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Recently A. Schrijver proved the following theorem. Suppose that G = (V, E) is a connected
planar graph embedded in the euclidean plane, that O and I are two of its faces, and that the
edges e € E have nonnegative integer-valued lengths /(e) such that the length of each circuit in
G is even. Then there exist cuts By, ..., B, in G weighted by nonnegative integer-valued
weights A,, ..., A, so that: (i) for each e € E, the sum of the weights of the cuts containing e
does not exceed I(e), and (ii) for each two vertices s and ¢ both in the boundary of O or in the
boundary of I, the sum of the weights of the cuts ‘separating’ s and ¢ is equal to the distance
between s and ¢.

We given another proof of this theorem which provides a strongly polynomial-time algorithm
for finding such cuts and weights.

1. Introduction
A. Schrijver proved the following theorem.
Theorem [5]. Let G = (V, E) be a connected undirected planar graph embedded

in the euclidean plane. Let O and I be two faces in G. Let | be a nonnegative
integer-valued function on E (regarded as a function of lengths of edges) such that

the length I(C) of each circuit C in G is even. 1)
Then there exist cuts 8X4, ..., 86X, in G and nonnegative integers A, ..., A,
satisfying

> (Aii=1,...,k ecdX,)<l(e) foralleecE; )

D (Aii=1,..., k, 8X, separates s and t) = d\(s, t) forall (s,t)e U, (3)

where U is the set of pairs (s, t) of vertices of G such that both s and t belong to the
boundary of O or belong to the boundary of 1.

[Here and further the following conventions, terminology and notation are used.
G can contain loops and multiple edges. O = I is possible. For X c V, 6X = 65X
is the set of edges in G with one end in X and the other in V — X, called a cut of
G; 60X separates vertices x and y if |[X N {x, y}| =1. A path from x to y, or x—y
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path, in G is a nonempty sequence P = (x = x,, €,, X3, . . . , €,,, X,, =y), where ¢;
is an edge of G with the ends x; and x;,,. P is a circuit if x =y (we admit
self-intersecting circuits and even degenerate circuits containing no edges); we
identity all possible circuits obtained from P by cyclically shiffing. The length I(P)
of Pis Y(l(e)i=1,...,m). For x,yeV, d(x,y)=d/(x,y) denotes the
distance from x to y, i.e., the minimum of /(P) over all x—y paths P in G.] A
nonnegative integer-valued function / on E satisfying (1) will be called cyclically
even.

It is easy to see that, for arbitrary G, [ and s, teV, if 6X;and A,, i=1, ..., k,
satisfy the packing condition (2), then the left-hand side in (3) does not exceed
the right-hand one. Using the theorem of Okamura [4] on multicommodity flows
in planar graphs and applying linear programming arguments one can show that,
for G and U as in the hypotheses of the theorem, (2) and (3) hold for some §X;’s
and rational A;’s (a relation between cut packing problems and multicommodity
flow problems is explained, for example, in [2] (see also [1, 5])). The essence of
the theorem is that whenever [ is cyclically even, A;’s can be chosen integer-valued
(for some 8X;’s). Similar ‘half-integrity’ theorems for other cases of G and U
occurred in [1, 3, 5].

Unfortunately, the ‘decomposition’ method developed in {4] for proving the
theorem can be turned into an efficient algorithm only for / with bounded
max{l(e):e e E}. In the present paper we give another proof of the theorem
which provides a strongly polynomial-time algorithm (for arbitrary /). The
construction of the algorithm is rather simple (in comparison with the proof of the
theorem).

2. Proof of the theorem

We shall assume that O is the unbounded face. Let BF denote the circuit which
follows the boundary of a face F and is oriented clockwise in the plane; the sets of
distinct vertices and edges in BF are denoted by VF and EF, respectively. A path
(circuit) P = (xo, €4, X1, . . ., X,,,) is simple if x;’s are distinct (resp., x; #x; for
0<i<j<k and ¢’s are distinct). An x—y path P is shortest if I(P)=d(x, y).
An edge with ends x and y may be denoted by xy. For e =xy € E, put

g(e) = gle) :=min{d(s, x) + l(e) + d(y, ) — d(s, t): (s, t) e U};
and, for x, y, z € V, put
A(x,y, z) = Alx, y, z):=d(x, y) +d(y, z) — d(x, z).
Clearly £(e) =0 and A(x, y, z) = 0. (1) easily implies the following.
2.1. Let vy, v,, ..., U, =1, be vertices of G, and let a; be I(P) for some v, —v;,,

path Pin G, i=1,...,r—1. Let ky, ..., k. €{1, —=1}. Then the value k,a, +
krar+ - -+ k,a, is even.
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Thus, £(e) and A(x, y, z) are even. In order to prove the theorem we use
induction on the number « = «(G, O, I, ) to be

VP IE| + |{e € E: l(e) >0}| + |{e € E: £(e) > 0}|
+{(s, x,1): (s, ) e U, x eV, A(s, x, t) > 0}|.

The theorem is obvious when G is a tree, i.c., |V|=|E| +1; in this case O =1 is
the unique face of G. Thus, one may assume that G is not a tree and O #/
(otherwise we replace I by an arbitrary inner (bounded) face of (). Also we
shall assume that the properties (4)—(8) below hold. Otherwise the quadruple
(G, O, 1,1) can be reduced, each reduction yields one or more quadruples
(G', 0", I', I') with smaller &, and the result follows by induction.

l(e)>0 foralleeE. 4)

For if I(¢) =0 for some e =xy € E, then contract ¢, i.c., delete e and identify x
and y.
G has no loops and multiple edges. o)

For if e is a loop or ¢ and e’ are parallel edges with I(e) = I(e’), then delete e. If e
is contained in BI, then [ is replaced by a new face I’ for which VI < VI'.

The circuits BO and BI are simple. (6)

For if, for example, BO is not simple, then BO contains a vertex x removing of
which make G disconnected. Let G,=(V,, E,), ..., G,=(V,, E,) be the set of
maximal subgraphs of G such that: (i) the graph G; — {x} is connected, and (ii)
V; — {x} meets VO U VL. Clearly the problem for G, O, I, [ is reduced to those
for G;, O,, I, I;, where [; is the restriction of / to E;, and I; is chosen so that
VI, o2 VI-VO,.

For each x € V, there is a shortest s—t path, (s, t) e U,
passing through x or, equivalent, A(s, x, 1) =0. @)

For if A(s, x, t)>0 for all (s, f) € U, then reduce ! by setting I(e):=I(e) —a if
e € E is incident to x, where ‘

a:=min{min{l/(e): e incident to x}, 3 min{ A(s, x, ): (s, t) € U}}.

Clearly, a is an integer, the new [ is cyclically even, d(s, ) does not change
for all (s, t) € U, and a becomes smaller.

For any e € E, at least one of the following is valid:
(@) lle)=1;
(ii) e(e)=0. 8)
For if it is not so for some edge e = xy, then reduce / by setting I(e):=1(e) —a,
where a:=min{2|l(e)/2], e(e)} (|b] is the largest integer less than or equal to

b). Since a is even, the new [ is cyclically even. Clearly d(s, ) does not change for
all (s, t) e U, and « becomes smaller.
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It follows from (4) that each shortest path in G is simple. Also we obtain from
(8), (4) and (5) that

l(e) =d(u, v) foreach edgee=uve EOUEL )

Indeed, this is so if I(e) =1 (by (4) and (5)). And if I(e¢) > 1, then e belongs to
some shortest s—¢ path, (s, t) € U, by (8), and hence the path (u, e, v) is also
shortest.

Now we need to give additional definitions and notation.

1) A path (circuit) P = (xo, €;, Xy, ..., X,) may be denoted as xox;- - - X,
(such a writing determines P uniquely, by (5)). VP and EP are the sets of distinct
vertices and edges in P, respectively. P~! is the opposite path x,,x,,_; - - - Xo. For
a path Q =y, - - -y, with yo=x,,, P-Q is the path xox;---x,,y;*** yn. For
0<i, j<m, P(x, x;) denotes the path x;x;,, - - - x; if i <j and denotes the path
XiXis1® " XXy - - x; if Pis a circuit and i > j; it is called the part of P from x; to
x;. If P is a simple path or a simple circuit and u, v € V, then P(u, v) is the simple
path P(x;, x;) (if it exists), where u =x; and v =x;; in particular, P(v, v) is the
trivial path v. Where P is a simple path (a simple circuit) and vy, vy, ..., U, €V,
we write vo—v,—> - = u(P) if v,=x, for 0<i(0)<i(l)<---<i(k)sm
(resp., O0<i(r)<---<i(k)<i(0)<---<i(r—1)<m for some O0=r=k). For
F e {0, I} and s, t € VF, the path BF(s, t) will be denoted by F(s, t). Clearly if P
and Q are shortest paths and vy, vy, ..., v, € VPNVQ, then vy—v;—---—
v(P) implies vg—> v;— - - - = U (Q) or V= U — - - - = vo(Q). We identify a
simple path (circuit) and its image in the plane.

2) Let G =(V, E) be the directed graph obtained from G by replacing each
edge xy € E by the directed edges (x, y) and (y, x). For a path P =xox; - - - x,, in
G, define the function x[P]: E— Z by

x[Pl(e):={i: 0<i<m, e=(x;, x;+1)}|, e € E.
Circuits P and Q are called homotopic (denoted as P ~ Q) if
x[P1+2[Q 7 1=k x[Ci] + - - - + b x[ Gl

where each k; is an integer and each C; is either the circuit BF’ for some face
F’ + 0, I or the circuit xyx for some edge xy € E (when the space obtained from
the euclidean plane by removing the interiors of the faces O and I is considered,
such a ‘homologic’ definition is known to be equivalent to the usual definition of
homotopness of two closed curves as the existence of a continuous deformation
of one curve to the other). In particular, BI ~BO (since x[BI]+ x[BO']=
Y. (x[BF']: F' is a face #0, I) — ¥ (x[xyx]: e = xy € E) taking into account the
introduced orientations of the faces of G). A circuit is null-homotopic if it is
homotopic to a degenerate circuit v. Two x—y paths P and Q are homotopic (de-
noted as P ~ Q) if the circuit P - Q ! is null-homotopic. For a circuit C, define y(C)
to be 0 if C is null-homotopic, k if C~BI-BI----: BI (k times) and —k if
C~BI*-Brt--... BI! (k times), k = 1.
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In the sequel F will denote some face in {O, I}, and s and ¢ will denote some
vertices in VF (possibly s = ¢). A topological fact is that B/ is not null-homotopic.
This easily implies that:

(i) v(C) is well-defined for each circuit C, and circuits C and C' are
homotopic if and only if y(C) = y(C');

(ii) if s #¢ and P is a simple s—¢ path, then either P ~ F(s, t) or P!~ F(t, 5).

For a simple circuit C, denote by int(C) the set of points in the plane lying
inside of C or on C. Let P be a simple s—¢ path, {v,, vy, ..., Ui} be the set of
vertices in P contained in F(s, f), and let vo—>v;— - -— v, (P). Using the
Jordan curve theorem one can show that vy— v— - - - U (F(s, ). Let intz(P)
denote the set of points of the plane between P and F(s, t), i.e.,

PUF(s, ) U (int(P(v;, v;41) - (F(vi, Uiz1) ™D i, V0,4 ¢ Es).

Obviously, for a simple circuit C, |y(C){ <1 and |y(C)| =1 if and only if int(C)
contains the interior of I. This and easy topological arguments imply the
following.

2.2, (i) A simple s—t path P is homotopic to F(s, t) if and only if intz(P) does not
contain the interior of 1.

(i) If s> u—v—t(BF), P is a simple s—t path, P~ F(s, t), Q is a simple u—v
path and Q lies in intp(P), then Q ~ F(u, v).

(iii) Let s— u—v—>t(BF), P be a shortest s—t path, Q be a shortest u—v path,
and let P~F(s,t) and Q~F(u,v). If x,ye VPNVQ and x—y(P), then
x—=>y(Q), P(s,x) - Q(x,y) P(y,t) is a shortest path homotopic to P and
Q(u, x) - P(x, y) - Q(y, v) is a shortest path homotopic to Q.

Let I'x(s, t) denote the set of shortest s—¢ paths in G homotopic to F(s, t). Note
that if s = ¢ then I (s, ) coincides with I-(¢, s) and consists of the unique path s,
and if st then, by arguments above, for any shortest s—¢ path P, either
PeI(s,t) or P 'eIx(t, s). It follows from (2.2) that if I(s, ) is nonempty,
then there exists the path P in Ix(s, f) ‘most remote’ from F(s, t) (‘nearest’ to
F(s, t), respectively), i.e., such that intg(P) includes (resp., is included in)
intz(P') for each P' € I':(s, t); P is denoted by D(s, t) (resp., by Ng(s, t)), see
Fig. 1.

O(s',t")

Fig. 1.
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Let X(s, t) be the set of vertices of G in intz(Dr(s, £)). The ordered pair (s, ¢)
is called essential (with respect to F) if: (i) Ir(s,t)#® and either s=1¢ or
I:(t,s) =@, and (ii) A(p,x, q)>0 for all x € Xp(s,t) and (p, g) € U so that
P, q €V — Xg(s, t) (in other words, no shortest p—g path for such p and g meets

Dy(s, 1)).
The proof of the theorem will follow from the Lemmas 1 and 2. These
lemmas will be proved in Sections 3 and 4.

Lemma 1. Let (s, t) be an essential pair. Define
a:=min{min{l(e): e € 6 Xz(s, 1)},
imin{A(s, x, t): x € V — Xg(s, 1)},
amin{A(p, x, q): x € Xp(s, 1), (p, 9) € U, p, g € V — Xp(s, 0)}}
and, for e € E, define
U'(e):=l(e)—a ifeedXg(s, 1),
:=1(e) otherwise.
Then I' 20, a is an integer =1 and, for any (u, v) e U,
dy(u, v)=d(u, v) —a if 6Xp(s, t) separates u and v,
=d)(u, v) otherwise. (10)

A circuit C in G is called shortest if its length /(C) is minimum among all
circuits in G homotopic to C. Let € be the set of shortest circuits homotopic to
B

Lemma 2. Let G have no essential pair. Let b be the length of a circuit in €. Then:
(i) for any Fe{O, I} and s, t e VF, each path in It(s, t) is a part of some
circuit in 6;
(ii) there exist integers (a potential) m(x), 0=<m(x)<b, x € V, such that:
for each circuit C=xpx, - - - X,, € 6, there is an index i, 0<i<m, such
that

lx_ix)=m(x;)—mw(x;y) forj=1,...,i—-1i+1,...,m,
l(xi_lx,-) = ﬂ(x,) ha Jt(x,-__l) + b; (11)
if an edge xy € E belongs to no circuit in €, then n(x) = 5 (y). (12)

Assuming that Lemmas 1 and 2 are valid we prove the theorem as follows.
1) Let (s, t), @ and !’ be as in Lemma 1. Since a is an integer, !’ is cyclically
even. It follows from (10) and the definition of /' that

I(P)-UI'(P)=a |EPN 8Xe(s, t)| = a (|{u, v} N Xx(s, )| mod 2)
=di(u, v) — dr(u, v)
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for each u-v path P, (u,v)eU, whence ¢.(e)<gle) for all ee E and
Ap(u, x, v) < A(u, x, v) for all x € V and (u, v) € U. Moreover, since a > 0, there
is an e such that 0=1['(e) <I(e) or there are u, x, v such that 0= A,(u, x, v) <
Ay(u, x, v). Thus, by induction, there exist required cuts 6X,,..., X, and
integers Ay, ..., A, for (G, O, I, I'). Adding to them the cut 86X, :=8Xz(s, t)
and the number A, ,:=a we obtain required objects for (G, O, I, I).

2) Let & be as in Lemma 2. For x € V, define the number z'(x) so that
0<na'(x)<b and |m(x)—x'(x)|=b/2. Let p,<p,<---<p, be all distinct
numbers among x(x) and 7'(x), x € V. Put k:=n/2. Obviously, k is an integer
and p;y,=p; +b/2,i=1,... k. Fori=1,...,k, put

Xi:={xeV:p;<a(x)<pis}, Aii=Piv1 = Pi (SPivk+1 ~ Pisk)
(assuming py;.1:=p; + b). Since each x(x) is an integer and b is even, all p; and
A; are integers. We assert that X, and A, i=1, ..., k, satisfy (2) and (3).

Indeed, it follows easily from the definitions of p;, X; and A; that, for any
x',y' eV,
E(x', y'):=D. (A: 8X, separates x’ and y')

=min{|z(x") = x(y"), b — |7 (x") — 2 (y")|}.

(11) and (12) imply that {(x, y) <I(e) for any edge e = xy € E. Thus, (2) is true.
Next, let s, t € VF, F € {O, I}, and let P be a shortest s—¢ path. Without loss of
generality, one may assume that P € Ix(s, t). By (i) in Lemma 2, P is a part of
some circuit Ce €, i.e., P=C(s,t). We have I/(P)<b/2 (otherwise d(s, t) =
d(t, s)<I(C(t, s)) = b — I(P)<I(P)). Furthermore, (11) implies that I(P)=
7(t) — n(s) if n(s)<n(t) and that I(P)=xn(t) — n(s) + b if x(s)> 7(¢). Thus,
I(P) = {(s, t), and the equality in (3) holds for (s, ¢).

3. Proof of Lemma 1

Put X :=Xg(s, t). Obviously, /’=0 and a is an integer =0. Let us show that
a>0. Let xe V — X, Q' be a shortest s—x path, Q" be a shortest x—¢t path, and
Q:=Q'- Q" Then A(s, x, t) =1(Q) — d(s, t). Suppose that A(s, x, t) =0; then Q
is a shortest path. We have Q ~ F(s, t) (otherwise s #¢ and Q'€ I:(t, s) 0,
contrary to the property that (s, ¢) is essential). Hence VQ < X (as Dx(s, t) is the
‘most remote’ path in Ix(s, t)), contradicting x € V — X. Thus, A(s, x, £) >0. We
have also I(e) >0 for e € 6X (by (4)) and A(p, x, ¢) >0 for x € X and (p, q) e U,
D, q € X (as (s, t) is essential). Therefore, a > 0.

Next, let (4, v) € U. Clearly d;.(u, v) <d/(u, v) — ap(u, v), where p(u, v) is 1 if
60X separates u and v, and 0 otherwise. In order to prove the converse inequality
consider an arbitrary path P=x¢x,---x,, xo=u, x,=v. Put k(P):=
[{i: x;x; 41 € 6X }|. Obviously, I'(P) = I(P) — ak(P). One must prove that

I(P) — ak(P)=d,(u, v) — ap(u, v). (13)
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We proceed by induction on k(P).

(i) k(P)=0or 1. Then (13) is trival.

(ii) k(P)=2 and u, v e V —~ X. Then p(u, v) =0. Choose x e VPN X.
Since A(u, x, v) = 2a (by the definition of a), we have

I[(P)—2a=d(u, x) +d(x, v) —2a=d(u, v) + A(y, x, v) — 2a = d(u, v).
(iii) Suppose that P is not as in (i) or (ii). Put D := Dg(s, t). Then there are i

and j, Osi<jsm, j—i=2, such that x;,x;e VD and x,¢X for r=
i+1,...,j—1. One may assume that x,—x;(D) (otherwise it should to
consider the pair (v,u) and the path P~'). Form the paths P':=
P(u, x;) - D(x;, x;) - P(x;, v) and Q:=D(s, x;)- P(x;, x;) - D(x;, ). Obviously,
k(P') = k(P) -2, and using the induction hypothesis we have

I(P) —ak(P)=1I(P’) — ak(P") + (I(P(x;, x;)) — I(D(x;, x;)) — 2a)

=d(u, v) —ap(u, v) + ((Q) — (D) — 2a).

Since D is a shortest path we have

Q) —UD)=d(s, xir1) + d(xi11, t) — d(s, t) = A(s, X1, D).
Finally, x;,, ¢ X implies A(s, x;,,, t) = 2a, and hence (13) follows.

4. Proof of Lemma 2

The proof is divided into a number of claims. As before, F denotes some face
in {0, I}, and s and ¢ are some vertices in BF. For s’, t' € VF and a simple s'—t'
path P, I'x(s’, t') and intz(P) will be denoted as I'(s’, ¢') and int(P), respectively.

4.1. Let vi—>v,—> v3—> v(BF), v, #v, and I'(v,, v,) #0. Then I'(v,, v;) #0.

Proof. Let Q be a shortest v,—v; path and P € I'(vy, v,). If Q lies in int(P), then
Q ~ F(vy, v,) (by 2.2(ii)), hence I'(v,, v3) # 0. Otherwise Q meets P; let x be the
first vertex and y be the last one in Q occurring in P. The path Q':=
Q(vy, x) - P(x,y) - Q(y, v3) is shortest and lies in int(P), whence Q'~
F(vy,v3). O

4.2. If I'(s, t) #0, then the path F(s, t) is shortest.

Proof. We use induction on r:=|VF(s, t)|. The result is obvious when r =1; if
r=2 it follows from (9). Assume that =3, and let u be the vertex in BF
following s and v be the one preceding t. Then s—u—v—t(BF). Put
D :=Dg(u, v) and N:= Ni(s, t) (N is the path in I'(s, ¢) ‘nearest’ to F(s, t)). Two
cases are possible.

1) D meets N. Let xeVDNVN, P:=N(s,x)-D(x,v) and Q:=
D(u, x) - N(x,t). By 4.1, each of I'(u, v), I'(s,v) and I'(u,t) is nonempty,



Packings of cuts realizing distances 81

whence by induction F(u, v), F(s, v) and F(u, t) are shortest paths. Then
d(s, ) =I(N)=I(P)+ 1(Q)—-I(D)
=I(F(s, v)) + I(F(u, 1)) — I(F(u, v)) = l(F(s, 1)),

as required.

2) D does not meet N. We show that the pair (u, v) is essential, which implies
impossibility of this case. First, suppose that u # v and there exists a shortest v—u
path Q homotopic to F(v, u). Clearly O meets N, and so there is a shortest u—v
path Q' homotopic to F(u, v) and meeting N (Q" is formed from Q' and Nin a
similar way as it is done in the proof of 4.1 for P and Q). But then the ‘most
remote’ path D also meets N; a contradiction. Thus, if u # v then I'(v, u) = 9.

Second, consider x € Xz(u, v) and (p,q)e U, p,qeV — Xg(u, v), and sup-
pose that there exists a shortest p—g path P’ passing through x. Let Y be the set
of vertices in int(N) not in N. Since D does not meet N we have Xz(u, v) Y,
and so xeY. Next, it is easy to see that YN(VOU VI)c VF(u, v), which
implies p, g ¢ Y. Thus, there are vertices x’ and y' such that x'—»x—y'(P’),
x',y'€ VN and all vertices in P'(x’, y') except x' and y' are in Y. One may
assume that x'—y'(N). Then P":=N(s,x')-P'(x’,y") - N(y', t) is a shortest
path homotopic to F(s, t), P” is different from N and P” lies in int(N), contrary to
the definition of N. Therefore A(p, x, g) > 0. Thus, (s, t) is essential. O

It follows from (4.2) that

d(x, y) =min{l(F(x, y)), I(F(y, x))} foranyx,yeBF. (14)

4.3, Let v;>U,—> U3 U(BF), vy #v,, v,F v, {vy, v} # {v,, U3}, and let
(v, vy) #9. Then I'(vs, v,)=0.

Proof. Suppose that it is not so. Put [;:= (F(v;, v;)). We have from 4.2 and (14)
that 114 = I(BF)/Z and 132 = I(BF)/2. But I(BF) = 114 + 132 - 112 - 134 < 114 + 132
(since {v,, v4} # {v,, vs} implies I;; + 134> 0); a contradiction. 0

4.4. Let vi—> v, U3 = V(BF), vy #v,, v, ¥ vs, and let Pe I'(vy, v,)# 0 and
Q e I'(vs, v) #0. Then P does not meet Q.

Proof. Suppose that it is not so, and let z€ VPNVQ. Put [;:=I(F(v,, v;)). By
4.2 for (v,, v,) and for (vs, v,), we have
d(vy, v3) + d(v,, vy) S I(P(vy, 2)) + 1(Q (2, v3))
+I(P™ (3, 2)) + {(Q(z, v4))
=I(P)+1(Q)=lz+ 5. (15)
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Without loss of generality one may assume that I,5 = [3;,. Then d(vy, v5) = [;5, by
(14). Two cases are possible.

1) Ly<lyp. Then d(v,y, vy) =1y and d(vy, v3) +d(v,, V) =lis+ 1y > 1+ 1y
(since v, # v; implies /53 > 0), contradicting (15).

2) l,4>14. Then

d(vy, v3) + d(Uzy v) =l tlp=2+14+1;,
whence, in view of (15) and
Ly=d(vs, vy) sly+1p+ 1,

we obtain /s, = l;; =I(BF)/2. Thus, the path F(v,, vi) is shortest. Then the v,~v,
path L:=F(u,, vy)* P - F(v,, v3) is shortest, and therefore the v,—v; paths
R:=L(vs,z)- Q7 (z, v3) and R':=Q7!(v4, 2) - L(z, v3) are also shortest. The
case R '~F(v;,v,) is impossible because otherwise the shortest path
R '(vs, v;) would be homotopic to F(vs, v,) and we would have d(vs, v,) =
ly,>1;,=I[(BF)/2. Similarly R'~'~F(v;, v,) is impossible. Thus, R~
F(v,, v3) ~ R'. But then both R and R’ are in J:=int(Dx(v,, vs)), and hence
Q! lies in J. This implies Q™' ~ F(v,, v3), contrary to Q ~ F(vs, v,). O

We say that a family {C,,..., C,} of circuits (possible repeated) is a
decomposition of a circuit C if [C,]+ - - -+ x[C,] = x[C]. It is easy to see that
HC)=I(C)+ - +UC) and y(C) = y(Cy) + - - - + y(C,).

4.5. Let C be a shortest circuit. Then:

@) I(C)=1y(C)| b (b is the length of a circuit in 6);

(ii) if {Cy, ..., C,} is a decomposition of C, then, for each i, y(C;)y(C)=0
and the circuit C; is shortest; if |y(C)| =1, then the circuit C is simple.

Proof. Without loss of generality one may assume that k:=y(C)=0. (i) is
obvious when k=0. Let k=1. f C'e € and C":=C"-+- - C’ (k times), then
y(C") =k and I(C") = kb, which imply I(C) < kb (since C is shortest). Obviously,
C has a decomposition @ ={Cj, ..., Ci}, where each C; is either a simple
circuit or the circuit xyx for some xy € E. Now |y(C{)|<1 and y(C})+-:-+
y(Ci) =k imply that there are at least k circuits C; with y(C;)=1, whence
I(C) = kb. Thus, (i) is true. (ii) easily follows from (i). O

46. ) If C,C'e€e%, x,yeVCNVC' and x+y, then the circuits C,:=
C(x,y)-C'(y,x)and C,:=C’'(x,y) - C(y, x) are in 6.

(i) If Ce§, PeI(s,t), x,ye VPNVC, x#y and x—y(P), then P(x,y)~
C(x,y), P(s,x)-C(x,y) - P(y,t)eI(s, t) and C(y, x) - P(x,y) e €.

Proof. (i). Where Q:=C(x, y) - C(y, x)-C'(x,y)- C'(y, x), we have I(Q)=2b
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and y(Q) =2, therefore the circuit Q is shortest. Since {C,, C,} is a decomposi-
tion of Q and I(C;)>0, i=1, 2, we have, by 4.5, that each C; is shortest and
y(C;) = 1, whence y(C;) = 1. (ii). Let u be the first vertex and v be the last one in
P contained in C. Then the path P':= P(s, u) - C(u, v) - P(v, t) is simple, and so
either P’ ~F(s,t) or P'~(F(t,5))"". Similarly, either P"~ F(t, s) or P"~
(F(s, £))7! is true for P":=P~'(t, v) - C(v, u) - P"'(u, s). Obviously, P’ - P"~
C ~ BF, which implies that only one combination is possible: P’ ~ F(s, t) and
P"~F(t, s). Thus, P~ P’, whence P(u, v)~ C(u, v) and I(P(u, v)) =1(C(u, v))
(since P and C are shortest). Now (ii) for x and y easily follows. O

It follows from (4.6) that there exists the circuit C in € nearest to B, i.e.,
int(C) cint(C’) for all C’' € 6. Now we come to the main claim in the proof of
Lemma 2.

4.7. BI,BO€ 4.

Proof. We prove that Bl € €; the proof of BO € € is analogous. We say that a
pair (s, t) e VI X VI is maximal if the path I(s, t) is shortest and no path in BJ
containing I(s, t) as a proper part is shortest. Let (so, ), . . ., (s,_1, £,—1) be all
maximal pairs, and let, for definiteness,

S()_)Sl_)‘ M ‘_>s"_1(BI). (16)
Obviously, n =2, all s; are distinct and all ¢, are distinct. Also one can see that
§i—> 81> t;—> t;,.1(BI) an

(here and later the indices are taken modulo n). Let C be the circuit in € nearest
to BI. Put D;:= D,(s;, t;), and let u, be the first vertex and v, be the last one in D;
contained in C whenever D; meets C. It follows from 4.6(ii)) and from the
definitions of D; and C that:

U(Di(u;, v))) = UI(C(w;, v))); (18)

C(u;, v;) lies in int(D)); (19)

for p, q € VO, each vertex of any shortest p—q path lies

outside of C or on C. (20)
We shall show that:

D; meets C and u;— u; ., — v;(C) (see Fig. 2); (21)

Uup— uy— + + ~—u,_1(C) and there are at least two

distinct vertices among ug, Uy, . . . , U,_y; (22)
the path L,- :=D,-+1(S,-+1, u,'+1) . C(ui+1, U,‘) . D(U,‘, t,) is

shortest and homotopic to I(s;. ., t,). (23)
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Fig. 2.

Then 4.7 can be obtained as follows. In view of (18), (21) and (22), we have (in
each sum, i runs from 0 to n — 1)

2 D) = 2, (UDsi, ) + {(Cw;, v))) + UD(v;, 1))
= Z (l(Di+1(si+lr ui+1)) +I(C(uiy1, Ui)) + I(Di(Uu ti)))

+ 2 l(C(u;, uiy)) = 2, I(L) + 1(C).

Next, I(D;) = I(F(s;, t;)) (by 4.2) and /(L;) = I(F(s;.1, t;)) (by (23) and (4.2)), and
now using (16) and (17) we obtain

2 (L)= 2 F(sis1, 0) = 2 I(F(s;, 1)) — 2 I(CF(si, Si1)

= > I(D;) - I(BI).
This and the above expression show that /(BI) =I(C). Thus, Bl € 6, as required.

Now we prove (21)—(23). Let us fix a number i and denote s;, ¢, D,, $i,1,
tivi, divy, Dip1 bys, t, D, s', t', D', respectively. Also denote u;, v;, U; 41, ;4 (if
they exist) by u, v, u', v’, respectively. It follows from (17) that D' meets D; let
x be the first vertex in D' contained in D. Then D’(s’, x) lies in int,(D). Put
D:=Dy(s’,t) and P:=D'(s’, x) - D(x, t); obviously, the path P is simple. Easy
arguments using the facts that the paths D and D' are ‘most remote’ show that
D(x, t) lies in int,(D’) and D lies in int,(P). Hence,

D cint,(P) cint(D) Nint,(D"). (24)

Consider the pair (s',¢). (17), 4.3 and s'+#s imply that if s’'5¢ then
I}t s')=90. Thus, there exists a shortest p—q path Q meeting D, where
(p,q)eU and p,qg ¢ X,(s',t) (since (s',t) is not essential). Suppose that
p, q € BI; one may assume that Q ~I(p, q). If p—s'—t— q(BI), then the
maximality of (s, ¢) and (s, t') implies s—>p—s'—t—>qg—t'(BI), s#p and
q #t', contrary to that (s, #) and (s’, ¢') are adjacent maximal pairs. Also the case
s'—t—>p—>q(BI) is impossible, by 4.4. Thus, p, g€ VO. Then D meets C
because of (20) and D N Q #@, and Q, and so C meets each of D, D’ and P (by
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(24)). Let z be the first vertex and w be the last one in P contained in C. Form the
paths S:=D(s, u) - C(u, v) - D(v,t) and S':=D'(s’, u') - C(u', v") - D'(v', t'); S
and S’ are shortest, by 4.6. It follows from (19) that C(z, w) c int,(P) and at least
one of the following holds: (i) z=u', w=v; (ii) z=u, w=wv; (iii) z=u’,
w=uv'. Suppose that z=wu+#u'. Then, in view of (24), u’¢int,(D) and
x—u'— u(S'), which implies that the shortest path D(s, x)-S'(x, u) - D(u, t)
does not lie entirely in int,(D); a contradiction. Similarly w = v’ # v is impos-
sible. Therefore, z=u’' and w=v, which imply u—u'—v(C) and u'—>v—
v'(C). Thus, (21) is true. Next, the path L:=D’'(s’, u") - C(u', v) - D(v, ¢) lies in
int,(P), whence L~ P ~I(s', t). Let y e VD N VC. We obviously have z—y—
w(C) and L=S5'(s", y) - S(y, t). Now the facts that the paths S, S’ and D are
shortest imply that L is also shortest. Thus, (23) is true.

It remains to prove (22). Let C':=C(ug, u) - C(uy, uy) -« -+ - C(u, -y, ug). We
show that C’' ~BI, whence (22) (or, in other words, C' = C) easily follows. Put
P:=Dgs;, u;), T,:=P, - C(u;, u;,) - P} and :=I(s;, s;+1), and form the circuit
R=T-T,----- T,_, - BI"!. There are two decompositions of R, namely,

@1:‘_‘{7;)'151’ Tl'Il_lr--- ’ Tn—l'l;ll}; and
@2:={C” BI—lr PO'PEI; PI'P;IJ"',Pn—l'P;ll}

(taking into account that /g'-I7':---- I;}, =BI™', by (16)). As it was shown
above, C(u;, u;4;) and P, lie in J:=int/(D;), therefore T; lies in J, whence
T, ~I. Thus, ¥(T; - I; ) = 0. Now 0= (y(C"): C" € 2,) = L (y(C"): C" € 9,) and
y(P;- P7Y) =0 imply y(C')+ y(BI"")=0, i.e., C' ~BI, as required. Thus, 4.7 is
proven. [

Now we finish to prove Lemma 2.

(a) Let Fe{O, 1}, s,teVFand PeTx(s,t)#0. If s=t, then P=sand Pis a
part of the circuit BF. And if s #¢, then the circuit C:=P - F(¢, 5) is homotopic
to BZ, and /(C) =I(BF) = b, by 4.2 and 4.7. Thus, (i) of Lemma 2 is true.

(b) Form the directed graph H = (V, A) in which (x, y) € A if and only if x = x;
and y=x;,; for some circuit C=x¢x;---x, in €. Let I(x,y):=I(xy) for
(x, y) € A. By a path (circuit) in H we mean a directed path (circuit); we identify
a path (circuit) in H with the corresponding path (circuit) in G. We observe that
H is strongly connected, i.e., for any x, y € V, there is a path in H from x to y.
Indeed, each vertex x is contained in some shortest s—¢ path, where s, t € VF and
Fe{0,I} (by (7)), hence x belongs to the strong component containing the
circuit BF. Furthermore, as it was shown in the proof of 4.7, there exist a shortest
s—t path with s, ¢ € VI and a shortest p—g path with p, g € VO having a common
vertex.

(c) Let us fix some vertex se€V. Define the numbers z(x), xeV, by
a(x):=1(P)— |I(P)/b]|b, where P is some arbitrary s—x path in H. We assert
that 7 satisfies (11) and (12).
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First, we observe that each circuit C in H is shortest. Indeed, since H is
strongly connected, there is a circuit D in G such that D has the decomposition
{C': C' € €} and it has a decomposition {C, O, ..., Qny}. As I[(D)=b |€| and
y(D) = |6|, the circuit D is shortest, and so C is shortest (by 4.5). In particular,
the length of any circuit in H is a multiple of b.

Second, let x € V, and let P and P’ be two s—x paths in H. Choose an x—s path
Q. Comparing the lengths of the circuits P-Q and P'-Q we obtain that
I(P) — I(P') = kb for some integer k. In particular, 7(x) does not depend on the
choice of the s—x path P. Consider a circuit C = xox, - + - X, € €; one may assume
that m(xg)<zn(x;), i=1,...,m—1. Choose an s—x, path P in H, and let
P:=P - (x9, (X9, X1), X1, . .., x;). Then I(x;_;, x;)=1(P)—I(P_;) and I(Py)<
I(P)<---<l(P,_) <I(P)+ b, whence (11) follows.

Third, consider an edge e =xy € E contained in no circuit in 4. Let G’ be the
graph obtained from G by contracting e and identifying x and y with a new vertex
z. Let €' be the set of shortest circuits in G’ homotopic to Bl. Suppose that
I(C")<b for C’' € €'. Obviously, C’ contains z and C’' is obtained from a circuit
C in G by contracting the edge xy. Since I(xy) =1 (by (8)) we have I(C)<b.
Clearly C ~ B, therefore C € €, contradicting the choice of xy. Thus, I(C')=b
and each member of € is in €’. This implies that the potentials &t and 7’ of
corresponding vertices in G and in G’, defined with respect to the same initial
vertex s, coincide. Hence w(x) = n'(z) = n(y), and (12) is true.

This completes the proof of Lemma 2.

5. Algorithm

In fact, the proof of the theorem given above yields an algorithm to find
required 6X;’s and A’s, which has a number of iterations bounded by a
polynomial in |V|. Each iteration consists in either of a reduction of the current
quadruple (G, O, I, I) to one or more quadruples satisfying (4)—(8) (an iteration
of the first type), or of finding an essential pair (s, ), the cut 8X; = 6X(s, t) and
the number A; = g and then reducing / to /' according to Lemma 1 (an iteration of
the second type), or of finding a potential 7# according to Lemma 2 and then
producing some cuts X, . .., 6X; and numbers A, ..., A; from 7 (an iteration
of the third type). Obviously, an iteration of the first type requires a polynomial
in |V| number of standard operations (mainly connected with calculations of
distances). The only nontrivial procedure on an iteration of the second type is to
find the ‘most remote’ shortest path Dx(s, t) homotopic to F(s, ) but one can see
that it can be fulfilled in polynomial time by considering the faces of the graph of
the shortest s—t paths and applying 2.2(i). Finally, in order to find a potential x
on the iteration of the third type it is not necessary to construct the graph H
(described in the proof of Lemma 2). It suffices to form the graph H' = (V, A")
containing only the edges (x, y) such that x =x; and y =x,,, for some path
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P=xox, - Xm€lp(s, t), s,te VF, Fe {0, I}. The graph H' is strongly con-
nected (it can .be shown in a similar way as for H) and H' c H, therefore
potentials for H' and H coincide. These arguments show that the whole algorithm
requires a polynomial in |V| number of operations. Note also that the number of
operations can be decreased by using the easy fact that the set of essential pairs
does not increase in the process of the algorithm.
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