacobian in front of the derivatives is constant is extensively used. It allows a decoupling
of the SDAE as well as of its discretization underlying the theoretical results by applying constant
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projectors, which is compatible to the Itô calculus. The drift-implicit methods discussed in Section
4 work directly on the given structure and are formulated in such a way that the convergence
properties of these methods known for SDEs are preserved. The presented approach applies to
weakly convergent schemes, too.
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