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Recently A. Schrijver proved the following theorem. Suppose that G = (V, E) is a connected 

planar graph embedded in the euclidean plane, that 0 and Z are two of its faces, and that the 

edges e E E have nonnegative integer-valued lengths Z(e) such that the length of each circuit in 

G is even. Then there exist cuts B,, . , B, in G weighted by nonnegative integer-valued 

weights I,, . , I, so that: (i) for each e E E, the sum of the weights of the cuts containing e 

does not exceed Z(e), and (ii) for each two vertices s and t both in the boundary of 0 or in the 

boundary of I, the sum of the weights of the cuts ‘separating’ s and t is equal to the distance 

between s and t. 

We given another proof of this theorem which provides a strongly polynomial-time algorithm 

for finding such cuts and weights. 

1. Introduction 

A. Schrijver proved the following theorem. 

Theorem [5]. Let G = (V, E) be a connected undirected planar graph embedded 
in the euclidean plane. Let 0 and Z be two faces in G. Let 1 be a nonnegative 
integer-valued function on E (regarded as a function of lengths of edges) such that 

the length l(C) of each circuit C in G is even. (1) 

Then there exist cuts 6X1, . . . , SX, in G and nonnegative integers A,, . . . , Ak 

satisfying 

C (pi: i = 1, . . . , k, e E SXi) s Z(e) for all e E E; 

C (Ai: i = 1, . . . , k, SXi separates s and t) = d,(s, t) for all (s, t) E U, (3) 

where U is the set of pairs (s, t) of vertices of G such that both s and t belong to the 
boundary of 0 or belong to the boundary of I. 

[Here and further the following conventions, terminology and notation are used. 

G can contain loops and multiple edges. 0 = Z is possible. For X s V, 6X = &X 
is the set of edges in G with one end in X and the other in V - X, called a cut of 

G; 6X separates vertices x and y if IX rl {x, y}I = 1. A path from x to y, or x-y 
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path, in G is a nonempty sequence P = (x =x0, e,, x1, . . . , e,, x, = y), where ei 
is an edge of G with the ends Xi and xi+i. P is a circuit if x = y (we admit 
self-intersecting circuits and even degenerate circuits containing no edges); we 
;A,,,;,., 011 ..r-a.&hl~ ,.;rrr..:,, nhtc,;maA fr,,m D h.. n.,nl:nnll.. s.h.:cfi...-. IT., ?,..,rL IID\ 
,uburl~y a,, p”JJ’“‘u blIbU,CJ ““LL1IU~U II”,,, 1 “J bybllullly Jllllllll& 111F; ccrcgm ‘\‘ , 

of P is C (I(e,): i = 1, . . . , m). For x, y E V, d(x, y) =d,(x,y) denotes the 
distance from x to y, i.e., the minimum of l(P) over all x-y paths P in G.] A 
nonnegative integer-valued function 1 on E satisfying (1) will be called cyclically 
even. 

It is easy to see that, for arbitrary G, 1 and s, c E V, if SXi and Ai, i = 1, . . . , k, 

satisfy the packing condition (2), then the left-hand side in (3) does not exceed 
the right-hand one. Using the theorem of Okamura [4] on multicommodity flows 
in planar graphs and applying linear programming arguments one can show that, 
for G and U as in the hypotheses of the theorem, (2) and (3) hold for some 6X,% 
and rational Ai’s (a relation between cut packing problems and multicommodity 
fiow probiems is expiained, for exampie, in ilj (see aiso [i, Sjjj. ‘I’he essence of 

the theorem is that whenever 1 is cyclically even, &‘s can be chosen integer-valued 
(for some 6X,‘s). Similar ‘half-integrity’ theorems for other cases of G and U 
occurred in [l, 3, 51. 

Unfortunately, the ‘decomposition’ method developed in [4] for proving the 
theorem can be turned into an efficient algorithm only for 1 with bounded 
max{l(e): e E E}. In the present paper we give another proof of the theorem 
which provides a strongly polynomial-time algorithm (for arbitrary I). The 
construction of the algorithm is rather simple (in comparison with the proof of the 
theorem). 

2. Proof of the theorem 

We shall assume that 0 is the unbounded face. Let BF denote the circuit which 
follows the boundary of a face F and is oriented clockwise in the plane; the sets of 
distinct vertices and edges in BF are denoted by VF and EF, respectively. A path 
(circuit) P = (x0, el, xl, . . . , x,) is simple if xi’s are distinct (resp., xi #xi for 
0 <i <j < k and ei’s are distinct). An x-y path P is shortest if l(P) = d(x, y). 
An edge with ends x and y may be denoted by xy. For e = xy E E, put 

s(e) = El(e) := min{d(s, x) + I(e) + d(y, t) - d(s, t): (s, t) E U}; 

and, for x, y, z E V, put 

A@, Y, z) = A&, Y, z):=W, Y) + d(y, 2) - d(x, z). 

Clearly c(e) 2 0 and A(x, y, z) 2 0. (1) easily implies the following. 

2.1. Let vl, v2, . . . , V, = v. be vertices of G, and let ui be l(P) for some Vi - vi+1 
path Pin G, i=l,.. . ,r-1. Let kI,. .., k, E (1, -l}. Then the value klul + 
k2u2 + - - - + k,ur is even. 
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Thus, e(e) and A(x, y, z) are even. In order to prove the theorem we use 
induction on the number (Y = @(G, 0, Z, I) to be 

IV13 IEI + I{e E E: l(e)>O}( + I{e E E: e(e)>O}[ 

+~{(s,~,t):(s,t)~U,x~V,A(s,x,t)>O}~. 

The theorem is obvious when G is a tree, i.e., IV1 = [El + 1; in this case 0 = Z is 
the unique face of G. Thus, one may assume that G is not a tree and 0 #Z 
(otherwise we replace Z by an arbitrary inner (bounded) face of G). Also we 
shall assume that the properties (4)-(8) below hold. Otherwise the quadruple 
(G, 0, Z, I) can be reduced, each reduction yields one or more quadruples 
(G’, 0’, I’, Z’) with smaller a; and the result follows by induction. 

l(e) > 0 for all e E E. (4) 

For if Z(e) = 0 for some e = xy E E, then contract e, i.e., delete e and identify x 

and y. 
G has no loops and multiple edges. (5) 

For if e is a loop or e and e’ are parallel edges with Z(e) 3 f(e’), then delete e. If e 
is contained in BZ, then Z is replaced by a new face I’ for which VI 5 VI’. 

The circuits BO and BZ are simple. (6) 

For if, for example, BO is not simple, then BO contains a vertex x removing of 
which make G disconnected. Let Gr = (VI, E,), . . . , G, = (V,, E,) be the set of 
maximal subgraphs of G such that: (i) the graph Gi - {x} is connected, and (ii) 
l$ - {x} meets VO U VI. Clearly the problem for G, 0, I, I is reduced to those 
for Gi, Oi, 4, lip where Zi is the restriction of I to Ei, and Zi is chosen SO that 
V& 2 VI - VOi. 

For each x E V, there is a shortest s-t path, (s, t) E U, 
passing through x or, equivalent, A(s, x, t) = 0. (7) 

For if A(s, x, t) > 0 for all (s, t) E U, then reduce 1 by setting Z(e) := Z(e) - a if 
e E E is incident to x, where 

a :=min{min{Z(e): e incident to x}, 4 min{A(s, x, t): (s, t) E U}}. 

Clearly, a is an integer, the new I is cyclically even, d(s, t) does not change 
for all (s, t) E U, and (Y becomes smaller. 

For any e E E, at least one of the following is valid: 
(i) Z(e) s 1; 

(ii) c(e) = 0. (8) 

For if it is not so for some edge e =xy, then reduce I by setting Z(e):= Z(e) - a, 
where a : = min(2 [Z(e)/2], c(e)} ( Lb] is the largest integer less than or equal to 
b). Since a is even, the new 1 is cyclically even. Clearly d(s, t) does not change for 
all (s, t) E U, and LY becomes smaller. 
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It follows from (4) that each shortest path in G is simple. Also we obtain from 
(S), (4) and (5) that 

Z(e) = d(u, v) for each edge e = uv E EO U El. (9) 

Indeed, this is so if Z(e) = 1 (by (4) and (5)). And if Z(e) > 1, then e belongs to 
some shortest s-t path, (s, t) E U, by (8), and hence the path (u, e, v) is also 
shortest. 

Now we need to give additional definitions and notation. 
1) A path (circuit) P = (.x0, e,, x1, . . . , x,) may be denoted as xgx, . . -x, 

(such a writing determines P uniquely, by (5)). VP and EP are the sets of distinct 
vertices and edges in P, respectively. P-’ is the opposite path X,X,-~ . . . x0. For 
a path Q =y,y, * . . y, with y. = x,, P - Q is the path x(gl . . . x,yI * * * y,. For 
0 =S i, j c m, P(X,, Xi) denotes the path x$~+~ . . . xi if i s j and denotes the path 
xjxi+, . . . x,x1 . . * Xi if P is a circuit and i > j; it is called the part of P from xi to 
xi. If P is a simple path or a simple circuit and U, v E V, then P(u, v) is the simple 
path P(xi, xi) (if it exists), where u =xi and v = 5; in particular, P(v, v) is the 
trivial path v. Where P is a simple path (a simple circuit) and uo, vl, . . . , vk E V, 

we write! vo+vi+” “vk (P) if vi = xicjj for 0 S i(0) S i(1) =S . . . S i(k) S m 

(resp., O<i(r)<...<i(k)~i(O)~** .Si(r-1)Sm for some Osrsk). For 
F E (0, Z} and S, t E VF, the path BF(s, t) will be denoted by F(s, t). Clearly if P 

and Q are shortest paths and vo, vi, . . . , vk E VP n VQ, then vo+ vi+. - -4 

t&(P) implies vo* v1 + . . -+ vk(Q) or vk’ vk_l’ ’ ’ -+ v&q. We identify a 
simple path (circuit) and its image in the plane. 

2) Let G = (V, I!?‘) be the directed graph obtained from G by replacing each 
edge xy E E by the directed edges (x, y) and (y, x). For a path P = x0x1 * - * x, in 
G, define the function x[P] : I? + Z by 

x[P](e) := I{i: 0 Q i Cm, e = (Xi, Xi+J}l, e E I?. 

Circuits P and Q are called homotopic (denoted as P - Q) if 

x[P] + x[Q-'1 = kl x[C,l + * - * + kn x['X 

where each ki is an integer and each Ci is either the circuit BF’ for some face 
F’ # 0, I or the circuit xyx for some edge xy E E (when the space obtained from 
the euclidean plane by removing the interiors of the faces 0 and Z is considered, 
such a ‘homologic’ definition is known to be equivalent to the usual definition of 
homotopness of two closed curves as the existence of a continuous deformation 
of one curve to the other). In particular, BZ - BO (since x[BZ] + x[BO-‘1 = 

C (x[BF’]: F’ is a face #O, I) - C (x[ x x . e = xy E E) taking into account the y 1. 
introduced orientations of the faces of G). A circuit is null-homotopic if it is 
homotopic to a degenerate circuit v. Two x-y paths P and Q are homotopic (de- 
noted as P - Q) if the circuit P * Q-i is null-homotopic. For a circuit C, define y(C) 
to be 0 if C is null-homotopic, k if C - BZ . BZ . . * * *BZ (k times) and -k if 
C - BZ-’ . BZ-’ - . - . - BZ-’ (k times), k 2 1. 
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In the sequel F will denote some face in (0, I}, and s and t will denote some 
vertices in VF (possibly s = t). A topological fact is that BZ is not null-homotopic. 
This easily implies that: 

(i) y(C) is well-defined for each circuit C, and circuits C and C’ are 
homotopic if and only if y(C) = y(C’); 

(ii) if s #t and P is a simple s-t path, then either P - F(s, t) or P-’ - F(t, s). 
For a simple circuit C, denote by int(C) the set of points in the plane lying 

inside of C or on C. Let P be a simple s-t path, {uO, ul, . . . , vk} be the set of 
vertices in P contained in F(s, t), and let vo+ ul+ - . --+ vR(P). Using the 
Jordan curve theorem one can show that uo+ ul+ - . . vk(F(s, t)). Let int,(P) 
denote the set of points of the plane between P and F(s, t), i.e., 

P U F(s, t) U LJ (int(P(v,, ui+l) - (F(q, v~+~)-~): i, u~IJ~+~ $ Es). 

Obviously, for a simple circuit C, Iy(C)j s 1 and [y(C)1 = 1 if and only if int(C) 
contains the interior of I. This and easy topological arguments imply the 
following. 

2.2. (i) A simple s-t path P is homotopic to F(s, t) if and only if int,(P) does not 
contain the interior of 1. 

(ii) Zf s --, u + v + t(BF), P is a simple s-t path, P - F(s, t), Q is a simple u-v 
path and Q lies in int,(P), then Q - F(u, v). 

(iii) Let s + u + v -+ t(BF), P be a shortest s-t path, Q be a shortest u-v path, 
and let P - F(s, t) and Q - F( u, v). Zf x, y E VP fl VQ and x-y(P), then 

x+y(Q), P(s, x). Qk Y) - WY, 4 is a shortest path homotopic to P and 

Q(u) x) - P(-G Y) * Q(Y> v ) is a shortest path homotopic to Q. 

Let IF(s, t) denote the set of shortest s-t paths in G homotopic to F(s, t). Note 
that if s = t then Z&, t) coincides with r,(t, s) and consists of the unique path s, 
and if s # t then, by arguments above, for any shortest s-t path P, either 
P E T,(s, t) or P-’ E rF(t, s). It follows from (2.2) that if TF(s, t) is nonempty, 
then there exists the path P in Z,(s, t) ‘most remote’ from F(s, t) (‘nearest’ to 
F(s, t), respectively), i.e., such that int,(P) includes (resp., is included in) 
int,(P’) for each P’ E T,(s, t); P is denoted by D&s, t) (resp., by NF(s, t)), see 
Fig. 1. 

Fig. 1. 
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Let X,(.s, t) be the set of vertices of G in int,(D,(s, t)). The ordered pair (s, t) 
is called essential (with respect to F) if: (i) Z&, t) # 0 and either s = t or 
r,(t, s) = 0, and (ii) A(p, x, q) >O for all x EXJS, t) and (p, q) E U so that 
p, q E V - X,(s, t) (in other words, no shortest p-q path for such p and q meets 

&(s, t)). 
The proof of the theorem will follow from the Lemmas 1 and 2. These 

lemmas will be proved in Sections 3 and 4. 

Lemma 1. Let (s, t) be un essential pair. Define 

a : = min{min{Z(e): e E 6X&, t)}, 

imin{A(s, x, t): x E V - Xr(s, t)}, 

&in{A(p, x, 4): x E Xr(s, t), (P, 4) E U P, q E V - &(s, t))> 

and, for e E E, define 

l’(e) : = f(e) - a if e E 6X&, t), 

:=Z(e) otherwise. 

Then I’ 3 0, a is an integer 21 and, for any (u, v) E U, 

d,(u, v) = d,(u, v) - a if 6X&, t) sepurutes u and v, 

= dt(u, v) otherwise. (10) 

A circuit C in G is called shortest if its length Z(C) is minimum among all 
circuits in G homotopic to C. Let %’ be the set of shortest circuits homotopic to 
BZ. 

Lemma 2. Let G have no essential pair. Let b be the length of a circuit in %‘. Then: 
(i) for any F E (0, Z} and s, t E VF, each path in Tr(s, t) is a part of some 

circuit in %; 
(ii) there exist integers (a potential) n(x), 0 s n(x) < b, x E V, such that: 

for each circuit C = x,+x1 * - * x, E 55, there is an index i, 0 <i s m, such 
that 

I(Xj_*Xj) = JC(Xj) - JG(Xj_1) for j = 1, . . . , i - 1, i + 1, . . . , m, 

I(Xi_lXi) = JG(Xi) - n(Xi_1) + 6; (11) 

if an edge xy E E belongs to no circuit in %, then n(x) = n(y). (12) 

Assuming that Lemmas 1 and 2 are valid we prove the theorem as follows. 
1) Let (s, t), a and I’ be as in Lemma 1. Since a is an integer, 1’ is cyclically 

even. It follows from (10) and the definition of 1’ that 

f(P) - Z’(P) = a IEP n 6XF(s, t)l ==a (j{u, v} tl X,(s, t)l mod 2) 

= d,(u, v) - d,.(u, v) 
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for each U--V path P, (u, v) E U, whence cl.(e)< El(e) for all e E E and 
A,.(u, x, v) s A,(u, x, v) for all x E V and (u, v) E U. Moreover, since a > 0, there 
is an e such that 0 = Z’(e) C Z(e) or there are u, x, u such that 0 = Alt(u, x, v) c 
A,(u, x, v). Thus, by induction, there exist required cuts 6X1, . . . , 6X, and 
integers &, . . . , Ak for (G, 0, Z, f’). Adding to them the cut 6X,+, := 6X&, t) 
and the number &+i : = a we obtain required objects for (G, 0, Z, 1). 

2) Let 3d be as in Lemma 2. For x E V, define the number n’(x) so that 
O<z’(x)<b and In(x)--‘(x)1 = b/2. Let p1<p2<. - .<p,, be all distinct 
numbers among n(x) and n’(x), x E V. Put k :=n/2. Obviously, k is an integer 
andpi+k=pi+b/2, i=l,..., k. Fori=l,..., k, put 

Xi := {X E VI pi < n(X) <Pi+k}, h:=Pi+l -Pi (=Pi+k+l -Pi+k) 

(assuming pzk+i :=pl + b). Since each n(x) is an integer and b is even, all pj and 
Aj are integers. We assert that SXi and 3Li, i = 1, . . . , k, satisfy (2) and (3). 

Indeed, it follows easily from the definitions of pi, Xi and nj that, for any 
x’, y’ E v, 

t(x’, y’):=z (iliz SXi separatesx’ andy’) 

=min{ln(x’) - 3t(y’)), b - lrr(x’) - JT(Y’)~}. 

(11) and (12) imply that S;(x, y) < Z(e) for any edge e = xy E E. Thus, (2) is true. 
Next, let s, t E VF, F E (0, Z}, and let P be a shortest s-t path. Without loss of 
generality, one may assume that P E T,(s, t). By (i) in Lemma 2, P is a part of 
some circuit C E %, i.e., P = C(s, t). We have l(P) d b/2 (otherwise d(s, t) = 
d(t, s) s Z(C(t, s)) = b - l(P) < Z(P)). Furthermore, (11) implies that l(P) = 
x(t) -x(s) if m(s) 6 n(t) and that Z(P) =x(t) - n(s) + b if n(s) > n(f). Thus, 
Z(P) = c(s, t), and the equality in (3) holds for (s, t). 

3. Proof of Lemma 1 

Put X:=X&, t). Obviously, 1’ 3 0 and a is an integer 20. Let us show that 
a > 0. Let x E V -X, Q’ be a shortest s-x path, Q” be a shortest x-t path, and 
Q:=Q’.Q”. Then A( s, x, t) = l(Q) - d(s, t). Suppose that A@, x, t) = 0; then Q 
is a shortest path. We have Q - F(s, t) (otherwise s # t and Q-’ E Z,(t, s) # 0, 
contrary to the property that (s, t) is essential). Hence VQ E X (as D&, t) is the 
‘most remote’ path in T,(s, t)), contradicting x E V - X. Thus, A@, x, t) > 0. We 
have also f(e) > 0 for e E 6X (by (4)) and A(p, x, q) > 0 for x E X and (p, q) E 17, 
p, q $ X (as (8, t) is essential). Therefore, a > 0. 

Next, let (u, v) E U. Clearly d,(u, v) s d,(u, u) - ap(u, v), where p(u, u) is 1 if 
6X separates u and v, and 0 otherwise. In order to prove the converse inequality 
consider an arbitrary path P =x,,xl - . .x,, x0 = u, x,,, = v. Put k(P):= 
I{i: xixi+l E SX}I. Obviously, Z’(P) = I(P) - uk(P). One must prove that 

l(P) - uk(P) 2 d&, v) -up@, v). (13) 



80 A. V. Karzanov 

We proceed by induction on k(P). 
(i) k(P) = 0 or 1. Then (13) is trival. 

(ii) k(P) = 2 an d U, u E V - X. Then p(u, v) = 0. Choose x E VP rl X. 
Since A(u, x, v) 3 2u (by the definition of a), we have 

Z(P) - 2a 2 d(u, x) + d(x, v) - 2a = d(u, v) + A(u, x, v) - 2a 3 d(u, v). 

(iii) Suppose that P is not as in (i) or (ii). Put D := D&, t). Then there are i 
and j, Osi<jSm, j-ia2, such that xi, xi E VD and x, $X for r= 

i+ 1,. . . , j - 1. One may assume that xi-xi(D) (otherwise it should to 
consider the pair (v, U) and the path P-l). Form the paths P’ := 
P(u, Xi) * D(x,, Xi) * P(Xj, v) and Q I= D(s, Xi) * P(Xi, Xi) * D(Xj, t). Obviously, 

k(P) = k(P) - 2, and using the induction hypothesis we have 

I(P) - Uk(P) = I(P’) - Uk(P’) + (l(P(Xi, Xj)) - l(D(Xi, Xj)) - 2U) 

a dl(u, v) - ap(u, v) + (Z(Q) - Z(D) - 2~). 

Since D is a shortest path we have 

Z(Q) - Z(D) 2 d(s) Xi+l) + d(xi+i, r) - d(s, t) = A(s, ri+i, t). 

Finally, Xi+1 4 X implies A@, Xi+l, t) 2 2a, and hence (13) follows. 

4. Proof of Lemma 2 

The proof is divided into a number of claims. As before, F denotes some face 
in (0, Z}, and s and t are some vertices in BF. For s’, t’ E VF and a simple s’-t’ 

path P, T,(s’, t’) and int,(P) will be denoted as Z(s’, t’) and int(P), respectively. 

4.1. Let ul--;, v2+ v3* u,(BF), v1 # 2r4 and I’(v,, u4) # 0. Then T(v2, v3) Z 0. 

Proof. Let Q be a shortest ~2-213 path and P E T(v,, u4). If Q lies in int(P), then 

Q - F(v2, v3) (by Wii)), h ence T(v,, u3) # 0. Otherwise Q meets P; let x be the 

first vertex and y be the last one in Q occurring in P. The path Q’ := 

Q(v2, x). P(x, Y) - Q(Y, ~3) is shortest and lies in int(P), whence Q’ - 

F(v2, ~3). 0 

4.2. Zf T(s, t) # 0, then the path F(s, t) is shortest. 

Proof. We use induction on r := lVF(s, t)l. The result is obvious when r = 1; if 

r = 2 it follows from (9). Assume that r 2 3, and let u be the vertex in BF 
following s and u be the one preceding t. Then s+ U+ u+ t(BF). Put 

D : = D,(u, v) and N : = N,(s, t) (N is the path in I+, t) ‘nearest’ to F(s, t)). Two 

cases are possible. 

1) D meets N. Let XEVD~JVN, P:=N(s,x).D(x,u) and Q:= 

D(u, x) . N(x, t). By 4.1, each of T(u, v), Z$, v) and T(u, t) is nonempty, 
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whence by induction F(u, v), F(s, v) and F(u, t) are shortest paths. Then 

as required. 
2) D does not meet N. We show that the pair (u, v) is essential, which implies 

impossibility of this case. First, suppose that u # v and there exists a shortest u-u 
path Q homotopic to F(v, u). Clearly Q meets N, and so there is a shortest u-u 
path Q’ homotopic to F(u, v) and meeting N (Q’ is formed from Q-’ and N in a 
similar way as it is done in the proof of 4.1 for P and Q). But then the ‘most 
remote’ path D also meets N; a contradiction. Thus, if u # u then T(u, u) = 0. 

Second, consider x E X,(u, v) and (p, q) E U, p, q E V - X,(u, v), and sup- 
pose that there exists a shortest p-q path P’ passing through x. Let Y be the set 
of vertices in int(N) not in N. Since D does not meet N we have XF(u, v) E Y, 
and so x E Y. Next, it is easy to see that Y n (VO U VI) c VF(u, v), which 
implies p, q $ Y. Thus, there are vertices x’ and y’ such that x’ +x+ y '(P'), 
x’, y’ E VN and all vertices in P’(x’, y’) except x’ and y’ are in Y. One may 
assume that x’*y’(N). Then P”:= N(s, x’) . P’(x’, y’) * N(y’, t) is a shortest 
path homotopic to F(s, t), P” is different from N and P” lies in int(N), contrary to 
the definition of N. Therefore A(p, x, q) > 0. Thus, (s, t) is essential. Cl 

It follows from (4.2) that 

4x, Y) = min{V’(x, Y >), WY, xl)> for any x, Y E BF. (14) 

4.3. Let vl+ v2+ t~~*21,+(BF), u1 Z u4, v2Z u3, {vi, v4} f {u2, u3}, and let 
T(v,, v4) # 0. Then T(v,, v2) = 0. 

Proof. Suppose that it is not SO. Put 1, := (F(vi, Vi)). We have from 4.2 and (14) 

that 1 14~ Z(BF)/2 and I32 s Z(BF)/2. But Z(BF) = I,4 + 132 - 112 - 134 < 114 + 132 

(since {ui, u4} # {u2, u3} implies Zi2 + f34 > 0); a contradiction. 0 

4.4. Lf?t 2/1’u2’213’V4(BF), 211# V4, V2# V3, Ud kt P E T(v~, 212) # 0 and 
Q E T(v,, v4) # 0. Then P does not meet Q. 

Proof. Suppose that it is not SO, and let z E VP n VQ. Put lij:=l(F(vi, vi)). By 
4.2 for (zli, v2) and for (u3, u4), we have 

d(ui, ~3) + d(v2, ~4) s W’(VI, 2)) + ~(Q-'(G ~3)) 

+ lW1(v2, 2)) + 4Q(z, ~4)) 

= l(P) + Z(Q) = I,, + Z34. (15) 
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Without loss of generality one may assume that l,, 3 lS1. Then d(ur, +) = 113, by 
(14). Two cases are possible. 

1) 124 s 142. Then d(v,, v4) = lz4 and d(uI, u3) + d(uz, 4 = 113 + lz4 > 112 + lj4 
(since u2 # u3 implies lz3 > 0), contradicting (15). 

2) lz4 > 142. Then 

d(u,, 213) + d(%, uq) = 113 + 142 = 2112 + 141+ 123, 

whence, in view of (15) and 

we obtain 134 = ld3 = I(BF)/2. Thus, the path F(v,, u3) is shortest. Then the 2rq-2r3 
path L:=F(v4, vl) - P - F(v,, v3) is shortest, and therefore the v4-v3 paths 
R:=L(v4, 2). Q-‘(2, 2r3) and R’:= Q-‘(v4, z) * L(z, u3) are also shortest. The 
case R-’ - F(v3, v4) is impossible because otherwise the shortest path 
Re1(v3, vl) would be homotopic to F(u3, vi) and we would have d(u3, UJ = 
131 > 134 = L(BF)/2. Similarly R'-l - F(v,, v4) is impossible. Thus, R - 
F(v4, v,) - R’. But then both R and R’ are in J:= int(D,(u,, v,)), and hence 
Q-’ lies in J. This implies Q-l - F(u4, v3), contrary to Q - F(u,, v4). 0 

We say that a family {Cl, . . . , Cr} of circuits (possible repeated) is a 
decomposition of a circuit C if x[C,] + . * . + x[Cr] = x[C]. It is easy to see that 
I(C) = l(C,) + * * . + r(C) and y(C) = y(C,) + * . . + y(C). 

4.5. Let C be a shortest circuit. Then: 
(i) l(C) = ]y(C)j b (b is the length of a circuit in V); 

(ii) if {Cl, . . . , Cr} is a decomposition of C, then, for each i, y(Ci)y(C) 2 0 
and the circuit Ci is shortest; if 1 y(C)] = 1, then the circuit C is simple. 

Proof. Without loss of generality one may assume that k := y(C) 3 0. (i) is 
obvious when k=O. Let k>l. If C’E% and c”:=C’.....C’ (k times), then 
y(F) = k and /(C”) = kb, which imply 1(C) G kb (since C is shortest). Obviously, 
C has a decomposition 9 = {C;, . . . , CL,}, where each Cf is either a simple 
circuit or the circuit xyx for some xy E E. Now ]y(Ci)l s 1 and y(C;) + * * . + 
y(C;,) = k imply that there are at least k circuits Cl with y(Ci) = 1, whence 
l(C) 3 kb. Thus, (i) is true. (ii) easily follows from (i). 0 

4.6. (i) Zf C, C’ E %‘, x, y E VC fl VC’ and x # y, then the circuits C1 := 
C(x, y ) . C’(y, x) and Cz : = C’(x, y ) * C( y, x) are in %. 

(ii) Zf C E %, P E T(s, t), x,y~VPflVc, x#y andx+y(P), then P(x,y)- 

C(x, y), P(s, x) * C@, y) - P(Y, t) E Us, t) and C(y, x) - f’(x, Y) E v. 

Proof. (i). Where Q := C(x, y) . C(y, x) . C’(x, y) * C’(y, x), we have l(Q) = 26 
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and y(Q) = 2, therefore the circuit Q is shortest. Since { C1, C,} is a decomposi- 
tion of Q and Z(C) > 0, i = 1,2, we have, by 4.5, that each Ci is shortest and 
y(Ci) 2 1, whence y(Ci) = 1. (ii). Let u be the first vertex and 21 be the last one in 
P contained in C. Then the path P’ := P(s, u) . C(u, v) . P(v, t) is simple, and so 
either P’ - F(s, t) or P’ - (F(t, s))-l. Similarly, either P” - F(t, s) or Z”- 
(F(s, t)))’ is true for PN:= P-‘(t, v) * C(v, u) . P-‘(u, s). Obviously, P’ . P”-- 
C - BF, which implies that only one combination is possible: P’ - F(s, t) and 
p”- F(t, s). Thus, P - P’, whence P(u, v) - C( u, v) and f(P(u, v)) = l(C(u, v)) 
(since P and C are shortest). Now (ii) for x and y easily follows. 0 

It follows from (4.6) that there exists the circuit C in % nearest to BZ, i.e., 

int(C) E int(C’) f or all C’ E V. Now we come to the main claim in the proof of 
Lemma 2. 

4.7. BZ, BO E V. 

Proof. We prove that BZ E %e; the proof of BO E % is analogous. We say that a 
pair (s, t) E VI x VI is maximal if the path Z(s, t) is shortest and no path in BZ 
containing Z(s, t) as a proper part is shortest. Let (s,,, to), . . . , (s,_~, t,-J be all 
maximal pairs, and let, for definiteness, 

sO+sl+ - - .+s,_i(BZ). (16) 

Obviously, it 3 2, all Si are distinct and all ti are distinct. Also one can see that 

si+si+i+ti+ti+l(BZ) (17) 

(here and later the indices are taken modulo n). Let C be the circuit in 55’ nearest 
to BZ. Put Di : = DI(si, ti), and let Ui be the first vertex and Vi be the last one in Di 
contained in C whenever Di meets C. It follows from 4.6(ii) and from the 
definitions of Di and C that: 

l(Di(ui, Vi)) = l(C(ui, vi)); (18) 
C(Ui, Vi) lies in int(Di); 

for p, q E VO, each vertex of any shortest p-q path lies 
outside of C or on C. 

We shall show that: 

(19) 

(20) 

Di meets C and ui-, ui+l+ Vi(C) (see Fig. 2); 

ug+u*+“‘+u,-r (C) and there are at least two 
distinct vertices among uo, ul, . . . , u,_~; 

the path Li := Di+l(si+l, ui+l) * C(ui+l, vi) - D(vi, ti) b 
shortest and homotopic to Z(si+l, ti). 

(21) 

(22) 

(23) 
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Fig. 2. 

Then 4.7 can be obtained as follows. In view of (18), (21) and (22), we have (in 

each sum, i runs from 0 to II - 1) 

C l(Oi) = C (l(Di(si, ui>) + l(c(ui, vi)) + l(Di(vi, ti))) 

= C (l(Di+l(si+l? 4+1)) + l(c(ui+l 9 vi)) + l(Di(vi, ri))) 

+ C l(c(ui, Q+l)) = C l(Li) + l(c). 

Next, Z(Di) = Z(F(si, ti)) (by 4.2) and I(&) = I(f’(si+lp ti)) (by (23) and (4.2)), and 
now using (16) and (17) we obtain 

= C l(Di) - Z(BZ). 

This and the above expression show that Z(BZ) = Z(C). Thus, BZ E %, as required. 

Now we prove (21)-(23). Let us fix a number i and denote si, tit D,, si+i, 

fi+1, di+i, Di+i by s, t, D, s’, t’, D’, respectively. Also denote uir tJi> Ui+i, ui+i (if 

they exist) by U, 21, u’, u’, respectively. It follows from (17) that D’ meets D; let 

x be the first vertex in D’ contained in D. Then D’(s’, x) lies in int,(D). Put 

b :=Dr(s’, t) and P:= D’(s’, x) * 0(x, t); obviously, the path P is simple. Easy 

arguments using the facts that the paths D and D’ are ‘most remote’ show that 

D(x, t) lies in int,(D’) and D lies in int,(P). Hence, 

D c int,(P) c int,(D) II int,(D’). (24) 

Consider the pair (s’, t). (17), 4.3 and S’ #s imply that if s’ #t then 

G(t, s’) = 0. Thus, there exists a shortest p-q path Q meeting D, where 

(p, q) E U and p, q 4 X,(+x’, t) (since (s’, t) is not essential). Suppose that 

p, q E BZ; one may assume that Q -Z(p, q). If p-s’-, t+q(BZ), then the 

maximality of (s, t) and (s’, t’) implies s+p*s’+ c+ q-, t’(BZ), s #p and 

q # t’, contrary to that (s, t) and (s’, t’) are adjacent maximal pairs. Also the case 

s’+t+p+q(BZ) is impossible, by 4.4. Thus, p, q E VO. Then D meets C 

because of (20) and b rl Q # 0, and Q, and so C meets each of D, D’ and P (by 
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(24)). Let z be the first vertex and w be the last one in P contained in C. Form the 
paths S := D(s, u) . C(u, u) * D(v, t) and S’ := D’(s), u’) . C(u’, v’) - D’(v’, t’); S 
and S’ are shortest, by 4.6. It follows from (19) that C(z, w) c int,(P) and at least 
one of the following holds: (i) z = u’, w = v; (ii) z = u, w = v; (iii) z = u’, 
w=v’. Suppose that z=u#u’. Then, in view of (24), u’ $ int,(D) and 
x+ u’+ u(S’), which implies that the shortest path D(s, x) - S’(x, u) . D(u, t) 

does not lie entirely in int,(D); a contradiction. Similarly w = u’ #v is impos- 
sible. Therefore, z = u’ and w = 21, which imply u-u’+ v(C) and u’+u+ 
v’(C). Thus, (21) is true. Next, the path L:=D’(s’, u’) . C(u), v) . D(v, t) lies in 
intl(P), whence L - P - I@‘, t). Let y E Vfi fl VC. We obviously have z---f y-, 
w(C) and L = S’(s’, y) . S(y, t). Now the facts that the paths S, S’ and fi are 
shortest imply that L is also shortest. Thus, (23) is true. 

It remains to prove (22). Let C’ := C(uO, ui) * C(ul, u2) . . . * * C(u,-i, uO). We 
show that C’ - BZ, whence (22) (or, in other words, C’ = C) easily follows. Put 
P : = Dj(Si, u,), T : = & * C( u j, u~+~) - Pl~~i and Zi := Z(Si, s~+~), and form the circuit 
R:=T,.T,.... - T,_, - BZ-‘. There are two decompositions of R, namely, 

$?&:={T,.Z;‘, T,.Z;‘, . . . , T,_,~Z;!,}; and 

5?&:= {C’, BZ-‘, PO. Pi,‘, PI. P;‘, . . . , P,,_l. Pill} 

(taking into account that Ii1 * Z;’ . + . - . Z;!, = BZ-‘, by (16)). As it was shown 
above, C(Ui, Ui+i) and pl.+i lie in .Z := intl(Dj), therefore T lies in J, whence 
T - 4. Thus, y(T . I;‘) = 0. Now 0 = C (y(C”): c” E ?&) = C (y(C): c” E &) and 
y(P - P;‘) = 0 imply y(C’) + y(BZ-‘) = 0, i.e., C’ - BZ, as required. Thus, 4.7 is 
proven. 0 

Now we finish to prove Lemma 2. 
(a) Let F E (0, Z}, s,tEVFandP~I&,f)#B.Ifs=t,thenP=sandPisa 

part of the circuit BF. And if s # t, then the circuit C := P - F(t, s) is homotopic 
to BZ, and Z(C) = Z(BF) = b, by 4.2 and 4.7. Thus, (i) of Lemma 2 is true. 

(b) Form the directed graph H = (V, A) in which (x, y) E A if and only if x = xi 
and y =Xi+i for some circuit C =x0x1 * * - x, in %. Let Z(x, y) := Z(xy) for 
(x, y) E A. By a path (circuit) in H we mean a directed path (circuit); we identify 
a path (circuit) in H with the corresponding path (circuit) in G. We observe that 
H is strongly connected, i.e., for any x, y E V, there is a path in H from x to y. 
Indeed, each vertex x is contained in some shortest s-t path, where s, t E VF and 

F E (0, Z> (by (7)), h ence x belongs to the strong component containing the 
circuit BF. Furthermore, as it was shown in the proof of 4.7, there exist a shortest 
s-t path with s, t E VI and a shortest p-q path with p, q E VO having a common 
vertex. 

(c) Let us fix some vertex s E V. Define the numbers n(x), x E V, by 
n(x):=f(P) - [l(P)lb]b, where P is some arbitrary s-x path in H. We assert 
that Ed satisfies (11) and (12). 
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First, we observe that each circuit C in H is shortest. Indeed, since H is 
strongly connected, there is a circuit D in G such that D has the decomposition 
{C’: C’ E %} and it has a decomposition {C, Q,, . . . , QN}. As Z(D) = b 1 %I and 
y(D) = l%l, the circuit D is shortest, and so C is shortest (by 4.5). In particular, 
the length of any circuit in H is a multiple of 6. 

Second, let x E V, and let P and P’ be two s-x paths in H. Choose an x-s path 
Q. Comparing the lengths of the circuits P * Q and P’ . Q we obtain that 
l(P) - l(P’) = kb for some integer k. In particular, n(x) does not depend on the 
choice of the s-x path P. Consider a circuit C = x,,xl . . - x, E %; one may assume 
that IC(X~) s n(Xi)p i = 1, . . . , m - 1. Choose an s-x0 path P in ZZ, and let 
q:=P * (X0, (X0, X*)j Xl, * f * ) Xi). Then Z(Xi_i, Xi) = Z(S) - Z(e-1) and l(P,) < 
Z(S) < * * . < Z(P,_J </(PO) + b, whence (11) follows. 

Third, consider an edge e = xy E E contained in no circuit in %. Let G’ be the 
graph obtained from G by contracting e and identifying x and y with a new vertex 
z. Let %” be the set of shortest circuits in G’ homotopic to Bf. Suppose that 
Z(C’) <b for C’ E %‘. Obviously, C’ contains z and C’ is obtained from a circuit 
C in G by contracting the edge xy. Since f(xy) = 1 (by (8)) we have Z(C) < b. 
Clearly C - BZ, therefore C E %, contradicting the choice of xy. Thus, Z(C’) = b 
and each member of % is in %‘. This implies that the potentials z and 3t’ of 
corresponding vertices in G and in G’, defined with respect to the same initial 
vertex s, coincide. Hence n(x) = J?(Z) = n(y), and (12) is true. 

This completes the proof of Lemma 2. 

5. Algorithm 

In fact, the proof of the theorem given above yields an algorithm to find 
required 6Xi’s and jli’s, which has a number of iterations bounded by a 
polynomial in IVI. Each iteration consists in either of a reduction of the current 
quadruple (G, 0, Z, Z) to one or more quadruples satisfying (4)-(8) (an iteration 
of the first type), or of finding an essential pair (s, t), the cut SXi = 6XF(s, t) and 
the number 3Li = a and then reducing 1 to 1’ according to Lemma 1 (an iteration of 
the second type), or of finding a potential n according to Lemma 2 and then 
producing some cuts 6X1, . . . , SXi and numbers Ai, . . . , pi from n (an iteration 
of the third type). Obviously, an iteration of the first type requires a polynomial 
in IV1 number of standard operations (mainly connected with calculations of 
distances). The only nontrivial procedure on an iteration of the second type is to 
find the ‘most remote’ shortest path Z&(s, t) homotopic to F(s, t) but one can see 
that it can be fulfilled in polynomial time by considering the faces of the graph of 
the shortest s-t paths and applying 2.2(i). Finally, in order to find a potential z 
on the iteration of the third type it is not necessary to construct the graph H 
(described in the proof of Lemma 2). It suffices to form the graph H’ = (V, A’) 
containing only the edges (x, y) such that x = xi and y =x~+~ for some path 
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P=X@Xl*-- x, E I@, t), S, t E VF, F E (0, I}. The graph H’ is strongly con- 

nected (it can be shown in a similar way as for H) and Z-I’ G H, therefore 

potentials for H’ and H coincide. These arguments show that the whole algorithm 

requires a polynomial in IV1 number of operations. Note also that the number of 

operations can be decreased by using the easy fact that the set of essential pairs 

does not increase in the process of the algorithm. 
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