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SUMMARY

The canonical Wnt signaling pathway is of para-
mount importance in development and disease. An
emergent question is whether the upstream cascade
of the canonical Wnt pathway has physiologically
relevant roles beyond b-catenin-mediated transcrip-
tion, which is difficult to study due to the pervasive
role of this protein. Here, we show that transcription-
ally silent spermatozoa respond to Wnt signals
released from the epididymis and that mice mutant
for the Wnt regulator Cyclin Y-like 1 are male sterile
due to immotile and malformed spermatozoa. Post-
transcriptional Wnt signaling impacts spermatozoa
through GSK3 by (1) reducing global protein poly-
ubiquitination to maintain protein homeostasis; (2)
inhibiting septin 4 phosphorylation to establish a
membrane diffusion barrier in the sperm tail; and (3)
inhibiting protein phosphatase 1 to initiate sperm
motility. The results indicate that Wnt signaling
orchestrates a rich post-transcriptional sperm matu-
ration program and invite revisiting transcription-in-
dependent Wnt signaling in somatic cells as well.

INTRODUCTION

Canonical Wnt signaling is an evolutionarily conserved pathway,

which plays a key role in numerous processes of development

and disease (Anastas and Moon, 2013; Clevers and Nusse,

2012; Holland et al., 2013). At the heart of canonical Wnt

signaling is the transcriptional regulator b-catenin, which in un-

stimulatedcells is phosphorylated byglycogen synthase kinase3

(GSK3) and then polyubiquitinated and thereby targeted for pro-

teasomal degradation. Binding of Wnt proteins to the Frizzled

(Fz) receptors and their low-density lipoprotein receptor related

protein (LRP) 5 and 6 co-receptors triggers GSK3 inhibition to

stabilize b-catenin, which enter the nucleus and regulate down-

stream target genes (Kikuchi et al., 2011; MacDonald et al.,

2009).

The canonical Wnt signaling cascade is well characterized,

and it is widely assumed that this pathway acts primarily through

transcriptional response of b-catenin-dependent target genes.
C

However, we have previously shown that Wnt signaling peaks

in the G2/M phase of the cell cycle in a variety of cells (Davidson

et al., 2009). It appeared paradoxical that Wnt signaling should

peak in G2/M, when the hallmark of the pathway is transcriptional

regulation, which inmitosis comes to a standstill. Importantly, De

Robertis and colleagues showed that Wnt signaling stabilizes

many other cellular proteins in addition to b-catenin (Taelman

et al., 2010). Building on this discovery, we introduced Wnt-

dependent stabilization of proteins (Wnt/STOP), which is inde-

pendent of b-catenin, and peaks during mitosis to slow down

protein degradation as cells prepare to divide (Acebron et al.,

2014). This post-transcriptional branch of canonical Wnt

signaling is required for proper chromosome segregation, endo-

lysosomal biogenesis, as well as for cell growth and cell-cycle

progression (Acebron et al., 2014; Huang et al., 2015; Ploper

et al., 2015; Stolz et al., 2015). Wnt stabilizes proteins by inhibit-

ing GSK3, a kinase, which creates phospho-degrons to target

proteins for proteosomal degradation. GSK3 inhibition by Wnt

signaling peaks in mitosis because the Wnt coreceptor LRP6 is

activated by cyclin Y (Ccny) and its target kinase CDK14 (cy-

clin-dependent kinase 14) in a cell-cycle-dependent manner

(Acebron et al., 2014; Davidson et al., 2009). In addition to

Wnt/STOP, other post-transcriptional signals have been shown

to branch off downstream of GSK3. For instance, Wnt-induced

GSK3 regulation activates mTOR to increase protein translation

and cell growth (Inoki et al., 2006) and modulates the activity of

microtubule-associated proteins during axon growth (Salinas,

2007).

A main caveat of this post-transcriptional Wnt signaling model

is the lack of genetic proof. This is because in vivo it is chal-

lenging to study Wnt responses under conditions where b-cate-

nin transcriptional effects can be ruled out, e.g., in b-catenin

mutant background, since such cells are often heavily perturbed

due to the pervasive role of b-catenin in transcription and cell

adhesion (Valenta et al., 2011). Given the paramount importance

of Wnt signaling, it is essential to clarify whether the upstream

cascade of the canonical pathway can act independent of b-cat-

enin transcriptional response by obtaining genetic proof in vivo,

which is the subject of this study.

One class of cells where confounding transcription-dependent

effects of Wnt signaling can be ruled out is spermatozoa. These

cells are akin to mitotic cells; i.e., they are arrested in a cell-cycle

phasewhere the chromosomes are condensed and transcription

has come to a halt (Braun, 1998). Coincidentally, mitosis is also
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Figure 1. Ccnyl1 Mutant Mice Show Sperm

Maturation Defects

(A) Illustration of Cyclin Y (-like 1)-dependent LRP6

priming, required for Wnt-induced receptor acti-

vation.

(B) qPCR of cyclin Y (Ccny) and cyclin Y-like

1 (Ccnyl1) in wild-type mouse tissues, normalized

to HPRT.

(C) Immunoblot of Ccnyl1 in testis lysates of

2 Ccnyl1 mutant mice each.

(D) Bright field microscopy highlighting axonemal

defects at the annulus (arrow) and connecting

piece (arrowhead) of Ccnyl1�/� cauda sperm.

(E) Electron micrographs of the annulus region

showing axonemal bending and heteromorphic

mitochondria (arrowheads) in Ccnyl1�/� sperm.

(F) Representative track plots of cauda sperm from

Ccnyl1+/� and Ccnyl1�/� mice. The graphs show

20 sperm each tracked for 2 s.

(G) Quantification of total motile cauda sperm.

n R 3 mice per genotype.

(H and I) Computer-assisted sperm motility anal-

ysis showing that the (H) curvilinear velocity and

(I) linearity of the remaining motile cauda sperm

were significantly decreased in Ccnyl1�/� mice.

(J) Quantification of B6/F1 oocytes in 2-cell stage

after IVF with Ccnyl1mutant cauda sperm. Sperm

were pooled from two mice per genotype. The

total number of oocytes is indicated below.

(K) Quantification of sperm axonemal defects in

different parts of the reproductive tract. Ccnyl1�/�

sperm exhibit progressive structural defects

during epididymal transit. n = 3mice per genotype.

See also Figure S1.
the cell-cycle phase where responsiveness to Wnt signaling is

expected to peak (Davidson et al., 2009; Hadjihannas et al.,

2012; Olmeda et al., 2003). Importantly, germ-cell-specific dele-

tion of b-catenin has no effect on male fertility, with spermato-

cyte differentiation and sperm maturation proceeding normally

(Rivas et al., 2014).

Despite their compacted structure, spermatozoa are not

signaling inert. During a week-long maturation process

mammalian spermatozoa respond to maturation signals as

they transit the epididymis, a coiled tubule connected to the

testis. Epididymal maturation of spermatozoa involves changes

in protein composition and subcellular localization, necessary

for motility and fertilization (Sipilä et al., 2009; Turner, 2008;

Yeung and Cooper, 2002). Maturation is thus induced by fac-

tors secreted from the epididymis while spermatozoa are tran-

scriptionally silent. The identity of the epididymal maturation

factors has remained unresolved. Here, we show that sperma-

tozoa respond to Wnt signals released from the epididymis.

The Wnt regulator Cyclin Y-like 1 (Ccnyl1) is highly expressed

in germ cells, and Ccnyl1�/� mice are male sterile due to immo-

tile and malformed spermatozoa. Wnt signaling impacts

spermatozoa through GSK3 by (1) reducing global protein

poly-ubiquitination to maintain protein homeostasis; (2) inhibit-

ing septin 4 phosphorylation to establish a membrane diffusion
1226 Cell 163, 1225–1236, November 19, 2015 ª2015 Elsevier Inc.
barrier in the sperm tail; (3) and inhibiting protein phosphatase 1

to initiate sperm motility. The results indicate that Wnt signaling

orchestrates a post-transcriptional sperm maturation program.

RESULTS

Ccnyl1 Mutant Mice Show Sperm Maturation Defects
To investigate post-transcriptional Wnt signaling in mamma-

lian physiology, we generated mice deficient for cyclin Y-like

1 (Ccnyl1) (Figure 1A). In contrast to its ubiquitously expressed

homolog Ccny, Ccnyl1 RNA and protein are largely restricted

to germ cells in the testis (Figures 1B, 1C, S1A, and S1B).

As is the case for Ccny (Acebron et al., 2014; Davidson

et al., 2009), Ccnyl1 protein also localizes to the plasma mem-

brane in mammalian cell lines, where it associates with LRP6

and collaborates with Ccny in promoting Wnt signaling (Fig-

ures S1C–S1E; see also Davidson et al., 2009). Ccnyl1�/�

mice appeared normal, but male Ccnyl1�/� mice were sterile

due to severe sperm structural and motility defects. Sperm

tails displayed hairpin bending at the annulus (Figure 1D)

and in electron microscopy presented axonemal breakage at

the junction between midpiece and principal piece (Figure 1E).

Additionally, Ccnyl1�/� sperm exhibited heteromorphic mito-

chondria and a partial denudation of the distal midpiece



Figure 2. Exosomal Wnt Signaling in the

Epididymis

(A) Real-time RT-PCR identified site-specific

expression of indicated Wnt ligands in different

parts of the male reproductive tract. The graph

depicts the mean expression levels of six wild-

type mice.

(B) Immunostaining of wild-type mouse epididy-

mides showing a proximal-to-distal gradient of

Wnt2b and Wnt10a protein.

(C) Immunolocalization of Wnt10a in caput

epididymal sections of wild-type mice showing

vesicle-like punctae that accumulate at the apical

plasma membrane. The tubule margin is indicated

by pan-Cadherin staining.

(D) Immunoblot of Wnt2b in exosome-enriched

epididymal vesicle fractions of wild-type mice.

Note the molecular weight shift of Wnt2b, char-

acteristic for mature Wnt ligands.

(E) Immunogold labeling of Wnt2b in epididymal

exosomes of wild-type mice. Arrows highlight the

Wnt2b staining.

(F) Epididymal luminal fluid and exosomes were

used for TOPflash reporter assays in HEK293T

cells. Tissue from eight to ten wild-type mice was

pooled for each experiment. The graph is repre-

sentative of two experiments and shows relative

luciferase activity (RLA) ±SD.

See also Figure S2.
(Figure 1E). Moreover, Ccnyl1�/� sperm showed a severe

motility defect, with less than 10% of mutant sperm exhibiting

progressive motility, while sperm movement was unaffected in

heterozygous mice (Figures 1F and 1G). Residual motile

mutant spermatozoa had reduced curvilinear velocity and line-

arity (Figures 1H and 1I). Consequently, Ccnyl1�/� sperm had

a greatly reduced capacity to fertilize wild-type oocytes in vitro

(Figure 1J). Thus, loss of Ccnyl1 results in a complex sperm

structure and motility phenotype, ultimately causing male

infertility (see also Zi et al., 2015).

Dysfunctional spermatozoa can arise from defects in sper-

matogenesis and spermiogenesis in the testis, or aberrant

sperm maturation during epididymal transit. Analysis of sperm

from different regions of the male reproductive tract revealed

that the hairpin phenotype appeared gradually (Figure 1K),

suggesting a defect in sperm maturation. In agreement with

this interpretation, total caudal sperm count, meiotic cell

divisions, and germ cell differentiation in the testis were unaf-

fected in Ccnyl1�/� mice (Figures S1F–1H). Moreover, testic-

ular Ccnyl1�/� sperm were indistinguishable from controls

and exhibited no axonemal damage (Figure S1I). Similarly,

the epididymides of Ccnyl1�/� mice showed no structural

abnormalities, and the distribution of major epididymal cell

populations was unchanged compared to controls (Figures

S1J and S1K). This indicates that the cellular malformations

result from a sperm-intrinsic defect manifesting during epidid-

ymal transit.

Exosomal Wnt Signaling in the Epididymis
Consistent with a role for Wnt signaling in epididymal sperm

maturation, qPCR showed expression of multiple Wnt ligands

in the epididymis, including the canonical Wnt ligands Wnt1,
C

Wnt2b, Wnt3a, and Wnt10a (Figure 2A) (Wang et al., 2013).

Interestingly, these Wnts displayed compartmentalized

expression patterns within the epididymis, and immunostain-

ing of Wnt2b and Wnt10a in particular showed a proximal-

to-distal protein gradient (Figures 2B and S2A). Active Wnt

signaling in the proximal epididymis was confirmed by exam-

ining BAT-gal reporter mice, which express nuclear b-galacto-

sidase under the control of b-catenin/TCF (Maretto et al., 2003)

(Figure S2B). Reporter activity in these mice correlated with

Wnt protein expression; i.e., it was high in the caput epidid-

ymis where peak Wnt2b and Wnt10a protein levels were

seen but virtually absent in the cauda (Figures S2C and

S2D). Interestingly, Wnt10a accumulated in vesicle-like punc-

tae at the apical plasma membrane of epididymal principal

cells (Figure 2C). This pattern is characteristic for vesicles

released as epididymal exosomes, which are essential for

sperm maturation (Sullivan et al., 2007). Since Wnt ligands

can be transported on epithelial exosomes to facilitate long-

range Wnt signaling (Gross et al., 2012; Luga et al., 2012),

we asked whether epididymal exosomes can activate Wnt

signaling. We therefore isolated extracellular vesicles from

epididymal luminal fluid (Figures 2D and 2E). This exosome-

enriched fraction harbored mature Wnt2b, which in immuno-

electron microscopy localized to vesicles (Figures 2E and

2F). Importantly, this vesicle fraction robustly induced Wnt

signaling in vitro (Figure 2F). In Ccnyl1�/� mice, epididymal

Wnt activity was unaffected, and there was no difference in

Wnt signaling in testis and epididymis (Figures S2E and

S2F). We conclude that (1) the epididymis expresses multiple

Wnt genes, (2) Wnt signaling decreases from caput to cauda,

and (3) the epididymis releases active Wnt ligands on exo-

somes into the epithelial lumen.
ell 163, 1225–1236, November 19, 2015 ª2015 Elsevier Inc. 1227



Figure 3. Mammalian Spermatozoa Are Wnt-Responsive Cells

(A) Immunostaining of LRP6 with the indicated antibodies in wild-type mouse cauda sperm showed localization along the tail, which was largely restricted to the

midpiece, with sporadic staining in the acrosomal cap.

(B) Immunostaining of wild-type cauda sperm treated withWnt3a CM for 1 hr showed increased LRP6 Tp1479 staining in themidpiece, whichwas blocked by co-

administration of recombinant Dkk1. Exemplary heatmaps are shown on the left. The average signal intensity along the midpiece was measured and normalized

to control treated sperm. n = 6 mice.

(C) Relative Tp1479 staining intensity in sperm treated with epididymal exosomes for 1 hr was increased compared to controls. n = 3 wild-type mice.

(D) Ccnyl1�/� sperm showed both lower basal LRP6 activity and reduced Wnt responsiveness. Heatmaps are shown on the left. n = 5 mice per genotype.

(E) Endogenous LRP6 activity monitored by Tp1479 staining in sperm isolated from indicated parts of the reproductive tract, normalized to total LRP6.Ccnyl1�/�

mice exhibited reduced Tp1479 signal in all areas of the epididymis compared to controls. n = 5 mice per genotype.

See also Figure S3.
Mammalian Spermatozoa Are Wnt-Responsive Cells
Is it possible then that Wnt ligands signal to transcriptionally

silent sperm? Active Wnt signaling can be monitored with

LRP6 antibodies specific for the CK1g phosphorylation site

Tp1479 (‘‘active LRP6’’) (Davidson et al., 2005), adjacent to the

cyclin Y/CDK14 priming phosphorylation site Sp1490 (‘‘primed

LRP6’’) (Figure 1A). Both primed and active LRP6 proteins

were detectable in mouse and bull spermatozoa, where they pri-

marily localized to the midpiece, with additional staining in the

head (Figures 3A and S3A). LRP6 activation was induced by

exogenous Wnt3a treatment and was blocked by addition of

the Wnt antagonist Dkk1 (Figures 3B and S3B). Additionally,

epididymal exosomes activated LRP6 ex vivo (Figure 3C).

Endogenous LRP6 phosphorylation was highest in sperm

collected from the distal caput epididymis of wild-typemice (Fig-

ure S3C), consistent with peak Wnt signaling activity in this

region, and decayed rapidly after removal of sperm from the

epididymis (Figure S3D). Importantly, Ccnyl1�/� sperm had a

blunted response to stimulation with exogenous Wnt3a, and

they exhibited reduced LRP6 activation in all parts of the epidid-
1228 Cell 163, 1225–1236, November 19, 2015 ª2015 Elsevier Inc.
ymis (Figures 3D and 3E). Taken together, the data (1) identify

mammalian spermatozoa as Wnt-responsive cells and (2) sug-

gest that deficiency in Ccnyl1-dependent Wnt signal transduc-

tion leads to malformed spermatozoa during their epididymal

transit.

Ccnyl1 Mutant Spermatozoa Show Reduced Wnt/STOP
Signaling
Since the results suggested that Wnts act as sperm maturation

factors in the epididymis, we tested the involvement of Wnt/

STOP signaling (Acebron et al., 2014). In this signaling mode,

Ccny-dependent Wnt signaling protects part of the proteome

fromGSK3-dependent ubiquitination and proteasomal degrada-

tion, independent of b-catenin (Figure 4A). Consistent with this

model, Ccnyl1�/� cauda sperm showed globally increased

K48-linked protein ubiquitination (Figure 4B). In immunofluores-

cence analysis, bulk ubiquitinated proteins co-localized

with proteasomes (20S subunit a5) in the sperm tail, in

particular, in the distal midpiece of Ccnyl1�/� cells (Figure 4C).

Moreover, protein levels of several Wnt/GSK3 targets, including



Figure 4. Ccnyl1�/� Spermatozoa Show Reduced Wnt/STOP Signaling

(A) Schematic depiction of GSK3-dependent destabilization of target proteins by phosphorylation, which leads to protein ubiquitination and proteasomal

degradation.

(B) Fluorescence-activated cell sorting (FACS) profile of K48-linked poly-ubiquitin in cauda sperm of Ccnyl1 mutant mice.

(C) Co-immunolocalization of K48-linked poly-ubiquitin and 20S proteasomal subunit a5 in Ccnyl1+/� cauda sperm showed overlapping staining in the distal

midpiece. Representative profile plots of the mean fluorescence intensity (MFI) are shown on the right. Arrowheads indicate the position of the annulus.

(D) The protein level of GSK3 targets in cauda sperm samples were determined by immunoblot and normalized to GAPDH. Total protein levels were measured by

bicinchoninic acid assay. n = 3–6 mice per genotype.

(E) Exemplary immunoblot of GSK3 target proteins BRD3 and BUB1 in sperm lysates of three Ccnyl1 mutant mice each.

(F) BRD3 levels in Ccnyl1 mutant cauda sperm after treatment with GSK3 inhibitor SB-216763 (20 mM), proteasomal inhibitor Mg132 (10 mM), or lysosomal in-

hibitor chloroquine (16 mM) for 6 hr at 37�C. Sperm were pooled from four mice per genotype.

See also Figure S4.
Bromodomain-containing protein (BRD) 3 and serine/threonine

protein kinase BUB1 (Acebron et al., 2014; Taelman et al.,

2010; Xu et al., 2009), were markedly decreased in Ccnyl1�/�

sperm, whereas other specific proteins and bulk protein were

unaffected (Figures 4D and 4E).

Importantly, treatment of sperm with inhibitors against GSK3,

proteasome, or to a lesser extent lysosome increased BRD3

levels in Ccnyl1�/� cells (Figure 4F), suggesting that the sperm

proteome is subject to GSK3-dependent degradation. We

conclude that Ccnyl1�/� spermatozoa show aberrant GSK3/

ubiquitination-dependent protein degradation. It has been pro-

posed that sperm GSK3 activity is regulated by inhibitory serine

phosphorylation (Somanath et al., 2004). However, in Ccnyl1�/�

sperm, which exhibit enhanced GSK3 activity, GSK3 serine

phosphorylation was unchanged in caput epididymal sperm,

and even increased in caudal sperm (Figure S4), indicating that

PKB/SGK3-dependent derepression of GSK3 does not account

for increased GSK3 activity in Ccnyl1�/� mice.
C

Post-transcriptional Wnt Signaling Regulates Sperm
Diffusion Barrier Function via Septin 4
Considering the large number of potential GSK3 target proteins

that may be misregulated in Ccnyl1�/� sperm, their complex

mutant phenotype may result from loss-of-function of multiple

proteins. Yet, we sought to identify key regulators of sperm

maturation that are controlled by GSK3. An intriguing candidate

GSK3 target is septin 4, knockout mice of which share many fea-

tures of Ccnyl1 mutants, including male sterility, sperm tail

hairpin bending, and dysmorphic mitochondria (Kissel et al.,

2005; Matsuda et al., 2005). Septin 4 is a filament-forming

GTPase, which during sperm maturation is required for the for-

mation of a membrane diffusion barrier at the annulus, a cortical

ring separating themidpiece and principal piece of the sperm tail

(Figure 5A). Sequence inspection of septin 4 revealed three pu-

tative GSK3 phosphorylation sites in its N-terminal proline-rich

domain (S68, S100, and S107), of which the latter two are highly

conserved in vertebrates (Figure 5B). Of note, these sites are also
ell 163, 1225–1236, November 19, 2015 ª2015 Elsevier Inc. 1229



Figure 5. Wnt Signaling Regulates Sperm Diffusion Barrier Function via Septin 4

(A) Schematic presentation of the investigated signaling module.

(B) Partial sequence alignment of septin 4. Multiple putative phosphorylation sites (yellow) were identified in the N-terminal proline-rich domain. Proline residues

are highlighted in red. Numbers indicate amino acid positions in the mouse protein.

(C) Immunoblot of mouse Flag-septin 4 co-expressed with GSK3b-myc in HEK293T cells with or without GSK3 inhibitor (SB) or alkaline phosphatase treatment

(AP). GSK3 induced increased septin 4 phosphorylation. Arrows indicate major septin 4 species.

(D) Mouse spermatocyte-derived GC-2spd cells were treated with Wnt3a CM or SB for 72 hr. Both treatments increased endogenous septin 4 protein levels.

(E) Cauda sperm were analyzed by 2D gel electrophoresis. Arrowheads highlight a mobility shift of septin 4 in Ccnyl1�/� sperm.

(F) Protein extracts from cauda sperm were analyzed by blue native gel electrophoresis, which showed a loss of high-molecular-weight septin 4 complexes in

Ccnyl1�/� cells (arrowheads). Membranes were reprobed for a-tubulin. An aliquot of each sample was subjected to reducing SDS electrophoresis to confirm

equal loading. Data in (E) and (F) are representative of three independent experiments with samples pooled from three to five mice per genotype.

(G) Representative staining of basigin showing loss of diffusion barrier integrity specifically in cauda epididymis sperm of Ccnyl1�/� mice. The position of the

annulus is indicated by the red line. Arrows highlight aberrant localization of basigin in the principal piece.

(H) Quantification of basigin distribution in Ccnyl1 mutant cauda sperm. n = 3 mice per genotype.

(I) Co-localization of Tat1 and septin 4 in the sperm tail. Boxed areas are magnified above. Arrowheads indicate the position of the annulus. Arrows highlight

mislocalized Tat1 in Ccnyl1�/� sperm.

(J) Quantification of Tat1 annular localization in Ccnyl1 mutant cauda sperm. n = 3 mice per genotype.

See also Figure S5.
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found in the pro-apoptotic septin 4 splice variant ARTS, which in

sperm is implicated in protein degradation (Kissel et al., 2005).

Co-expression of septin 4 with GSK3b in HEK293T cells induced

a phosphorylation super-shift that was blocked by GSK3 inhibi-

tion (Figure 5C). Mutation of individual or all putative phosphory-

lation sites identified S100 as the major GSK3 target residue,

while S107 most likely acts as a priming site that can also be

phosphorylated by other kinases (Sitz et al., 2008) (Figure S5A).

Septin 4 physically associated with endogenous GSK3 (Fig-

ure S5B); however, this interaction was inhibited when either

one or all of the putative phosphorylation sites were replaced

with alanine. In addition, in HeLa cells expression of GSK3b

reduced septin 4 levels by protein destabilization, which was

partially rescued by mutation of S100 and S107 (Figures S5C–

S5F). Moreover, in mouse spermatocyte-derived GC-2spd cells,

Wnt3a treatment or pharmacological GSK3 inhibition increased

endogenous septin 4 levels (Figure 5D).

In sperm, Wnt signaling alters the polymerization properties of

septin 4, rather than promoting its stabilization. In Ccnyl1�/�

sperm, septin 4 levels were unchanged, but 2D gel electropho-

resis showed a shift of septin 4 toward the positive pole,

consistent with increased GSK3-dependent phosphorylation

(Figure 5E). Moreover, septin 4 isolated frommutant sperm failed

to form high-molecular-weight complexes, as revealed by blue

native gel electrophoresis (Figure 5F). Septins form a membrane

diffusion barrier at the annulus, and this barrier function restricts

the localization of proteins, including basigin (Kwitny et al., 2010).

In caput sperm, basigin is confined to the principal piece and un-

dergoes relocation to the midpiece during sperm epididymal

transit (Figure 5G). In Sept4�/� sperm basigin localizes over

the whole tail length (Kwitny et al., 2010). Ccnyl1�/� sperm

exhibited normal basigin localization in caput spermbut lostmid-

piece restriction during epididymal transit toward the cauda (Fig-

ures 5G and 5H), in line with an epididymal maturation defect.

Moreover, the testis anion transporter 1 (Tat1/Slc26a8), which

normally localizes to the sperm annulus and is essential for

sperm terminal differentiation (Touré et al., 2007), was dispersed

along the tail in the majority of Ccnyl1�/� sperm (Figures 5I

and 5J).

It was suggested that during epididymal transit spermatozoa

receive an unknown signal that triggers a post-translational

modification of, e.g., septins, which opens a one-way gate to

regulate protein diffusion in the sperm tail (Kwitny et al., 2010).

Our results support this idea, whereby epididymal Wnt signaling

inhibits GSK3, a septin 4 kinase, which negatively regulates the

barrier function of septin filaments.

Wnt Signaling Unlocks Sperm Motility through GSK3
Although the morphological changes of Ccnyl1�/� sperm are

consistent with septin 4 malfunction, this may not satisfactorily

explain the reduced motility of overtly normal sperm (Figure 1H).

It is known that the potential for motility already exists in imma-

ture sperm, and that serine/threonine protein phosphatase 1

(PP1) holds motility in check before epididymal passage (Vijayar-

aghavan et al., 1996). PP1 is a ubiquitous enzyme that dephos-

phorylates a wide range of protein substrates, and that is kept

in an active state by GSK3-dependent phosphorylation of its

inhibitory subunit PPP1R2 (Cohen, 1989; Vijayaraghavan et al.,
C

1996). Together with our findings, this suggests a simple mech-

anism for inducing sperm motility during epididymal transit:

Caput Wnt signals inhibit GSK3 and thereby inactivate PP1,

thus removing the roadblock to sperm motility (Figure 6A). To

test this model, we first confirmed phosphorylation of PPP1R2

T72 by GSK3, using two GSK3 inhibitors in HeLa cells (Fig-

ure S6A). PPP1R2 Tp72 was greatly increased in mitotic

compared to non-mitotic HeLa cells and was reduced by

Wnt3a treatment (Figures 6B and S6B). PPP1R2 phosphoryla-

tion was also greatly increased in Ccnyl1�/� sperm (Figure 6C),

and this should lead to higher PP1 activity and hence reduced

protein phosphorylation. Indeed, total phospho-serine in the

tail of Ccnyl1�/� sperm was markedly reduced (Figure 6D). The

phospho-serine differences, as well as changes in protein ubiq-

uitination (Figure 4B), were only apparent in epididymal sperma-

tozoa, but not in sperm progenitor cells or somatic cells in testis

and epididymis, and they were not caused by differential gene

expression (Figures S6C–S6F). Moreover, GSK3 inhibition was

sufficient to increase pan-serine phosphorylation in caput sperm

of Ccnyl1�/� mice (Figure S6G). Consistent with these findings,

Wnt3a stimulation or pharmacological GSK3 inhibition both

increased the velocity of submotile spermatozoa isolated from

the distal caput epididymis of wild-type mice (Figure 6E). Like-

wise, in Ccnyl1 heterozygous mice, Wnt3a, the GSK3 inhibitor

BIO, and phosphatase inhibitor okadaic acid significantly

increased the velocity of caput sperm to approximately the

same extent (Figure 6F). In contrast, Ccnyl1�/� sperm

completely failed to respond to Wnt3a. However, inhibition of

either GSK3 or phosphatase, which act downstream of Ccnyl1

in the Wnt-PP1 cascade, partially rescued their motility.

Since motility defects are a major cause of male infertility, we

also analyzed human sperm.We confirmed that (phospho)-LRP6

localizes to the midpiece of human testicular spermatozoa

(Figure 6G). We then treated two independent disaggregated

testicular biopsies withWnt3a, or okadaic acid as a positive con-

trol. Wnt treatment increased the number of sperm with notable

flagellar beating in both samples approximately twofold (Fig-

ure 6H). LowWnt signaling in sperm could potentially be a cause

for male infertility, and analysis of a published data set (Platts

et al., 2007) showed that sperm from men with teratozoosper-

mia, i.e., structural defects of the sperm, show remarkably

reduced Ccnyl1 RNA levels (Figure S6H).

Sperm Maturation Involves Epididymal Wnt Signaling
and the Axin/APC Complex
We confirmed the requirement for epididymal Wnt signaling

in sperm maturation by transgenic overexpression of the

Wnt antagonist Dkk1 in the proximal epididymis. Mice harboring

the proximal epididymis-specific Lcn5-CreERT2 (Xie et al., 2013)

were crossed with Rosa26-Dkk1 mice, containing a floxed

transcriptional stop signal (Wu et al., 2008). Tamoxifen

injection in Lcn5-CreERT2/Rosa26-Dkk1 mice induced

moderate Dkk1 expression in the caput epididymis (Figures

S7A and S7B). Dkk1 induction partially phenocopied the sperm

phenotype of Ccnyl1�/� mice, including reduced LRP6

activation, increased PPP1R2 Tp72 levels, and decreased

pan-serine phosphorylation (Figures 7A–7E). Importantly, sperm

motility was significantly decreased following tamoxifen
ell 163, 1225–1236, November 19, 2015 ª2015 Elsevier Inc. 1231



Figure 6. Wnt Signaling Unlocks Sperm

Motility via GSK3

(A) Schematic representation of the investigated

signaling module, and its inhibitors.

(B) Immunoblot of PPP1R2 phosphorylation in

G2/M-synchronized HeLa cells. Wnt3a reduced

PPP1R2 inhibition.

(C) Representative immunoblot of PPP1R2 Tp72 in

Ccnyl1 mutant cauda sperm lysates pooled from

three mice per genotype.

(D) Heatmap of serine phosphorylation in cauda

sperm. Staining in the tail was decreased in

Ccnyl1�/� cells.

(E) Wild-type sperm isolated from the distal caput

epididymis were incubated with Wnt3a-condi-

tioned media or 1 mM BIO, and curvilinear velocity

was measured at the indicated times. n = 5 mice.

(F) Caput sperm were incubated with Wnt3a CM,

okadaic acid, or BIO, and the velocity of motile

sperm was measured after 3 hr. Ccnyl1�/� cells

did not respond to Wnt3a but showed increased

motility following phosphatase and GSK3 inhibi-

tion. n = 6 mice per genotype.

(G) LRP6 staining in human testicular sperm.

Primed and active receptor localized to the mid-

piece, as in mouse and bull sperm. The annulus is

indicated in the top panel by septin 4 staining.

(H) Quantification of sperm motility in testicular

biopsies of two volunteers. Wnt treatment

increased the number of motile sperm in both

cases. OA, Okadaic acid.

See also Figure S6.
injection in Lcn5-CreERT2/Rosa26-Dkk1 mice, but not in

control animals (Figures 7F and S7C). These results corroborate

that Wnt signals trigger the cascade that inhibits PP1 and acti-

vates motility as immature sperm pass through the epididymis.

To further corroborate the cell-autonomous Wnt signaling

defect, we assessed the involvement of the GSK3/Axin/APC

destruction complex in sperm maturation and Wnt/STOP. The

tankyrase inhibitor XAV-939, which stabilizes Axin and thereby

inhibits Wnt signaling (Huang et al., 2009), increased GSK3-

dependent PPP1R2 phosphorylation in wild-type sperm (Fig-

ure 7G), decreased pan-serine phosphorylation in the sperm

tail (Figure 7H), and blocked the Wnt-induced increase in caput

sperm motility (Figure 7I). Moreover, XAV treatment increased

overall protein ubiquitination in sperm, consistent with reduced

Wnt/STOP (Figure S7D). Conversely, APC loss of function, which

upregulates Wnt signaling, reduced PPP1R2 phosphorylation in

MDA-MB-231 cells in vitro (Figure 7J). In addition, total serine

phosphorylation and sperm motility were increased in APCmin

sperm (Figures 7K and 7L), as was the stability of Wnt/STOP

targets BRD3 and CREM (Figure S7E). Collectively, these obser-

vations outline a critical role for the GSK3/Axin/APC complex in

sperm maturation and Wnt/STOP.

DISCUSSION

Wnts Act as an Epididymal Sperm Maturation Signal
The role of the epididymis in sperm maturation is well

established, but the secreted signals inducing the maturation
1232 Cell 163, 1225–1236, November 19, 2015 ª2015 Elsevier Inc.
process are poorly understood. The first main conclusion of

this study therefore is the discovery of Wnts as an epididymal

sperm maturation signal. Our results support the following

model: Wnt ligands produced by epithelial cells in the

proximal epididymis are released into the lumen on

signaling-competent exosomes, where they signal to transit-

ing spermatozoa. Epididymal Wnt ligands activate LRP6,

which is phospho-primed via Ccnyl1. Wnt signaling inhibits

GSK3, to promote sperm maturation through at least three

distinct mechanisms: (1) inhibiting protein poly-ubiquitination

to maintain protein homeostasis (Wnt/STOP signaling); (2) pro-

moting septin 4 polymerization, thereby maintaining the

annular protein diffusion barrier; and (3) inhibiting PP1 to un-

lock sperm motility. In Ccnyl1�/� mutants, GSK3 fails to be in-

hibited, leading to sperm structural and motility defects and

infertility.

The results indicate that Wnt signaling is particularly

important in the caput epididymis, since LRP6 phos-

phorylation peaked in caput spermatozoa, and Wnt

inhibition in the caput was sufficient to block sperm

maturation. Moreover, Wnt reporter activity was most promi-

nent in caput epididymis, which expresses high levels of

b-catenin (Wang et al., 2013). Wnt ligands with high expres-

sion in the caput epididymis include Wnt10a, Wnt2b, and

Wnt1, but Wnt10a and Wnt2b mutants apparently do not

display male fertility deficits (Tsukiyama and Yamaguchi,

2012; Yang et al., 2015), while Wnt1-null mutants die perina-

tally (McMahon and Bradley, 1990). Multiple Wnts may



Figure 7. Sperm Maturation Involves

Epididymal Wnt Signaling and the Axin/

APC Complex

(A) Heatmaps and (B) quantification of LRP6

Tp1479 staining in Lcn5-CreERT2/Rosa26-Dkk1

(Lcn5;Dkk1) cauda sperm following Dkk1 induc-

tion. n = 3 mice per group.

(C) Flow cytometric analysis of PPP1R2 phos-

phorylation in Lcn5;Dkk1 cauda sperm. Samples

were pooled from three mice per group.

(D and E) Heatmaps (D) and quantification (E) of

total serine phosphorylation in Lcn5;Dkk1 sperm.

n = 3 mice per group.

(F) Sperm motility analysis of Lcn5;Dkk1 mice.

Motility was markedly decreased in all regions of

the epididymis afterDkk1 induction. n = 3mice per

group.

(G) Immunoblot of PPP1R2 phosphorylation in

wild-term sperm treated with 5 mM tankyrase in-

hibitor XAV-939 for 1 hr.

(H) Heatmaps of total serine phosphorylation in

wild-type sperm treated with XAV-939 for 1 hr.

Samples in (G) and (H) were pooled from eight

mice.

(I) Sperm motility analysis after treatment with

Wnt3a-conditioned medium and XAV-939 for 1 hr.

n = 4 wild-type mice.

(J) Immunoblot of PPP1R2 phosphorylation

following APC depletion in MDA-MB-231 cells for

24 hr.

(K) FACS profile of total serine phosphorylation in

APCmin cauda sperm. Samples were pooled from

three mice per group.

(L) Motility analysis of APCmin sperm. n = 3 mice

per group.

See also Figure S7.
therefore function redundantly and co-operatively in sperm

maturation.

Previous studieswith variousWnt pathwaymutants have impli-

catedWnt signaling in adult testicular spermatogenesis, including

germ cell apoptosis, differentiation, and proliferation (Boyer et al.,

2012; Das et al., 2013; Li et al., 2005), but not in epididymal sperm

maturation. The severe spermatogenic defects in previous ge-

neticmousemodels likely masked later defects in spermmatura-

tion. Importantly, however, b-catenin is dispensable for all steps

of spermatocyte development and sperm maturation (Rivas

et al., 2014), consistent with ourmodel ofWnts as post-transcrip-

tional maturation signal. Interestingly, mutants of Cdk16, one of

the fiveCcny-dependentCDKs (CDK14 to18), showspermmatu-

ration deficits similar to Ccnyl1 mice, and the two proteins can

interact in vivo (Mikolcevic et al., 2012; Zi et al., 2015), suggesting

that a Ccnyl1/CDK16 complex mediates Wnt signaling during
Cell 163, 1225–1236, No
sperm maturation. Cdk16 mutants addi-

tionally display terminal spermatogenesis

defects, and this somewhat severer

phenotype compared toCcnyl1�/� sperm

is probably due to partial redundancy of

Ccnyl1 with Ccny.

We note finally that the involvement of a

druggable signaling pathway in sperm
maturation may provide new opportunities for male infertility

and contraception.

Post-transcriptional Wnt Signaling through a Canonical
Upstream Cascade
It is commonly thought that the Wnt-Fzd-LRP-GSK3 signaling

module acts predominantly by regulating b-catenin and its target

genes. Various arguments have been raised against canonical

Wnt signaling regulating proteins other than b-catenin (reviewed

in, e.g., Metcalfe and Bienz, 2011; Wu and Pan, 2010). The main

controversy is whether Wnt signaling regulates phosphorylation

of kinase substrates beyond b-catenin and whether this is phys-

iologically relevant. Studying this question genetically in vivo is

challenging due to the pervasive role of Wnt signaling in tran-

scriptional regulation. Here, we establish sperm maturation as

the first genetic model to study Wnt signaling by the upstream
vember 19, 2015 ª2015 Elsevier Inc. 1233



canonical pathway, where confounding transcriptional effects

can be ruled out. Hence, the second main conclusion of this

study is that post-testicular sperm are Wnt responsive,

i.e., that Wnt signaling acts in transcriptionally silent sperm cells.

Our data support the concept that the upstream canonical Wnt

pathway can elicit a rich post-transcriptional response (Acebron

et al., 2014; Kim et al., 2009; Taelman et al., 2010; Vinyoles et al.,

2014).

We identified a number of Wnt/STOP target proteins in sperm

and showed that stabilization of proteins is but one of the post-

transcriptional functions of the Wnts that govern sperm matura-

tion. Another role of Wnt signaling is to regulate protein function

of septin 4 and the activity state of PP1 via PPP1R2. Septins are

GTPases involved in cytokinesis, and hence our results suggest

septin 4 to be a target of post-transcriptional Wnt signaling also

in mitosis in somatic cells. In addition, the septin 4 variant ARTS

is known to regulate critical homeostatic functions such as stem

cell apoptosis and calcium signaling (Fuchs et al., 2013; Sharma

et al., 2013) and may similarly be under Wnt control in somatic

cells. PP1 regulates the b-catenin degradation complex (Kim

et al., 2013; Luo et al., 2007), and hence in somatic cells Wnt

signaling may inhibit PP1 possibly in a negative feedback loop.

Wnt signaling is thought to target a sub-pool of GSK3 in com-

plex with the scaffold protein Axin, and only this pool of GSK3b

participates in Wnt signaling and is insulated from other inhibi-

tory signals, such as HGF and insulin (reviewed in Wu and Pan,

2010). GSK3 substrates other than b-catenin also require Axin

for Wnt regulation (Acebron et al., 2014; Huang et al., 2015; Inoki

et al., 2006; Kim et al., 2009, 2015; Stolz et al., 2015; Taelman

et al., 2010; Vinyoles et al., 2014). This indicates that Axin medi-

ates Wnt pathway insulation also in post-transcriptional Wnt

signaling. Limiting amounts of Axinmay achieve this by undergo-

ing phosphorylation-dephosphorylation cycles, proposed to

stabilize b-catenin (and presumably other GSK3 targets as

well) across broad component stoichiometries (Kim et al.,

2013). In agreement with this model, we found that both Axin

and APC are involved in the regulation of sperm maturation

and Wnt/STOP, which corroborates that the destruction com-

plex is involved in regulation of proteins other than b-catenin.

In conclusion, we show that Wnt signaling elicits an unexpect-

edly rich response in transcriptionally silent spermatozoa. In light

of this important lesson from germ cells, it appears fruitful to

revisit also in somatic cells the degree to which Wnt signaling

exerts its effects post-transcriptionally, notably during mitosis.

There is evidence that Wnt pathway components upstream of

mutated b-catenin or APC are also relevant in tumorigenesis

(e.g., SFZD1 and DKK1; Vincan and Barker, 2008), and hence

targeting of post-transcriptional Wnt signaling may offer new

pharmaceutical avenues.

EXPERIMENTAL PROCEDURES

Mice

Sperm from mice carrying a flanked by loxP (floxed) allele of cyclin Y-like 1

(Ccnyl1tm1a(EUCOMM)Wtsi/H) was obtained from the European Mouse Mutant

Archive (EMMA) and used for in vitro fertilization of wild-type C57BL/6N

oocytes. Heterozygous Ccnyl1-flox mice were bred with transgenic animals

expressing Cre recombinase under the control of CMV promoter to achieve or-

ganism-wide gene knockout. b-catenin/TCF reporter mice (BAT-gal; Maretto
1234 Cell 163, 1225–1236, November 19, 2015 ª2015 Elsevier Inc.
et al., 2003) in a C57BL/6J genetic background were purchased from The

Jackson Laboratory and bred with Ccnyl1-null mice. Mice with or without

reporter element showed identical sperm phenotypes and were used inter-

changeably in most experiments. Lcn5-CreERT2 mice were generated as re-

ported (Xie et al., 2013). APCmin and R26-Dkk1 mice harboring full-length

mouse Dkk1 with a floxed transcriptional stop signal have been described

(Moser et al., 1990; Wu et al., 2008). Wild-type (C57BL/6N) mice were obtained

from Charles River Laboratories. All mouse experiments were approved by the

State review board of Baden-Württemberg (protocol no. G159/13 to S.K. and

C.N.) and performed according to federal and institutional guidelines.

Human Samples

Acquisition of human testicular biopsies was approved by the institutional re-

view board at the University of Heidelberg Medical Center (protocol no. S-267/

2014 to G.H.). Samples were obtained from volunteers undergoing scheduled

surgery for testicular sperm extraction (TESE), following written, informed

consent.

Data Analysis

Data were analyzed with an unpaired Student’s t test in Excel 2007 (Microsoft)

or Holm-Sidak post hoc test following one-way analysis of variance (ANOVA) in

SigmaPlot 12 (Systat Software), assuming normal distribution. Data in Fig-

ure S6H were from data set GEO: GSE6969 (Platts et al., 2007) and analyzed

byMann-Whitney rank-sum test in Sigmaplot. Data are displayed as arithmetic

mean ± SEM, unless indicated otherwise. Statistically significant results in all

figures are indicated as *p < 0.05; **p < 0.01; and ***p < 0.001.
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