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Let X, ,_._, X,1, Y, ,..., Y,,z be generic n x n matrices over a field k of characteristic 
zero. If f(X, ,___, X,) is a multilinear invariant of X, ,..., X,, then 

where S,: is the symmetric group of degree n2, d(Y) is the discriminant of 
Y, ,,.., Y,>, and p(X, ,..., X,) is a uniquely defined multilinear invariant of Xi ,..., XD. 

Thus f-jr defines a function from the vector space of multilinear invariants of 
X,,..., X, to itself. An analysis of this function is used to prove Regev’s conjecture 
that 

‘..Xn,n”~2,i*2)“.Xn(n?)Yp(n~~2n+2)”. Yii(??, 
is nonzero. In addition, a variant of the above function is used to evaluate the 
Capelli polynomial. c 1987 Academic Press, Inc. 

1. INTRODUCTION 

Let K be a field of characteristic zero, and let X, ,..., p(n2, Y, ,..., Y,2 be 
generic n x N matrices over K. Regev [7, g. 14291 conjectured that the 
polynomial 

RX Y) = C (sign w) xz(I) YP(1)Xn(2)Xn(3)Xn(4) Yd2) Ypf3) Yp(4J+j 
n4.w 
. . . x rr(?? - 2n + 2) . . . x s(n2) Y&?- 2n + 2) . ’ Yp(,z2) 

is nonzero. Since F(X, Y) is alternating and multilinear as a function of 
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x i ,...,X,, and likewise as a function of Y, ,..., Y,z, it is a scalar multiple of 
d(X) d( Y), where d(X) is the discriminant of Xi,..., X,Z and d(Y) is the 
discriminant of Yi,..., Yn2. Thus, proving the conjecture amounts to show- 
ing that the scalar is nonzero. Some consequences of the conjecture for the 
quantitative study of n x n matrices can be found in [2, pp. 212-2141. 

The main result of this article is Theorem 16, a proof of Regev’s conjec- 
ture. The proof is based on the Procesi-Razmyslov theory of trace iden- 
tities, which identifies C(m), the space of multilinear invariants of 
X1,..., X,, with a certain homomorphic image, KS,, of the group algebra 
of the symmetric group S,. Via this identification C(m) becomes an S,- 
bimodule. This identification, although not formalized, was first used by 
Kostant [4] to give a proof of the Amitsur-Levitzki Theorem. Many of the 
arguments of this paper are related to those of Kostant. 

The most important feature of the proof, which I believe has independent 
interest, is the construction of an isomorphism of C(n) with itself as 
follows. Suppose that f(X, ,..., X,,) E C(n). Then 

x,1 Y,(A2n+*).. . Y,(,?)) =m ,..., X,,) A( n 
where d( Y) is the discriminant of Y, ,..., Y,, and f(X, ,..., X,) is a uniquely 
defined element of C(n) (Lemma 6). This gives rise to a map 
(9: C(n) + C(n) defined by Q(f) =$ A quite simple formal argument shows 
that @ is a left S,-module homomorphism (Theorem 8). Then an explicit 
formula for @ is found which implies that @ is an S,-bimodule 
isomorphism (Theorem 11). Many variants of the map @ can be defined; 
they are left S,-module homomorphisms, but in general they are neither 
isomorphisms nor right S,-module homomorphisms. 

To prove Regev’s conjecture that F(X, Y) #O, let g(X,,..., X,) = 
T(X, . . . X,), where T denotes trace. Then 

x n(rL2n+2)” Xlr(nq) A ( U 

The proof is completed by showing that the right-hand side of the above 
equation is not zero. This requires the explicit formula for @ as well as 
combinatorial results about y2 x y1 matrices and the group ring of S,. 

Regev’s polynomial is a linear combination of specializations of the 
Capelli polynomial 
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The argument of Lemma 6 shows that 

T(C,z(X, Y)) = &(X1 )...) pi;12) d(Y), 

where Cn2(X1 ,..., X,2) is a multilinear invariant of Xi,..., X,2. Section 8 
employs some of the above ideas to lind an explicit formula for 
&(X1 )...) xn2j. 

The final section of the paper determines a constant which occurs 
throughout the paper, beginning with Theorem 4(2), which says that 

where C,, is a nonzero constant. In order to establish Regev’s conjecture, it 
is enough to know that C, is nonzero. Its exact value (up to a sign) is given 
by Theorem 24, 

iC,= 
1!3!5!...(2n-l)! 

1!2!...(n-I)! 

2. FUNDAMENTALS 

Let K be a field of characteristic zero, and let Xi, X, ?~~~, be generic n x IZ 
matrices over K. That is, X, = (x&r)) (1 d i, j d M, r = 1,2,...) are 12 x n 
matrices whose entries are independent commuting indeterminates over 
We assume throughout that the size, n x YE, of the matrices is fixed. 

There is a homogeneous action of GL(n, K) on K[xij(r)] induced by 
xi,(r) -Xc(r)t where PEGL(FZ, K) and PX,P-” = (Z&r)) The ring of 
invariants (or ring of simultaneous polynomial invariants), denoted C, is 

n,K), the fixed ring of this action. For more information about 
p. 677711 or [2, pp. 195-1991. 
of an n x n matrix U is denoted T(U). Since T(PUP-“) = T( 

if P E GL(n, K), T(X, . . X,) lies in C whenever Xi, . . . ;k;, is a monomial 
the generic matrices X, , X,,... . Conversely 

THEOREM 1 (First fundamental theorem of matrix invariants [S, 
Theorem 1.31). C is generated as a K-algebra by the traces cf rno~orn~~~~ 
Xi, . . X, in the generic matrices X, , X, ,... . 1 

The second fundamental theorem describes all m~ltilinear relations 
among the traces. In order to state it we need to introduce various objects 
associated with the group algebra of the symmetric group. Some knowle 

481 109 l-7 
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of the representation theory of S, will be assumed, above all the correspon- 
dence between simple factors of KS, and partitions of Y. We use [3] as 
reference. 

NOTATION 

S, = symmetric group of permutations of ( l,..., Y}: 

KS, = group algebra of S, over K, 

A = (A, )...) A,) denotes a partition of Y of length k, where 

A,>&> . . . 3 1, > 0, A1 + . . . + & = r, 

Z(A) = minimal two-sided ideal of KS, corresponding to A, 

J(n, r) = 2 {Z(A) 1 il is a partition of y of length > (n + l)}, 

KS,. = KS,/J(n, r). 

If rc E S,, write 7~ as a product of disjoint cycles 

7c = (a, . . . a,,)(/?, . . . b,,)(c, . . Ck3)..., 

where cycles of length one are included, so that each of the digits l,..., r 
occurs exactly once. The trace monomial T, E C associated with 7t is defined 
by 

TAX, ,..., Jf,) = TV,, -.X,,,) T(X,, -Xbkz) T(X,., -X,.,,)-. 

There is a K-vector space homomorphism from KS,. to C defined by 
C a,rc -+ C a, T,(X, ,..., X,). The Procesi-Razmyslov Theorem describes its 
kernel. 

THEOREM 2 (Second fundamental theorem of matrix invariants (Procesi 
[5, Theorem 4.31; Razmyslov [6, p. 755 of English translation]). 
c a, TAX, >..., X,)=0 in C ifandonly ifCa,z~J(n,r). 1 

3. MULTILINEAR ELEMENTS OF C AND THE DISCRIMINANT 

Let C(r) denote the elements of C which are multilinear in Xi,..., X,. In 
other words, C(r) is the image of the map KS, -+ C defined by C a,71 -+ 
C a, TAX, ,..., X,). By Theorem 2, this map induces a K-vector space 
isomorphism 

KS,& C(r), 
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where KS, = KS,/J(n, r). W e will write elements of KS, as linear com- 
binations C a,n (a, E K, 71 ES,), even though such a rep~ese~t~tio~ is not 
unique when J(n, r) # 0. 

We make C(r) into an S,-bimodule via 8,. Note that neither the left nor 
the right action is the usual permuation action of S, on C(v). For exa 
if Y = 3 and we regard permutations as functions acting on the left (s 
WWHlXW)l= VW, then 

The usual permutation action of S, on C(r) is induced by the action of S, 
on KS, by conjugation. This implies that 8, carries the center of the ring 
KS, to elements of C(r) which are symmetric functions of X1,~.., Xr,. 

The discriminant of n x n matrices U1,..., U,Z is the determinant of t 
n2 x n2 matrix whose i-th row is (~~(1, 1) ,..., u,(l, n), ~~(2, I) ,..., lai(n, n)). ft is 
denoted A( U, ,..., Un2) or d(U). The following properties of the dis~rimi~a~t 
are well known. 

LEMMA 3. ( 1) As a function A: M,(K)“’ -+ K, the ~iscrim~na~t is ckarac- 
terized by the following two properties: 

(a) A is an alternating multilinear function. 

(b) A(ell,..., e,,, e21,..., enn) = 1, where the ek are the 
matrix units. 

(2) If PEGL(~, K), A(PU,P-‘,..., PU,E’)=A(U,: . . . . U,,). me 
A(X, ,..*, X,,Z) lies in C, by Theorem 1. 

The rest of this section is an expanded reprise of [2, p. 2111. Consider 
the isomorphism On2: KS .2 --+ C(n”). For an element u of C(n”) to be ahter- 
nating as a function of X1,..., X,2 means precisely that 

mm --I = (sign ~)z4 for all 71 E S,Z. (*a 

Let us also call an element of KS,2 akernatirzg if it satisfies (*). Tt is clear 
that every alternating element of KS,2 is a K-linear combination of the 
elements 
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as g varies over S,,Z. However, we do not need all 0 E Sn2, just a represen- 
tative from each conjugacy class. 

The conjugacy classes of S,Z are in one-to-one correspondence with the 
partitions of n2. For each partition J. = (A, ,..., A,) of n2, set 

a(n) = (1 . . . n,)(n, + 1 ...ak+ak-,))...(ak+ak--+ ... +1,+1?22), 

a, = C (sign rc) rm(A)~~l. 
n E SJ 

Since the set of all such o(n) is a full set of representatives for the conjugacy 
classes of S,2, every alternating element in KS,2 is a K-linear combination 
of the aj,. 

Most Uj. are zero (even regarded as elements of KS,,z), for if A= (2, ,..., 2,) 
has either an even part or two equal parts, then the S,l-conjugacy class of 
a(n) equals its A.z-conjugacy class [3, 1.2.10, p. 121, and the summation 
defining a, collapses. Such a;, are already zero in KS,2 and in fact the set 

{uj, 11 is a partition of n2 into distinct odd parts) 

is a K-basis for the alternating elements of KS,,2. 
In KS,2, however, all the a, are zero except one. Define A, = 

Aj.(Xl )..7 x,2) GC(n2) by 

The Amitsur-Levitzki Theorem [ 1, p. 451 asserts that if t 2 2n, then the 
standard polynomial 

vanishes on n x n matrices. The above formula for Aj. can be rearranged so 
that Al is expressed as a linear combination of products, each containing 
the trace of a standard polynomial of degree 2, as the final factor. Hence 
A j. = 0 if ai, the largest part of A, satisfies A,> 2n. 

In conjunction with the preceding analysis of aj,, this implies that 
a, E KS,2 and A j. E C(n’) are zero unless the parts of il are odd, distinct, and 
< 2n. There is only one such partition, i, = (2n - 1, 2n - 3 ,..., 5, 3, 1). 

Since the discriminant d(X, ,,.., ,X,2) is alternating, it is a K-linear com- 
bination of the A, and thus a scalar multiple of Al,. Furthermore, Ai, is 
not zero since d(X,,..., X,2) is not zero. The following theorem summarizes 
our discussion. 
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THEOREM 4 ([2, p, 2111). For each partition 3, of n2, let aA E KSn2 and 
A, = Q,,(a,) E C(n2) be defined as above, and let 1, = (2n - 1, 
2n - 3 ,..., 5, 3, 1). Then 

(1) If%#&, a,=0 andA,=O. 

(2) A;.,(X,,..., Xn2) = C,, d(X, ,..., X,2), where C, is a nomero co~~tu~~ 
depending only on n. 1 

We will show later (Theorem 24) that 

1!3!5!...(2n-I)? 
fC,= 1!2!.~.(n-1)! . 

The main results of the paper only require knowing that C, is not zero. 

4. THE FUNCTION ~3,: C(n) -+ C(n) 

The object of this and the next two sections is to define and analyze a 
function Bi: C(n) --+ C(n), which is the main tool in proving Regev’s conjec- 
ture. The definition involves an auxiliary map I7 C(n) -+ C(n + n*), and it is 
convenient to rename the first n + n2 generic matrices X1,~~~, Xn, Y, ?...) Y,?:,i, 
and to set 

S,? = permutations of { l,..., IZ >, 

S,Z = permutations of (l*,~~., (n’)* >, 

s II + n z = permutations of { l,..., n, I*,..~, (n’)*}, 

C(n) = multilinear invariants of X, )..., X,, 

C(n”) = multilinear invariants of Y, ,..., Yn2, 

C(n + n’) = multilinear invariants of X, ,.“) Xn, Y, ,..., Y,z. 

- ____ 
Then S,XS,ZGS,+.~, KS,KS,~CKS,+.Z, C(n)C(n2)~C(nfn2), an 
there are isomorphisms 8,: KS, -+ C(n), B,,*: KS,,2 -+ C(n’), 0,+ ,Z : 
KS n + ,,2 + C(n + n’). Note that we have written KS, instead of m because 
KS, = KS, (i.e., J(n, n) =O). The B’s are obviously not ring 
homomorphisms individually, but they do have the following multiplicative 
property. 

LEMMA 5. Let f(X, ,..., X,) E C(n) and g(Y, ,...) Y,z) E C(n’). Then 

(d ,I+,2)r1!fg)= (%,)~‘(f).(%,,)-‘(g). I 
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Define a function l7 C(n) -+ C(n + n2) by 

LEMMA 6. Let f =f(X, ,..., X,) E C(n). Then there is a unique 
f=f(&,..., X,)E C(n) such that r(f)=fA( Y), where A(Y) is the dis- 
criminant of Y, ,..., Y,z. 

Proof. Regard the entries of X1,..., X, as constants. Since r(f) is an 
alternating multilinear function of Y,,..., Y,z, aplying Lemma 3( 1) with 
field of constants L= K(x,(r)) shows that Z(j) =fA( Y), where PE L. 
Routine arguments show that in fact f~ C(n). Finally, pis unique because 
C is a domain. 1 

Define Un: C(n) + C(n) by Q(f) =R It is clear that @ is a K-linear map. 
In fact it is a left S,,-module homomorphism. To see this, we translate 
Lemma 6 into a statement about KS,, via the 8 isomorphisms. 

Let TO= (O,,+,,Z))‘Z%,,. 

To define r, directly in terms of KS,, let 

a= (11*)(22*3*4*)...(n(n2-2n+2)*...(n2)*), 

/I= C (sign rc) rcczzP1. 
KES*2 

If G E S,,, then the disjoint cycle decomposition of (TM E Sn+n~ is obtained 
from that of o by replacing each ie {l,..., n} by the “string” 
[i(i”-2i+2)*...(i2)*], and for any rc E Sn2 the disjoint cycle decom- 
position of ~xczx-’ is obtained from that of o by replacing each i E {l,..., n> 
by the string [i, 7c((i2-2i+2)*)... rc((i’)*)]. Having made this obser- 
vation, it is not difficult to see that 

(1) For any .A E KS,, rdfd =hP. 
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Let d, = (@,~))“(d( Y)) E KS,Z. (Theorem 4 gives an explicit formula for d,, 
but we do not need it.) By Lemma 5, 

(2) For any f E C(n), (Q n+n~)-lthfo-)) = 6~n~-1cmcJ. 
Any fO E KS, is equal to (0,) -l(f) for some f E C(n) since 8, is an 
isomorphism. Hence, by using (1) and (2) Lemma 6 can be translated into 

LEMMA 7. Suppose fO E KS,,, and let /3 E KS,, + .2 and A, E KS,,2 be as 
defined above. Then there is a unique TO E KS,, such that 

It is clear that fO = ((9,))’ @O,(fO), and we define QO to be (8,))’ 
The significance of Lemma 7 is that it implies, in a purely formal way, that 
f. -+fo is a left S,,-h omomorphism, and hence that QO and @ are left S,- 
homomorphisms. For suppose that c E S,. Then 

(CfO)P = 4fO P) = &AJ = (4?0)& 

in KSIl+,l~. But Lemma 7 asserts that a is the unique element of KS, 

such that (ofO)/?= (z)d,. Thus q/iO= (a, or 

THEOREM 8. The maps @: C(n) -+ C(n) and @,: KS?? --p KS, are left 
S,,-module homomorphisms. 1 

5. A FORMULA FOR Do(I) 

Since dr,: KS, -+ KS,, is a left S,-module homomorphism, it is completely 
determined by QO( 1) In this section we will compute QO( 1) and find that it 
is a centrai unit of KS,. The method consists of evaluating TJX,,...: ii’,) 
and @( TV)(X, ,..., X,,) under the specialization X, = X2 = . = X, = I, the 
n x n identity matrix. This gives rise to a system of n! linear equations 
whose solution determines QO( 1). 

The next lemma follows immediately from the definition of TO and the 
fact that the trace of the n x n identity matrix is n. 

LEMMA 9. Let GE S,, and let Z(O) denote the number of cycles in the 
decomposition of c into disjoint cycles. Then T,,(I,..., I) = n’(“‘. 
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LEMMA 10. Let o E S,, and let C, be the nonzero constant of Theorem 4. 
Then 

@( T,)(I,..., I) = 0’ 
if o=l 
if o#l. 

ProoJ: For ;1 a partition of n2, let A j.( Y) = A,( Y, ,..., Y,z) E C(n2) be as 
in Theorem 4, and recall the auxiliary function Z: C(n) -+ C(n + n*) defined 
before Lemma 6. By the definition of @: C(n) + C(n) via Lemma 6. 

@(T,)(I ,..., I) d(Y) = K’( T,)(I ,..., I, Y, ,..., Ynz) = A,,( Y, ,..., Y,z), 

where A, = (2n - 1, 2n - 3 ,..., 5, 3, 1 ), and 

@(T,)(L.., 4 d(Y) = ~(T,K.., 1, Y,,..., Yd) = A,qg)(Y1,..., Yd), 

where A(o) is some partition of n2 with Z(G) parts. If CJ # 1, z(g) < IZ, so that 
A(o) # 43. 

By Theorem 4, A,,(Y) = C,,d( Y) and A,(Y) = 0 if iv # /lo, which proves 
the lemma. 1 

Let @,,( 1) = C a,0 E KS,, so that @(T,) = C a, T,. By Theorem 8, @ is a 
left S,-homomorphism, so for each p E S,, 

C a, T,,W, ,..., X,J = @u-,)W* >..., x,1. (*) 

Using Lemmas 9 and 10 to evaluate (*) under the specialization 
X, = . . = X,, = Z gives rise to a system of n! equations indexed by the 
elements p of S,, namely 

1 aOn”“‘= C,, (p = l), 

c a,n --(WI = 0 (Pfl). 

Noting that z(p) = z(p -’ ) since p and p -’ have the same cycle structure 
leads to the following calculation in KS,: 

(~a~~)(~n’iP)p)=(Zu,n)(~n~ip~p~l) 

= c aondP)op -1 = c a~nhJdP --I 

= z(, acnz(~ai> p’ = C,. 
P m  

Thus @,( 1) = C a,a = C,(C nZ(p)p)-l, a central unit in KS,,, and so 
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THEOREM 11. Let C, be the nonzero constant of Theorem 4, and let z(p) 
denote the number of disjoint cycles in p E S,. Then 

(1) O( 1) = C,(C n’@)p)-‘, a central unit in KS,. 

(2) Since @J,J 1) is central, @ and @, are ~~-b~mod~le ~orno~~or~h~srns 
and @(T, )(X, ,..., X,) is a symmetric function of X, ,.~., Xn. 

(3) Since QO( 1) is a unit, @ and QO are isomo~.ph~sms. 

6. THE COEFFICIENT OF AN n-CXLE IN 

This section is devoted to computing the coefficient of an n-cycle in 
@,( I). We will see in the next section that the validity of 
is equivalent to the fact that this coefficient is nonzero. It is fortunate that 
this particular coefficient of BO(l j is rather easy to compute even though a 
simple formula for an arbitrary coefficient of J 1) is not apparent. 

Let x1,..., xr be the irreducible characters of S,, and let 

be the corresponding minimal central idempotents of KS,. Since C n”“‘a is 

central in KS,, 

c n”“‘fl= rle, + ... +r,e, and 

(23 
for certain Y,E K, where 

Let V be a K-vector space of dimension n, and let S, act on krBn by 
place permutation: 

This representation of S, is called Pz in [3], where it is intro 
p. 150. 

Let P: S, -+ K be the character of this representation. Since P is a per- 
mutation character it is easy to verify that P(O) = n”‘“) for all CT E S, (or see 
[3, 4.3.12, p. 1.501). Hence 
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where ( , ) denotes the inner product of characters and 

r:’ - Xi(l) 
f -n! (P, Xi)’ 

BY Ms. (l)-(3), 

(3) 

and Theorem 11 (1) can be restated as 

THEOREM 12. In terms qf the above notation, 

where C,, is the nonzero constant of Theorem 4. 1 

Although Theorem 12 gives a formula for the coefficient of an arbitrary 
element of S, in @,J 1 ), it djo( l), it does not in general seem to simplify. In 
particular, it is not apparent which coefficients are nonzero. However, if p 
is an n-cycle, two strokes of good fortune come into play. First, xi(p) is 
zero for nearly all irreducible characters xi. Second, xi(l), xi(p), and 
(P, xi) all have a simple form when xi(p) # 0. 

The irreducible characters x1 ,..., xt of S, have a natural indexing by the 
partitions of n [3, 2.1.11, p. 371, 

{x1,..., x,} = {x(d) 11 a partition of n}. 

Among the partitions of n are the n hooks, so= (n), s1 = (n - 1, l), s2 = 
(n - 2, 1, 1) )...) &,-i = (1)“‘) I). 

LEMMA 13. Suppose that p is an n-cycle and h: is a partition of n. Let 
HO,..., E, _ 1 and P be as above. 
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(1) [3, 23.17, p. 541. X(&&)=(-l)‘, i=o )...) n-1. x(A)(p)=0 if 
R # Eo )..., e, -. 1. 

(2) (Hook formula) [3, 2.3.21, p. 561. x(E~)(~)= (“7”). 

(3) [3, 5.2.20, p. 1921. (P, x(q)) = (2”-;-‘) ~(q)(l). 

Combining Lemma 13 with the elementary identity 

gives the following computation for an n-cycle p 

In conjunction with Theorem 2 we therefore have 

THEOREM 14. The coefficient of an n-cycle in o(l)EKS, is 
(-l)“+‘(C,,/(n-l)!n!(2n- 1)), where C n is the nonzero constmt of 
Theorem 4. In particular, it is nonzero. 

7. PROOF OF REGEV'S CQNJECTURE 

Regev conjectured [7, p. 14291 that the matrix polynomial 

. x7@ ~ 2n + 2) . . . x+2) Yp(nZ - 277 + 2) . . ~&lZ) 

is not zero. As Regev observed, F(X, Y) is a central ~oly~orn~a~, so 
Ft’(x, V = (l/n) T(F(X Y)). 
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Proof. If cr = 1, the left-hand summation is A ,JX, ,..., X,2). If 0 # 1, it is 
Aj.(o)(Xl )...) X,,,), where A(G) is a partition of n2 not equal to A,. The con- 
clusion then follows from Theorem 4. 1 

Let QO( 1) = C a,a, and let ,n = (1. . . n). Then @&AL) = C a, pg and 

since Q0 and @ are left S,-homomorphisms. Using the definition of @ in 
Lemma 6, 

Make the substitution X, H X, , X2 H X2X, 1, ,..., X,, H X,,Z ~ 2,, + z . . . A’,,, in 
(*), and take the alternating sum over all permutations of X, ,..., X,2. The 
left hand side then becomes the trace of Regev’s polynomial, while the right 
hand side can be evaluated using Lemma 15. Thus 

T(F(X, Y)) = a,,-, c,, A(X) A(Y). 

Taking the value of a,-~ given by Theorem 14 and recalling that F(X, Y) = 
( l/n) T(F(X, Y)) finally gives 

THEOREM 16. Let F(X, Y) = F(X, ,..., X,,,, Y, ,..., Yn2) be Regev 3 
polynomial. Then 

F(X, y)=(-1)“+‘(c,,)2d(x)diy)I, 
(n!)2(2n - 1) 

where A(X) is the discriminant of X1,..., X,,,, A(Y) is the discriminant of 
Y, ,..., Y,,,, C,, is the nonzero constant of Theorem 4, and I is the n x n iden- 
tity matrix. In particular, F(X, Y) # 0. 0 

8. EVALUATING THE CAPELLI POLYNOMIAL 

The construction of the map @: C(n) -+ C(n) in Lemma 6 can be 
generalized to associate a map @“: C(m) + C(m) with any unordered par- 
tition ;1 of n2 into m parts. The maps so obtained are left S,-module 
homomorphisms, but in general they are neither right S,-module 
homomorphisms nor isomorphisms. There is also a corresponding map 
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-- 
@;I KS,,, -+ KS, which is completely determined by (j(l), and as in 
Theorem I 1: 

(1) @’ and CD; are right S,-module homomorphisms if and only if 
@i( 1) is central in KS,. 

’ and @i are isomorphisms if and only if 

The case m = n*, ‘J = (l,..., l)= (lnz) is an exa 
Cjn’) + C(n”) is not a right S,z-module homomorphism. e will compute 
@;( 1) in order to give an expression for the trace of the Capelli ~ol~~orn~al 

as a product g(X, ,.., X,,,) A( Y), where g E C(n’). ~~fQrtu~at~ly, the 
expression obtained for g does not appear to be very useful. 

To begin, the arguments of Section 4 can be repeated to prove 

EEMMA 17. Let f(x,,..., X&) E C(n’), and let Y, )~.~) Yn2 he generic n x n 
matrices, with discriminant A(Y). Then there is a unique 
f(X, ,..., XJa;;,z) E C(n”) such that 

Moreover, the map 0;‘: C(n’) (n”) de$ned 61~ 
homomorp~isn~ qf left S,z-modules. 

__- 
As in Section 4, we let @$ denote the corresponding map KS,Z + KS,,2 

LEMMA 18. cDT(T,)(X,,..., Xnz)= (-l)(z) A(X). 

ProoJ By definition, A(X) is the determinant of t e ~2~ x r2* matrix U 
whose rth row is 

(“) It is easy to see that ( -1) * A(Y) is the determinant of t 
V whose uth column is the transpose of 

Since the (ij)th entry of UV is T(X, Y,), 
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Thus @‘( T,)(X, ,..., X,:)=(-l)(%l(X). 1 

Set q = (1)(234)(56789). . . ((n* - 2n + 2). . . n’). Theorem 4 asserts that 

or 

C (sign n) TnIIz-~(XI,..., X,2) = C, d(X) 
7ce.w 

@g(l)=(-l)(G)C-’ 1 (signn)xqY1. II (1) 
n E .s,2 

Note that (1) implies that 

@;(c@) = (sign /?) @Pg(c()p. (2) 

Hence @g and @? are not right S,,l-module homomorphisms. 
Set p = (1 . . n’). Then the trace of the Capelli polynomial is 

T(C,,dX Y))= 1 (sign n) T(X, Yncl,X2 Ynt2) ...Xr12 Y,,d 
x E Sn2 

= @‘(T,,)(X, )...) X,,z) d(Y). (3) 

Using (1) and (3) and the fact that @’ is left S,,2-module homomorphism 
yields 

THEOREM 19. Let C&X, Y) = C,,2(X1 ,..., X,,2, Y, ,..,, Y,l~) be the Capelli 
polynomial. Then 

T(C,,2(X, Y)) = (-l)(;) C;’ C (sign 71) TP,tllx-~(X1,..., X,2) d(Y), 
nts,z 

where ,u = (1 . . . n2), q = (1)(234) . . . ( (n2 - 2n + 2). . . n2), and C, is the non- 
zero constant of Theorem 4. 1 

9. THE CONSTANT C, 

By Theorem 4(Z), 

22’ 
sign n) T(xzclJ T(X=(2)x,(~)X=(4))... T(Xn(n2-2n+2)...X~(n2~) 

n 
= c, d(X,..., X,2), 
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where C, is a nonzero constant which subsequently made repeate 
appearances. We will now determine it up to a sign. 

We adopt a notation similar to that introduced in Section 4, but with 2n2 
generic n x n matrices X1 ,..., X,2, Y, ,..., Yn2. Set 

S,Z = permutations of (I,..., FZ”}: 

S~Z = permutations of (l*,...? (n2)* ), 

Szn2 = permutations of { l,..., i-3, I* ,..., in’)* 3. 

The corresponding spaces of multilinear invariants are C(M~), C*(n’), 
C(2n2), and the corresponding isomorphisms are Qnz: KS,2 -+ C(n2) 
6,Tz: KS,Tz + C*(d), 62,,': K&,2 -+ C(%z*). Set 

q=(1)(234)..((n2-2n+2)..+), 

2=(11*)(22*).+22(n2)*), 

q* ==zqz-’ =(1*)(2*3*4*j...((n’-2n+2)*...(n2)*). 

By Theorem 4(2), 

C,,d(X) = I4 j,o(Xl)...) X,2) = 1 (sign 7C) r,,,-l(X, ,..., X,2) 
E E S”2 (11 

C,, d(Y) = A j . , (  Yl y...) Y,12) = C (sign 7E*) T,,V*(,*j-i( Y, ,..~, ly,:). 
.*.s,; 

By Lemma 18 and its proof (reversing the roles of the x’s and Y’s), 

(-l)(;)A(X)d(Y)= C (signs) T(X,,,,Y,)...ir(X,,,,?,Ynz) 
x E s,2 (2) 

= C (sign 7~) Tnrn-l(X1,~.., X,2, Y ,,..., Y*2). 
I E sn2 

Using (1) and (2) and the tI-isomorphisms gives the following equation in 
KS*,,2 : 

= C,2[(6,2)-’ Ll(Tf)][(6,*,)-’ d(Y)] 

= n$H2 (sign R) rcyjx-’ C (sign 7-F) n*q*(x*)-’ 
RES,l 
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Multiply on the right by z (z=z-l) to get 

(-l)(;) C2 C (sign 7c) 7c~n:~+~ n 
ntS,2 

= C (sign~)~Y/~-l r IL , (3) 
RES”2 1 

an equation in KS2,,2. We will determine Ct, by comparing the values of a 
character PztiZ: KS*,,2 -+ K which assumes computable nonzero values on 
both sides of (3). 

Following [3] with some changes in notation, let Py denote the charac- 
ter of the representation of KS, on (I/m)@ ’ by place permutation, where 
V, is a K-vector space of dimension m. Note that if 0 ES,, P;(a) = mi(“), 
where z(a) is the number of disjoint cycles in 0 [3, 4.3.12, p. 1501. Since 
0 E S1,2 has a different number of disjoint cycles if regarded as an element of 
SQ and we count both, we adopt the notation 

z(a) = number of disjoint cycles in 0 E SQ, 

~~(0) = number of disjoint cycles in cr E S,,Z or S,*, 

If A is a partition of Y, let x(A) denote the character of S, corresponding 
to I”. 

LEMMA 20. Let A = (A, ,..., jbk) be a partition of r of length k. Then 

(1) [3, 5.2.20, p. 1921. The multiplicity of ~(2) in P: is nonzero if and 
only if k <n. 

(2) Thus J(n, Y) is the kernel of the action of KS, on VP ’ by place 
permutation, and P: induces a well-defined character P:: KS, + K. 1 

Recall that z = (11*)(22*)... (n’(n’)*). 

LEMMA 21. (1) If 71 E S,Z, then z(712~~2-~) = 2z0(7c). 

(2) I f  71 e S,Z, then P;,2(7m~‘z~‘) = P&n). 

(3) Zf CI, BE Sn2, then z(cxp) = z,(c$). 

(4) Zf a, /3 E KS,2, then P;,2(a7P) = P;2(~fi). 

Prooj (1) If rcES*z, 7c*=7~7cz-~ ES,“, and rc, n* and (rc*)-’ have the 
same cycle structure. The disjoint cycle structure of rcr~-~r~’ is obtained 
by juxtaposing those those of 71 and (rc*))‘. Hence z(rcz7~~~r-~) = ~~(71) + 
zo((7c*)-l) = 2zJ7c). 

(2) By (I), p2,2(~~~p1~-1) = nz(nrn-'r-') = n2zo(n) = (n2)zo(n) = p;:(n). 
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(3) Note that azfl= (~@)(P~‘rfi), and 

pzp= (lp(l)*)(2/?(2)*).” (n2, /?(nZ)*). 

The disjoint cycle structure of ar/? in S,, 2 is therefore obtained from the drs- 
joint cycle structure of a/3 in S,2 by replacing each i= I,..., n2 by the string 
f@?(i)*]. Hence z(azp) =zo(c@). 

(4) For group elements IX, /? E Sn2, P;,,(azfi) = n’(r’P) = FZ~~(‘~) = 
I’$(@), For CI, /3 E KS,2, the conclusion follows 

y [3, 5.2.20, p. 1921, the sign character x(1”‘) of S,Z has multiplicity one 
as a component of P$, or 

Hence by Lemma 21(2), 

= nz 2 (sign R) P;:(n) = (n’)!, 
n 

and the value of Pzn2 applied to the left-hand side of Eq. (3) is 

P;,z(LHS(3)) = Pin2 
L 

(-l)(Z) C2 1 (sign n) 7T571P1z-1 n 
7[ t s,: 1 

= (-l)(Z) C@‘)!. (41 

The evaluation of P;,,> on the right-hand side of (3) is more elaborate 
and requires working with KA ,z, the group ring of the alternating grou 
The starting point is that by Lemma 21(4), 

P’;,2(RHS(3)) = P;$ 

where CnGS,2 (sign rc) TCY]Z-~ not only lies in KA,z, but is central there. 
We assume henceforth that K is algebraicalZy closed. This of course 

not affect the value of C,. 
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LEMMA 22. Suppose G is a finite group, U is a central element of KG, 
and x is an irreducible character of KG. Then x( U’) = [x( U)]*/x( 1). 

ProoJ: Let p: KG+M,,,,(K) b e a representation whose character is x, 
and let I be the x( 1) x x( 1) identity matrix. Since U is central, 
P(U)=MU)IX(~))Z, du’)= Cx(Wx(l)1’~~ and x(U2)= Cx(~)l’/x~l). I 

Set u= CntSn2 (sign z) rmn-‘. In order to evaluate P$(U2) using 
Lemma 22, we have to do two things 

(A) Find x(U) f or each irreducible character x of k,,. 

(B) Find the decomposition of P$I n 2 into irreducible characters of 
A$. 

Consider ~=(1)(234)...((n~--2~~+2)..~n~), which has cycle type 
(2n - 1, 2n - 3,..., 5, 3, 1). Since its cycles have distinct odd lengths, vi = y 
and y/2 = (12) ~(12))’ are not conjugate in A,2 if n > 1 [3, 1.2.10, p. 121. 

There is a unique self-associated (or self-conjugate) partition (see [3, 
p. 221 for the definition) whose main hooks (see [3, p. 671 for the 
definition) are 2n - 1, 2n - 3 ,..., 5, 3, 1, namely 6 = (n ,..., n) = (nn). 

THEOREM 23 [3, pp. 66-671. Let ~(1”) be the irreducible character of S,2 
(n > 1) associated to the partition ;1 of n2. 

(1) lf 1 is not self-associated, then ~(2) 1 A,,2 is irreducible, and 

[x(l) I Anal = X(~)(Y) = [Ix(n) I AsI( 

(2) Zf II is self-associated, but ;1# (n”), then x(A) I A,,2 = x’(n) + x-(A), 
the sum of two distinct irreducible characters, and 

x’(n)(vll)=~x(n)(y)=x~(/Z)(r/2). 

(3) If 6 = (n”), then ~(6) I A,2 = x+(6) +x-(S), the sum of two distinct 
irreducible characters, and 

x(@(v)= (4) 

~+(s)(+~~(~)(~*)=~[(-l)(;)+4(-1)(~)1~3~~~(2n-l)], 

x-(k?)(~l)=~+(S)(~2)=$[(-1)(~)-J(-l)(Z)l .3...(2n-l)]. 1 

By [3, 5.2.20, p. 1921, the multiplicity of the S,z-character x(6) in Pt2 is 
one. Hence by Theorem 23, 
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where x is a linear combination of irreducible characters of A,2 which agree 
cm qI and qz and hence vanish on 

y Theorem 23(3), 

x’(S)(U)= ilA,zl J(-r)(;)l.3.5...(2n-l), 

Ijc’(d)(li)]2=b[(*?)!]?(-l)(;)l.3.5...(211-1). 

y the hook formula [3, 2.3.21, p. 561, 

x’mt~)=txml)= 
(ll’)! 

2[1.22.33...n”(n+1)“~‘..(2n-2)2(2n-1)]’ (8) 

Finally, by (5): (6), (7), (S), and Lemma 22, 

Comparing (4) and (9) gives 

1)1.3... (Zn- 1) 

(9) 

THEOREM 24. The constant C, of Theorem 4, which is defitied implicit/y 

hY 

is equal to *1!3!5!~~~(2n-1)!/1!2!~~~(n-I)!. 

C, = +I and C, = -6, but otherwise I do not know the sign of C,,, 
Almost certainly it is periodic of period two or four. 
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