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Abstract

The purpose of this paper and some to follow is to present a new approach to fractional
integration and differentiation on the half-axisR+ = (0,∞) in terms of Mellin analysis.
The natural operator of fractional integration in this setting is not the classical Liouville
fractional integralIα0+f but

(
J α

0+,cf
)
(x) := 1

Γ (α)

x∫
0

(
u

x

)c(
log

x

u

)α−1f (u)du

u
(x > 0)

for α > 0, c ∈ R. The Mellin transform of this operator is simply(c − s)−αM[f ](s), for
s = c + it , c, t ∈ R. The Mellin transform of the associated fractional differentiation oper-
atorDα

0+,c
f is similar:(c− s)αM[f ](s). The operatorDα

0+,c
f may even be represented

as a series in terms ofxkf (k)(x), k ∈ N0, the coefficients being certain generalized Stirling
functionsSc(α, k) of second kind. It turns out that the new fractional integralJ α

0+,c
f and

three further related ones are not the classical fractional integrals of Hadamard (J. Mat. Pure
Appl. Ser. 4, 8 (1892) 101–186) but far reaching generalizations and modifications of these.
These four new integral operators are first studied in detail in this paper. More specifically,
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conditions will be given for these four operators to be bounded in the spaceX
p
c of Lebesgue

measurable functionsf on (0,∞), for c ∈ (−∞,∞), such that
∫∞
0 |ucf (u)|p du/u <∞

for 1 � p < ∞ and esssupu>0[uc|f (u)|] < ∞ for p = ∞, in particular in the space
Lp(0,∞) for 1 � p � ∞. Connections of these operators with the Liouville fractional
integration operators are discussed. The Mellin convolution product in the above spaces
plays an important role. 2002 Elsevier Science (USA). All rights reserved.

Keywords:Fractional integration and differentiation; Hadamard-type fractional integrals; Mellin
transform; Mellin convolution; Weighted spaces ofp-summable functions; Stirling functions of
second kind

1. Introduction

The purpose of this paper and some to follow is to present a new approach
to fractional differentiation and integration in the Mellin setting. In the classical
sense, the Mellin transformM of f : R+ → C is defined by

M[f ](s) :=
∞∫

0

us−1f (u) du (s = c+ it, c, t ∈ R). (1.1)

It is directly verified that such a transform of the classicalr-derivativeDrf

(D = d/dx), r ∈ N = {1,2, . . .}, for “sufficiently good” functionsf is given by

M
[
Drf

]
(s) = (−1)rΓ (s)

Γ (s − r)
M[f ](s − r). (1.2)

As to therth integral

(
I rf

)
(x) :=

x∫
0

du1

u1∫
0

du2 . . .

ur−1∫
0

f (ur) dur

= 1

(r − 1)!
x∫

0

(x − u)r−1f (u) du, (1.3)

its Mellin transform turns out to be

M
[
I rf

]
(s)= Γ (1− r − s)

Γ (1− s)
M[f ](s + r). (1.4)

As the reader observes immediately, on the right sides of (1.2) and (1.4) there
occur quotients of gamma functions, and the transformsM[f ](s ∓ r) involve
r ∈ N.

Now D is not the natural operator of differentiation for the Mellin setting, nor
is it the customaryδ := xD; it is actually
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(Θcf )(x) := (
(δ + c)f

)
(x)= xf ′(x)+ cf (x)

(c = Re(s) ∈ R, x > 0), (1.5)

that of orderr ∈ N being defined iteratively by

Θ1
c f :=Θcf, Θr

c f :=Θc

(
Θr−1
c f

)
(r = 2,3, . . .). (1.6)

Its Mellin transform is given by

M
[
Θr
c f
]
(s) = (−it)rM[f ](s), t = Im(s) ∈ R, (1.7)

or, more generally, for arbitraryµ ∈ R there holds

M
[
Θr
µf
]
(s) = (µ− s)rM[f ](s) (s = c + it, t ∈ R). (1.8)

If µ = c the latter formula turns into (1.7). Observe that the right side of (1.8)
does not involve the gamma function.

Now the integration operatorJ r
c associated withΘr

c —better still the anti-
differentiation operator—is not the classical integration operatorI r of (1.3) but

(
J r
c f
)
(x)= x−c

x∫
0

du1

u1

u1∫
0

du2

u2
· · ·

ur−1∫
0

ucrf (ur)
dur

ur

= 1

(r − 1)!
x∫

0

(
u

x

)c(
log

x

u

)r−1

f (u)
du

u

(c ∈ R, x > 0). (1.9)

Its Mellin transform, indeed, turns out to be

M
[
J r
c f
]
(s)= (−it)−rM[f ](s) (1.10)

or, more generally, forµ ∈ R

M
[
J r
µf
]
(s)= (µ− s)−rM[f ](s) (s = c + it, t ∈ R). (1.11)

Here no gamma functions occur, and the transformM[f ](s) is independent ofr.
The operationsΘr

c andJ r
c are natural in the sense that they are inverse to each

other; thus there hold the relations

Θr
c J

r
c f = f, Θr

c J
r
c f = f (1.12)

for x ∈ R+ under suitable conditions uponf . See [1].
The aim of this paper and its follow-ups is to study the foregoing matter in

all details in the fractional instance when the naturalr is replaced by the positive
realα ∈ R+. Similar investigations are well developed for the classical Riemann–
Liouville and Liouville fractional integro-differentiation—see, for example, [2].
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Firstly, the fractional counterpart of the integral (1.9) is

(
J α

0+,µf
)
(x) := 1

Γ (α)

x∫
0

(
u

x

)µ(
log

x

u

)α−1
f (u) du

u

(α > 0, µ ∈ R, x > 0), (1.13)

which equals (1.9) forα = r ∈ N andµ = c. It will turn out that its Mellin
transform has the form (1.11) withr ∈ N being replaced byα > 0:

M
[
J α

0+,µf
]
(s) = (µ− s)−αM[f ](s) (s = c + it, t ∈ R). (1.14)

It is known [2, Section 5.1] that the classical left-sided Liouville fractional
integral of orderα > 0 on the half-axisR+ has the form (1.3)

(
Iα0+f

)
(x) := 1

Γ (α)

x∫
0

(x − u)α−1f (u) du (α > 0, x > 0), (1.15)

while the corresponding left-sided Liouville fractional derivative associated with
(1.15) is given by

(
Dα

0+f
)
(x) :=

(
d

dx

)m(
Im−α
0+ f

)
(x)

(α > 0, m= [α] + 1, x > 0), (1.16)

where[α] is the greatest integer inα. This suggests defining the fractional order
derivative forµ = c ∈ R in the framework of the Mellin transform forx > 0 by(

Dα
0+,cf

)
(x) := x−cδmxc

(
J m−α

0+,c f
)
(x)

(α > 0, m= [α] + 1), δ = x
d

dx
, (1.17)

or (Θα
c f )(x) := (Dα

0+,cf )(x) in the other notation. In particular, ifα = 1, it is

easy to check thatD1
0+,cf coincides withΘcf in (1.5), while forα = 2

(
D2

0+,cf
)
(x)= x2f ′′(x)+ (2c+ 1)xf ′(x)+ c2f (x).

This is indeed(Θ2
c f )(x) as defined via (1.6) withr = 2; see [1]. In fact, this

derivative of orderr ∈ N can be written as (see [1, (8.2)])

(
Dr

0+,cf
)
(x)≡ (

Θr
c f
)
(x)=

r∑
k=0

Sc(r, k)x
kf (k)(x), (1.18)

whereSc(r, k) (0 � k � r) denote the generalized Stirling numbers of second
kind, defined recursively by



P.L. Butzer et al. / J. Math. Anal. Appl. 269 (2002) 1–27 5

Sc(r,0)= cr, Sc(r, r)= 1,

Sc(r + 1, k)= Sc(r, k − 1)+ (c + k)Sc(r, k);
an alternative definition of these numbers is

Sc(r, k)= 1

k!
k∑

j=0

(
k

j

)
(−1)k−j (c + j)r . (1.19)

Let us return to the fractional instance. In accordance with extensions of
definitions of various types of numbers in combinatorial analysis from the
classical discrete to the fractional case, as developed, e.g., in [3] and [4], in the
fractional version of (1.18) the finite sum would be replaced by an infinite one,
resulting in

(
Dα

0+,cf
)
(x)=

∞∑
k=0

Sc(α, k)x
kf (k)(x), (1.20)

where

Sc(α, k) = 1

k!
k∑

j=0

(
k

j

)
(−1)k−j (c+ j)α. (1.21)

Whenc = 0, thenS(α, k) = S0(α, k) are the Stirling functions ofα > 0 of second
kind introduced in [5] and developed in [6].

Definition (1.20) would be an alternative to (1.17). To make the matter
intuitively clear, let us proceed formally as follows. There hold the relations

f (u)=
∞∑
k=0

f (k)(x)

k! (u− x)k

=
∞∑
k=0

f (k)(x)

k!
k∑

j=0

(
k

j

)
(−1)k−j xk−juj , (1.22)

noting the binomial expansion, and the directly checked one(
Θα
c t

µ
)
(x)= (c +µ)αxµ, Re(c +µ) > 0. (1.23)

Substituting this result withµ= j in (1.22), after differentiating this Taylor series
term by term, we obtain (1.20). Similar arguments yield an alternative version of
(1.13) in the form (1.20)

(
J α

0+,cf
)
(x)=

∞∑
k=0

S−c(α, k)x
kf (k)(x). (1.24)

The relations (1.24) and (1.20) present a unified representation for the fractional
integrals (1.13) and derivatives (1.17), being obtained from each other by re-
placingc by −c.
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Similarly to the definition of the right-sided Liouville fractional integralIα−f of
the form (1.15), replacing the integration over(0, x) by that over(x,∞) [2, (5.3)],
we can define the right-sided fractional integration of the form (1.13)

(
J α−,µf

)
(x) := 1

Γ (α)

∞∫
x

(
x

u

)µ(
log

u

x

)α−1
f (u) du

u

(α > 0, µ ∈ R, x > 0), (1.25)

and the corresponding fractional differentiation(
Dα−,cf

)
(x) := xc(−δ)mxc

(
Jm−α−,c f

)
(x)

(m= [α] + 1, α > 0), δ = x
d

dx
. (1.26)

These may also be written in the forms

(
J α−,cf

)
(x)=

r∑
k=0

S∗−c(α, k)x
kf (k)(x), (1.27)

(
Dα−,cf

)
(x)=

r∑
k=0

S∗
c (α, k)x

kf (k)(x), (1.28)

where

S∗
c (α, k) := 1

k!
k∑

j=0

(
k

j

)
(−1)k−j (c− j)α. (1.29)

We hope that the above approach will be useful in generalizing several known
results and to obtain new trends of research not only in the theory of fractional
calculus, but also in combinatorial analysis, approximation theory, and other
fields.

Note that whenµ= 0, (1.13) and (1.25) take on the forms

(
J α

0+f
)
(x)= 1

Γ (α)

x∫
0

(
log

x

u

)α−1
f (u) du

u
(α > 0, x > 0) (1.30)

and

(
J α−f

)
(x)= 1

Γ (α)

∞∫
x

(
log

u

x

)α−1f (u) du

u
(α > 0, x > 0), (1.31)

respectively. The particular integral (1.30) was introduced by Hadamard [7]
and therefore the integrals (1.30) and (1.31) are often referred to as Hadamard
fractional integrals of orderα > 0; see [2, Sections 18.3 and 23.1, notes to
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Section 18.3]. Therefore we may call the more general integrals in (1.13) and
(1.25) Hadamard-type fractional integrals.

Our paper deals with these integral operators and two of their modifications,
namely

(
Iα0+,µf

)
(x)= 1

Γ (α)

x∫
0

(
u

x

)µ(
log

x

u

)α−1
f (u) du

x
(x > 0), (1.32)

(
Iα−,µf

)
(x)= 1

Γ (α)

∞∫
x

(
x

u

)µ(
log

u

x

)α−1
f (u) du

x
(x > 0) (1.33)

with α > 0 and complexµ ∈ C. We note that the operators in (1.32) and (1.33)
are conjugate to those in (1.25) and (1.13), respectively.

We will study the operatorsJ α
0+,µf , J α−,µf , Iα0+,µf , andIα−,µf in the space

X
p
c (c ∈ R, 1� p � ∞) of those complex-valued Lebesgue measurable functions

f on R+ = (0,∞) for which‖f ‖Xp
c
<∞, where

‖f ‖Xp
c

=
( ∞∫

0

∣∣ucf (u)∣∣p du
u

)1/p

(1 � p <∞, c ∈ R) (1.34)

and

‖f ‖X∞
c

= ess sup
u>0

[
uc|f (u)|] (c ∈ R). (1.35)

In particular, whenc = 1/p (1 � p � ∞), the spaceXp
c coincides with the

classicalLp(R+)-space:Lp(R+)≡X
p

1/p with

‖f ‖p =
( ∞∫

0

|f (u)|p du
)1/p

(1 � p <∞),

‖f ‖∞ = ess sup
u>0

|f (u)|. (1.36)

In this paper we will give conditions for the operators in (1.13), (1.25),
(1.32), and (1.33) to be bounded in the spaceX

p
c . These results are based on

the corresponding assertions for the Mellin convolution productg ∗ f of two
functionsf,g : R+ → C, defined by

(g ∗ f )(x)=
∞∫

0

g

(
x

u

)
f (u)

du

u
(x ∈ R+), (1.37)

in case the integral exists. We will also obtain the corresponding properties for
the Hadamard fractional integrals (1.30) and (1.31). In particular, the results in
the spaceLp(R+) will follow.
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It should be emphasized that some results of this paper will be established by
three different methods of proof, which are used throughout, in order to point out
their relevance and importance in our new approach to fractional calculus in the
Mellin setting. The first deals with the self-contained Mellin analysis approach
developed in [1,8], the second method with an operator-theoretic approach.
Whereas both methods cover the mapping properties of the four new operators of
fractional integration from the spaceXp

c into itself, the third is connected with the
mapping properties fromXp

c to X
q
c for 1 � p � q � ∞. The results established

by the third method of proof include in part those of the first two; however, in
contrast to the first two methods, which are rather elementary, the third method is
not self-contained but relies on the deep Riesz–Thorin theorem.

Note that another fractional calculus in the Mellin setting was introduced in [9,
Definition 2.4], where the linear operatorsIη,αm andKη,α

m were defined by

(
MIη,αm f

)
(s) = Γ (η + 1− s/m)

Γ (η + α + 1− s/m)
(Mf )(s) (1.38)

and (
MKη,α

m f
)
(s)= Γ (η + s/m)

Γ (η + α + s/m)
(Mf )(s), (1.39)

respectively, forf in a special Fréchet spaceFp,µ. Here I
η,α
m ≡ Iα0+;m,η

andKη,α
m ≡ Iα−;m,η are the familiar Erdélyi–Kober-type operators of fractional

integration and differentiation; their explicit representations can be found in
[10, Chapter 3] and [2, Section 18.1]. The boundedness of such fractional
integration operators inXp

µ-spaces together with the relations (1.38) and (1.39)
were established in [11, Corollaries 3.1 and 4.1]. Observe that the right-hand sides
of (1.38) and (1.39) involve quotients of gamma functions.

We also mention a series of papers devoted to the investigation of Mellin
multipliers in the frame of the Mellin transformM defined in terms of the Fourier
transform by(Mf )(s) = ∫∞

−∞ eu(c+it )f (eu) du. In [12] a class of multipliers
h was constructed, which lead to a bounded linear mappingT from X

p
µ into

X
p
µ for 1< p < ∞ and suitable complex numberµ, and for which the relation

(MTf )(s) = h(s)(Mf )(s) holds forf ∈ X
p
c ∩X

p

2 ; see [13] in this connection.
A similar class of Mellin multipliers in the setting of the spaceFp,µ was examined
in [14], where the fractional integration operatorK

η,α
1 in (1.39) was considered

as an example [14, Example 3.4]. A Mellin transform approach to develop a
theory of complex powersT α of linear operatorsT on the basis of the relation
(MT αf )(s − αγ ) = [h(s − αγ )/h(s)](Mf )(s) in the spacesXp

µ, Fp,µ and the
corresponding space of generalized functionsF ′

p,µ was carried out in [15,16].
The paper is organized as follows. Section 2 presents isomorphic properties of

some elementary operators in the spaceX
p
c and the connections of the Hadamard-

type operators (1.13) and (1.25) considered with the Liouville fractional integral
operators on the real lineR. Mapping properties of the Mellin convolution
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operator (1.37) in the spaceXp
c are given in Section 3. Section 4 is devoted to

the boundedness of the operatorsJ α
0+,µ, J α−,µ, Iα0+,µ, andIα−,µ in the spaceXp

c .

Sections 5 and 6 deal with such properties from the oneX
p
c -space to the otherXq

c

for 1 � p � q � ∞.

2. Auxiliary results

For a function f (x) defined almost everywhere onR+ we define the
elementary operatorsMζ , τ rh , Na , R, andQ as follows:

(Mζf )(x)= xζf (x) (ζ ∈ C), (2.1)(
τ rhf

)
(x)= hrf (hx) (h ∈ R+, r ∈ R), (2.2)

(Na,rf )(x)= |a|rf (xa) (a ∈ R, a �= 0, r ∈ R), (2.3)

(Rf )(x)= 1

x
f

(
1

x

)
, (2.4)

and

(Qf )(x)= f

(
1

x

)
. (2.5)

It is clear that the inverse operatorsM−1
ζ , (τ rh)

−1, N−1
a,r , R−1, andQ−1 have the

forms(
M−1

ζ f
)
(x)= (M−ζ f )(x)= x−ζ f (x) (ζ ∈ C), (2.6)

((
τ rh
)−1

f
)
(x)= h−r f

(
x

h

)
(h ∈ R+, r ∈ R), (2.7)

(
N−1
a,r f

)
(x)= |a|−rf

(
x1/a) (a ∈ R, a �= 0, r ∈ R), (2.8)(

R−1f
)
(x)= (Rf )(x), (2.9)

and (
Q−1f

)
(x)= (Qf )(x). (2.10)

The following assertions are easily verified.

Lemma 1. Let c ∈ R, 1 � p � ∞ andf ∈ X
p
c .

(a) Mζ with ζ ∈ C is an isometric isomorphism ofXp
c ontoXp

c−Re(ζ ):

‖Mζf ‖Xp

c−Re(ζ)
= ‖f ‖Xp

c
. (2.11)
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(b) The translation operatorτ rh with h ∈ R+ andr ∈ R is an isomorphism ofXp
c

ontoXp
c :∥∥τ rhf ∥∥Xp

c
= hr−c‖f ‖Xp

c
. (2.12)

In particular, τ ch is an isometric isomorphism ofXp
c ontoXp

c :∥∥τ chf ∥∥Xp
c

= ‖f ‖Xp
c
. (2.13)

(c) Na,r with a ∈ R (a �= 0) andr ∈ R is an isomorphism ofXp
c ontoXp

ac:

‖Na,rf ‖Xp
ac

= |a|r−1/p‖f ‖Xp
c
. (2.14)

In particular,Na,1/p is an isometric isomorphism ofXp
c ontoXp

ac:

‖Na,rf ‖Xp
ac

= ‖f ‖Xp
c
. (2.15)

(d) R is an isometric isomorphism ofXp
c ontoXp

1−c:

‖Rf ‖Xp

1−c
= ‖f ‖Xp

c
. (2.16)

(e) Q is an isometric isomorphism ofXp
c ontoXp

−c:

‖Qf ‖Xp
−c

= ‖f ‖Xp
c
. (2.17)

Remark 1. The assertions of Lemma 1 are indicated in part in [17]; for part (b)
see especially [1,8].

For a functionϕ(x) defined almost everywhere onR we define the elementary
operatorA by

(Aϕ)(x)= ϕ
(
ex
)
. (2.18)

It is clear its inverseA−1 has the form(
A−1ψ

)
(x)=ψ

(
log(x)

)
(2.19)

for a functionψ(x) defined almost everywhere onR+.
Forc ∈ R and 1� p � ∞ we denote byLp

c the space of those complex-valued
Lebesgue measurable functionsϕ(x) on R such that‖ϕ‖Lp

c
<∞, where

‖ϕ‖Lp
c

=
( ∞∫

−∞

∣∣ecuϕ(u)∣∣p du
)1/p

(1� p <∞, c ∈ R) (2.20)

and

‖ϕ‖L∞
c

= ess sup
u∈R

[
ecu|ϕ(u)|] (c ∈ R). (2.21)

The following assertion holds.
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Lemma 2. Let c ∈ R and1 � p � ∞.

(a) A is isometric isomorphism ofXp
c ontoLp

c :

‖Aϕ‖Lp
c

= ‖ϕ‖Xp
c
. (2.22)

(b) A−1 is isometric isomorphism ofLp
c ontoXp

c :∥∥A−1ψ
∥∥
X
p
c

= ‖ψ‖Lp
c
. (2.23)

Proof. If 1 � p < ∞, then using (2.18) and (2.20) and making the change of
variableu= log(x), we have

‖Aϕ‖Lp
c

=
( ∞∫

−∞

∣∣ecuϕ(eu)∣∣p du
)1/p

=
( ∞∫

0

∣∣xcϕ(x)∣∣p dx
)1/p

= ‖ϕ‖Xp
c
,

which proves (2.22) for 1� p <∞. If p = ∞, then by (2.18) and (2.21),

‖Aϕ‖L∞
c

= ess sup
u∈R

[
ecu
∣∣ϕ(eu)∣∣]= ess sup

x>0

[
xc|ϕ(x)|]= ‖ϕ‖X∞

c
,

which yields (2.22) withp = ∞. The relation (2.23) is proved similarly.✷
In conclusion we note that the Hadamard-type integrals (1.13) and (1.25) are

closely connected with the Liouville fractional integralsIα+f andIα−f , defined on
the whole real lineR by

(
Iα+f

)
(x)= 1

Γ (α)

x∫
−∞

f (u) du

(x − u)1−α
(α > 0, x ∈ R) (2.24)

and

(
Iα−f

)
(x)= 1

Γ (α)

∞∫
x

f (u) du

(u− x)1−α
(α > 0, x ∈ R), (2.25)

respectively [2, Section 5.1]. It is directly checked that such connections for the
operators (1.13) and (1.25) are given by the relations(

J α
0+,µf

)
(x)= (

M−µA
−1Iα+AMµf

)
(x) (2.26)

and (
J α−,µf

)
(x)= (

MµA
−1Iα−AM−µf

)
(x), (2.27)

where the elementary operatorsMµ andA are defined by (2.1) and (2.18).
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3. Mellin convolution in X
p
c

Let 1� p � ∞ andp′ be the exponent conjugate top, i.e.,

1

p
+ 1

p′ = 1, (3.1)

wherep′ = ∞ for p = 1, whilep′ = 1 for p = 1.
The first result for the Mellin convolution productg ∗ f of (1.37) in the space

X
p
c is given by the following theorem.

Theorem 1. Let c ∈ R and1 � p � ∞. If f ∈ X
p
c andg ∈ X1

c , theng ∗ f exists
(a.e.) on R+, belongs toXp

c , and

‖g ∗ f ‖Xp
c

� ‖g‖X1
c
‖f ‖Xp

c
. (3.2)

Proof. First we consider the case 1� p < ∞. By [7, p. 396] the function
[g(x/u)f (u)]cucp−1 is measurable onR+. If p > 1, then using the property

g ∗ f = f ∗ g (3.3)

and applying the Holder inequality, we have for almost allx ∈ R+

|(g ∗ f )(x)| = |(f ∗ g)(x)|

�
∞∫

0

∣∣g(u)uc∣∣1/p′∣∣g(u)u−cp/p′∣∣1/p∣∣∣∣f
(
x

u

)∣∣∣∣duu
�
( ∞∫

0

|g(u)|uc du
u

)1/p′( ∞∫
0

|g(u)|−cp/p′
∣∣∣∣f
(
x

u

)∣∣∣∣
p
du

u

)1/p

= (‖g‖X1
c

)1/p′
( ∞∫

0

|g(u)|u−cp/p′
∣∣∣∣f
(
x

u

)∣∣∣∣
p
du

u

)1/p

,

if we take into account (1.34) withp = 1. Using Fubini’s theorem and substituting
y = x/u, we obtain

(‖g ∗ f ‖Xp
c

)p �
(‖g‖X1

c

)p/p′
∞∫

0

xcp

( ∞∫
0

|g(u)|u−cp/p′
∣∣∣∣f
(
x

u

)∣∣∣∣
p
du

u

)
dx

x

= (‖g‖X1
c

)p/p′
∞∫

0

|g(u)|u−cp/p′ du

u

∞∫
0

xcp
∣∣∣∣f
(
x

u

)∣∣∣∣
p
dx

x
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= (‖g‖X1
c

)p/p′
∞∫

0

|g(u)|u−cp/p′
ucp

du

u

∞∫
0

ycp|f (y)|p dy
y

= (‖g‖X1
c

)1+p/p′(‖f ‖Xp
c

)p = (‖g‖X1
c

)p(‖f ‖)p
X
p
c
.

Now (3.2) follows for 1<p <∞. If p = 1, then Fubini’s theorem gives

‖g ∗ f ‖X1
c
�

∞∫
0

xc−1 dx

∞∫
0

|f (u)|
∣∣∣∣g
(
x

u

)∣∣∣∣duu
=

∞∫
0

|f (u)|du
u

∞∫
0

xc−1
∣∣∣∣g
(
x

u

)∣∣∣∣dx = ‖f ‖X1
c
‖g‖X1

c
.

Further, in accordance with (1.35) and (1.34) forr = 1, we have for almost all
x ∈ R+,

|(g ∗ f )(x)| �
∞∫

0

[
uc|f (u)|][u−c

∣∣∣∣g
(
x

u

)∣∣∣∣
]
du

u

� ‖f ‖X∞
c

∞∫
0

[
u−c

∣∣∣∣g
(
x

u

)∣∣∣∣
]
du

u
= x−c‖f ‖X∞

c
‖g‖X1

c
,

which yields (3.2) forp = ∞. This completes the proof of the theorem.✷
The next theorem presents the second result forg ∗ f with g in the spaceXp′

c .

Theorem 2. Let c ∈ R, 1 � p � ∞ and p′ be given by(3.1). If f ∈ X
p
c and

g ∈ X
p′
c , theng ∗ f exists as a continuous function onR+ with

‖g ∗ f ‖X∞
c

� ‖g‖
X
p′
c

‖f ‖Xp
c
. (3.4)

Proof. Using (2.2) and noting the Holder inequality, we have∣∣(g ∗ f )(x)− (
τ ch(g ∗ f ))(x)∣∣

�
∞∫

0

|f (u)|uc
∣∣∣∣g
(
x

u

)
− hcg

(
hx

u

)∣∣∣∣u−c du

u
, (3.5)

since
∞∫

0

g

(
hx

u

)
f (u)

du

u
=

∞∫
0

τ cug

(
x

u

)
f (u)h−c du

u
.
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If 1 < p � ∞, then there follows∣∣(g ∗ f )(x)− (
τ ch(g ∗ f ))(x)∣∣

� ‖f ‖Xp
c

( ∞∫
0

∣∣∣∣g
(
x

u

)
− hcg

(
hx

u

)∣∣∣∣
p′

u−cp′ du

u

)1/p′

� ‖f ‖Xp
c

( ∞∫
0

∣∣g(y)− hcg(hy)
∣∣p′
(
x

y

)−cp′
dy

y

)1/p′

, (3.6)

and thus∣∣(g ∗ f )(x)− (
τ ch(g ∗ f ))(x)∣∣� x−c‖f ‖Xp

c

∥∥g − τ chg
∥∥
X
p′
c

(3.7)

for 1<p � ∞. This estimate also holds forp = 1, because from (3.5) we have∣∣(g ∗ f )(x)− (
τ ch(g ∗ f ))(x)∣∣

�
∞∫

0

∣∣∣∣f
(
x

y

)∣∣∣∣y−c
[
yc
∣∣g(y)− hcg(hy)

∣∣]dy
y

�
∥∥g − τ chg

∥∥
X∞
c

∞∫
0

∣∣∣∣f
(
x

y

)∣∣∣∣y−c−1 dy = x−c‖f ‖X1
c

∥∥g − τ chg
∥∥
X∞
c
.

According to the relation (7) in [8], one has

lim
h→1

∥∥g − τ chg
∥∥
X
p′
c

= 0, g ∈X
p′
c , (3.8)

and hence (3.7) yields the continuity of the convolution result:

lim
h→1

∣∣(g ∗ f )(x)− (
τ ch(g ∗ f ))(x)∣∣= 0.

To prove the estimate (3.4), for 1<p � ∞ similarly to (3.5) and (3.6) we have

|(g ∗ f )(x)| �
∞∫

0

|f (u)|uc
∣∣∣∣g
(
x

u

)∣∣∣∣u−c du

u

� ‖f ‖Xp
c

( ∞∫
0

∣∣∣∣g
(
x

u

)∣∣∣∣
p′

u−cp′ du

u

)1/p′

= ‖f ‖Xp
c

( ∞∫
0

|g(y)|p′
(
x

y

)−cp′
dy

y

)1/p′

,

and hence
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|(g ∗ f )(x)| � x−c‖f ‖Xp
c
‖g‖

X
p′
c

(3.9)

for 1<p � ∞. In particular,

|(g ∗ f )(x)| � x−c‖f ‖X∞
c

‖g‖X1
c
. (3.10)

Therefore the estimate (3.9) also holds forp = 1, because, in accordance with
(3.3) and (3.10),

|(g ∗ f )(x)| = |(f ∗ g)(x)| � ‖f ‖X1
c
x−c‖g‖X∞

c
.

Now (3.9) yields (3.4), and so the theorem is proved.✷
Remark 2. In the casep = 2 Theorems 1 and 2 were proved in [8, Lemma 2.2].
Forp = 1 see [1].

Takingg(u) = k(u) in Theorems 1 and 2 we obtain the following result for the
Mellin integral convolution operator:

(Kf )(x)= (k ∗ f )(x)=
∞∫

0

k

(
x

u

)
f (u)

du

u
(x > 0). (3.11)

Theorem 3. Let c ∈ R and1 � p � ∞.

(a) If k ∈ X1
c , then the operatorK is bounded inXp

c and there holds the estimate

‖Kf ‖Xp
c

� C‖f ‖Xp
c
, (3.12)

where

C = ‖k‖X1
c
<∞. (3.13)

(b) If k ∈ X
p′
c , then the operatorK is bounded fromXp

c intoX∞
c and there holds

the estimate

‖Kf ‖X∞
c

� C′‖f ‖Xp
c
, (3.14)

where

C′ = ‖k‖
X
p′
c
<∞. (3.15)

Remark 3. Theorem 3(a) is theXp
c -analogue of the Young inequality inLp-

spaces; see, for example, [19, p. 199].
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4. Hadamard-type fractional integration in X
p
c

In this section we apply Theorem 3(a) to prove the boundedness property for
the Hadamard-type fractional integrals (1.13), (1.25), (1.32), and (1.33) in the
spaceXp

c . Such a property for the Hadamard-type operatorsJ α
0+,µf andJ α−,µf

in (1.13) and (1.25) are given by the following theorem.

Theorem 4. Let c ∈ R, 1 � p � ∞, α > 0 andµ ∈ C.

(a) If Re(µ) > c, then the operatorJ α
0+,µ is bounded inXp

c , and∥∥J α
0+,µf

∥∥
X
p
c

� C+
1 ‖f ‖Xp

c
, C+

1 = [Re(µ)− c]−α. (4.1)

(b) If Re(µ) >−c, then the operatorJ α−,µ is bounded inXp
c , and∥∥J α−,µf

∥∥
X
p
c

� C−
1 ‖f ‖Xp

c
, C−

1 = [Re(µ)+ c]−α. (4.2)

Proof. J α
0+,µ and J α−,µ are Mellin convolution operators of the form (3.11),

namely

(
J α

0+,µf
)
(x)=

∞∫
0

k+
1

(
x

u

)
f (u)

du

u
(x ∈ R+), (4.3)

k+
1 (u)= 0 (0< u< 1),

k+
1 (u)= 1

Γ (α)
u−µ

(
log(u)

)α−1
(u > 1), (4.4)

and

(
J α−,µf

)
(x)=

∞∫
0

k−
1

(
x

u

)
f (u)

du

u
(x ∈ R+), (4.5)

k−
1 (u)= 1

Γ (α)
uµ
[
log

(
1

u

)]α−1

(0< u < 1),

k−
1 (u)= 0 (u > 1), (4.6)

respectively. It is directly verified that the constantC of (3.13) is given by

C = C+
1 = [Re(µ)− c]−α (4.7)

for the operatorJ α
0+,µ, while by

C = C−
1 = [Re(µ)+ c]−α (4.8)

for the operatorJ α−,µ. Thus Theorem 4 follows from Theorem 3(a).✷



P.L. Butzer et al. / J. Math. Anal. Appl. 269 (2002) 1–27 17

We also note that the results in Theorem 4 may be proved on the basis of the
relations (2.26), (2.27) between the Hadamard-type integrals (1.13), (1.25) and
the Liouville fractional integrals (2.24), (2.25) by using the following result (see
[2, Theorem 5.7] withω = −cp).

Lemma 3. Let c ∈ R, 1 � p � ∞ andα > 0.

(a) If c < 0, then the Liouville fractional integration operatorIα+ is bounded in
L
p
c , and∥∥Iα+f ∥∥Lp

c
� C+‖f ‖Lp

c
, C+ = |c|−α. (4.9)

(b) If c > 0, then the Liouville fractional integration operatorIα− is bounded in
L
p
c , and∥∥Iα−f ∥∥Lp

c
� C−‖f ‖Lp

c
, C− = c−α. (4.10)

Indeed, using (2.26), (2.11) withζ = µ andf being replaced byA−1Iα+AMµf

and (2.23) withϕ = Iα+AMµf , we have∥∥J α
0+,µf

∥∥
X
p
c

= ∥∥M−µA
−1Iα+AMµf

∥∥
X
p
c

= ∥∥A−1Iα+AMµf
∥∥
X
p

c−Re(µ)
= ∥∥Iα+AMµf

∥∥
L
p

c−Re(µ)
. (4.11)

By Lemmas 2(a) and 1(a)AMµ is an isometric isomorphism ofXp
c ontoLp

c−Re(µ).
Sincec < Re(µ), we can apply Lemma 3(a) withf being replaced byAMµf , c
replaced byc − Re(µ) andC+ = C+

1 to deduce∥∥Iα+AMµf
∥∥
L
p

c−Re(µ)
� C+

1 ‖AMµf ‖Lp

c−Re(µ)
.

Substituting this estimate into (4.11), using (2.22) withϕ =Mµf and (2.11) with
ζ = µ, we find∥∥J α

0+,µf
∥∥
X
p
c

� C+
1 ‖AMµf ‖Lp

c−Re(µ)
= C+

1 ‖Mµf ‖Xp

c−Re(µ)
= C+

1 ‖f ‖Xp
c
,

which proves (4.1).
The relation (4.2) is proved similarly by applying (2.27), (2.11), (2.23),

Lemma 3(b), (2.22), and (2.11), thus∥∥J α−,µf
∥∥
X
p
c

= ∥∥A−1Iα+AM−µf
∥∥
X
p
c−Re(µ)

= ∥∥Iα+AM−µf
∥∥
L
p
c−Re(µ)

and ∥∥J α−,µf
∥∥
X
p
c

= ∥∥Iα+AM−µf
∥∥
L
p
c−Re(µ)

� C−
1 ‖AM−µf ‖Lp

c−Re(µ)

= C−
1 ‖M−µf ‖Xp

c−Re(µ)
= C−

1 ‖f ‖Xp
c
.

The next corollary follows from Theorem 4 if we takec = 1/p and apply
definition (1.36).
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Corollary 1. Let 1� p � ∞, α > 0 andµ ∈ C.

(a) If Re(µ) > 1/p, then the operatorJ α
0+,µ is bounded inLp(R+), and

∥∥J α
0+,µf

∥∥
p

� l+1 ‖f ‖p, l+1 =
[
Re(µ)− 1

p

]−α

. (4.12)

(b) If Re(µ) >−1/p, then the operatorJ α−,µ is bounded inLp(R+), and

∥∥J α−,µf
∥∥
p

� l−1 ‖f ‖p, l−1 =
[
Re(µ)+ 1

p

]−α

. (4.13)

Taking into account the obvious relations

Iα0+,µf = J α
0+,µ+1f, Iα−,µf = J α

−,µ−1f (4.14)

between Hadamard-type fractional integrals (1.32), (1.13) and (1.33), (1.25), and
applying Theorem 4 withµ being replaced byµ + 1 andµ − 1, we obtain the
X
p
c -boundedness properties of the Hadamard-type fractional integration operators

Iα0+,µf andIα−,µf .

Theorem 5. Let c ∈ R, 1 � p � ∞, α > 0 andµ ∈ C.

(a) If Re(µ) > c− 1, then the operatorIα0+,µ is bounded inXp
c , and∥∥Iα0+,µf

∥∥
X
p
c

� C+
2 ‖f ‖Xp

c
, C+

2 = [Re(µ)+ 1− c]−α. (4.15)

(b) If Re(µ) > 1− c, then the operatorIα−,µ is bounded inXp
c , and∥∥Iα−,µf

∥∥
X
p
c

� C−
2 ‖f ‖Xp

c
, C−

2 = [Re(µ)+ c− 1]−α. (4.16)

Corollary 2. Let 1� p � ∞, α > 0 andµ ∈ C, andp′ be given by(3.1).

(a) If Re(µ) >−1/p′, then the operatorIα0+,µ is bounded inLp(R+), and

∥∥Iα0+,µf
∥∥
p

� l+2 ‖f ‖p, l+2 =
[
Re(µ)+ 1

p′

]−α

. (4.17)

(b) If Re(µ) > 1/p′, then the operatorIα−,µ is bounded inLp(R+), and

∥∥Iα−,µf
∥∥
p

� l−2 ‖f ‖p, l−2 =
[
Re(µ)− 1

p′

]−α

. (4.18)

Puttingµ = 0 in Theorem 4, we obtain theXp
c -boundedness of the Hadamard

fractional integration operatorsJ α
0+f andJ α−f given by (1.30) and (1.31).
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Theorem 6. Let c ∈ R, 1� p � ∞ andα > 0.

(a) If c < 0, then the operatorJ α
0+ is bounded inXp

c , and∥∥J α
0+f

∥∥
X
p
c

� C+
3 ‖f ‖Xp

c
, C+

3 = |c|−α. (4.19)

(b) If c > 0, then the operatorJ α− is bounded inXp
c , and∥∥J α−f

∥∥
X
p
c

� C−
3 ‖f ‖Xp

c
, C−

3 = c−α. (4.20)

Corollary 3. If 1 � p < ∞ and α > 0, then the operatorJ α− is bounded in
Lp(R+), and∥∥J α−f

∥∥
p

� l3‖f ‖p, l3 = pα. (4.21)

We have stated Corollaries 1–3 explicitly since the operatorsJ α
0+,µ, J α−,µ,

Iα0+,µ, Iα0+,µ, andJ α− mapLp(R+) into itself for anyα > 0, whereas the classical
Liouville operatorsIα+, Iα− of (2.24), (2.25) only mapLp(R) into Lq(R) for
0< α < 1, 1<p < 1/(1− α) with q = p/(1− αp); see Lemma 5 below. This is
one of the further advantages of the four operators introduced in this paper.

Remark 4. Theorem 6 would also follow from Lemmas 2 and 3, if we take into
account the relations (2.26) and (2.27) withµ= 0.

Remark 5. The boundedness of the operatorJ α− in a weighted space of
p-summable functions was indicated in [13].

Remark 6. Corollaries 1–3 (but not the more general assertions of Theorems 4–6)
could be also proved on the basis of the well-known theorem on the boundedness
in Lp(R+) of the integral operator

(Kf )(x)=
∞∫

0

k(x,u)f (u) du (x > 0), (4.22)

with a homogeneous kernelk(x,u) (x > 0, u > 0) of degree−1: k(λx,λu) =
λ−1k(x,u) (λ > 0); see, for example, [2, Theorem 1.5]. According to this theo-
rem, if 1� p <∞ and

K ′ =
∞∫

0

|k(x,1)|x−1/p′
dx =

∞∫
0

|k(1, u)|u−1/p du <∞, (4.23)

then the operatorK is bounded inLp(R+), and

‖Kf ‖p �K ′‖f ‖p. (4.24)
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Remark 7. As it was shown in Corollary 3, the boundedness property inLp(R+)
holds for the one Hadamard operatorJ α−f , but such a property is not valid for
the otherJ α

0+f . The above theorem in Remark 6 yields more clearly this fact.
Indeed, for the operatorJ α−f the kernelk(x,u) in (4.22) has the form

k(x,u)= 0 (u < x),

k(x,u)= 1

Γ (α)
log

(
u

x

)α−1 1

u
(u > x), (4.25)

with the finite constant

K ′ = 1

Γ (α)

1∫
0

| logx|α−1x−1/p′
dx =

∞∫
0

e−u/puα−1du= pα. (4.26)

However, for the operatorJ α
0+f ,

k(x,u)= 1

Γ (α)
log

(
x

u

)α−1 1

u
(u < x),

k(x,u)= 0 (u > x), (4.27)

and the constant in (4.23) yields the divergent integral

K ′ = 1

Γ (α)

∞∫
1

(logx)α−1x−1/p′
dx =

∞∫
0

eu/puα−1du. (4.28)

This fact leads us to conjecture that the operatorJ α
0+f is probably bounded from

Lp(R+) into another space. This is considered below.

5. Hadamard-type fractional integration from X
p
c into X

q
c

In the previous Section 4 we have studied the boundedness of the Hadamard-
type fractional operators (1.13), (1.25), (1.32), and (1.33) fromX

p
c into X

p
c . In

this section we show that these results stay true for the mappings from the one
X
p
c -space into anotherXq

c . For this matter we recall the following application of
the Riesz–Thorin convexity theorem [19, 195ff], namely Young’s inequality.

Lemma 4. Let c ∈ R and letp, r andq be such that

1 � p � ∞, 1 � r <∞,
1

q
= 1

p
+ 1

r
− 1 � 0. (5.1)

If f ∈X
p
c andk ∈ Xr

c , then for almost allx > 0, there exists the integral(Kf )(x),
given by(3.11), and the integral operatorKf = k ∗ f is bounded fromXp

c into
X
q
c : there holds the estimate
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‖Kf ‖Xq
c

� C0‖f ‖Xp
c
, (5.2)

where

C0 := ‖k‖Xr
c
<∞. (5.3)

From this lemma we deduce the corresponding statements for the Hadamard-
type fractional integrals (1.13) and (1.25). Namely the following result is true.

Theorem 7. Let α > 0, c ∈ R and 1 � p � q � ∞ be such thatα > (1/p) −
(1/q), andµ ∈ C.

(a) If Re(µ) > c, then the operatorJ α
0+,µ is bounded fromXp

c into X
q
c , and∥∥J α

0+,µf
∥∥
X
q
c

� C+
4 ‖f ‖Xp

c
, (5.4)

where

C+
4 := ([Re(µ)− c]r)−α+1/r (Γ [(α − 1)r + 1])1/r

Γ (α)
,

1

r
= 1

q
− 1

p
+ 1. (5.5)

(b) If Re(µ) >−c, then the operatorJ α−,µ is bounded fromXp
c intoX

q
c , and∥∥J α−,µf

∥∥
X
q
c
� C−

4 ‖f ‖Xp
c
, (5.6)

where

C−
4 := ([Re(µ)+ c]r)−α+1/r (Γ [(α − 1)r + 1])1/r

Γ (α)
,

1

r
= 1

q
− 1

p
+ 1. (5.7)

Proof. The Hadamard-type integralJ α
0+,µ is an integral (3.11) of the form (4.3),

(4.4). If 1� p � q � ∞, we definer as in (5.1) by 1/r = (1/q) − (1/p) + 1.
It is clear that(1/p)+ (1/r)� 1. So the conditions in (5.1) are satisfied and we
can now apply Lemma 4 to the Hadamard-type integralJ α

0+,µ. Since 1� r <∞,
then in accordance with (4.4) and (1.34),

∥∥k+
1

∥∥
Xr
c
= 1

Γ (α)

( ∞∫
1

[∣∣xc−µ
∣∣(logx)α−1]r dx

x

)1/r

= 1

Γ (α)

( ∞∫
0

e−[Re(µ)−c]uru(α−1)r du

)1/r

. (5.8)
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Since the integral is convergent if and only ifα > 1− (1/r)= (1/p)− (1/q) and
Re(µ) > c, one hask+

1 ∈ Xr
c (1 � r < ∞) if and only if α > (1/p) − (1/q) and

Re(µ) > c, which coincides with the conditions of the theorem in the case (a).
Substitutingy = [Re(µ)− c]ur in (5.8) gives the constantC+

4 in (5.5). Applying
Lemma 4 withk(u)= k+

1 (u) we obtain assertion (a) of the theorem.
To prove (b), we use the obvious property(

J α−,µf
)
(x)= (

QJ α
0+,µQf

)
(x), (5.9)

connecting the Hadamard-type fractional integral (1.25) and (1.13) via the el-
ementary operator (2.5). By Lemma 1(e)Q is an isometric isomorphism ofXr

c

ontoXr−c. Therefore since Re(µ) > −c, we can apply assertion (a) withc being
replaced by−c to obtain (b). Using (5.9), (2.16), and the estimate (5.2) withf

andc being replaced byQf and−c, we have∥∥J α−,µf
∥∥
X
q
c

= ∥∥J α
0+,µQf

∥∥−c,q
� C′

0‖Qf ‖Xp
−c

= C′
0‖f ‖Xp

c
,

which gives (5.6). Here the constantC′
0, being obtained from the constantC+

4 in
(5.5) when replacingc by −c, coincides withC−

4 given in (5.7). We also note that
assertion (b) of the theorem can be proved similarly to the proof of (a) by applying
Lemma 4 to the Hadamard-type integralJ α−,µ in the form (4.5), (4.6). ✷

Puttingc = 1/p in Theorem 7, we obtain the following result.

Corollary 4. Let α > 0, c ∈ R and 1 � p � q � ∞ be such thatα > (1/p) −
(1/q), andµ ∈ C.

(a) If Re(µ) > 1/p, then the operatorJ α
0+,µ is bounded fromLp(R+) intoX

q

1/p,
and ∥∥J α

0+,µf
∥∥
X
q
1/p

� l+4 ‖f ‖p, (5.10)

l+4 := ([Re(µ)− 1/p]r)−α+1/r (Γ [(α − 1)r + 1])1/r
Γ (α)

. (5.11)

(b) If Re(µ) > −1/p, then the operatorJ α−,µ is bounded fromLp(R+) into
X
q

1/p, and∥∥J α−,µf
∥∥
X
q

1/p
� l−4 ‖f ‖p, (5.12)

l−4 := ([Re(µ)+ 1/p]r)−α+1/r (Γ [(α − 1)r + 1])1/r
Γ (α)

. (5.13)

The corresponding statements for the Hadamard-type fractional integration op-
eratorsIα0+,µf andIα−,µf of (1.32) and (1.33) follow from (4.14) and Theo-
rems 7(a) and (b) withµ being replaced byµ+ 1 andµ− 1, respectively.
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Theorem 8. Let α > 0, c ∈ R and 1 � p � q � ∞ be such thatα > (1/p) −
(1/q), andµ ∈ C.

(a) If Re(µ) > c − 1, then the operatorIα0+,µ is bounded fromXp
c into X

q
c , and∥∥Iα0+,µf

∥∥
X
q
c

� C+
5 ‖f ‖Xp

c
, (5.14)

C+
5 := ([Re(µ)+ 1− c]r)−α+1/r (Γ [(α − 1)r + 1])1/r

Γ (α)
. (5.15)

(b) If Re(µ) > 1− c, then the operatorIα−,µ is bounded fromXp
c into X

q
c , and∥∥Iα−,µf

∥∥
X
q
c
� C−

5 ‖f ‖Xp
c
, (5.16)

C−
5 := ([Re(µ)+ c− 1]r)−α+1/r (Γ [(α − 1)r + 1])1/r

Γ (α)
. (5.17)

Corollary 5. Let α > 0, c ∈ R and 1 � p � q � ∞ be such thatα > (1/p) −
(1/q), p′ is given by(3.1)andµ ∈ C.

(a) If Re(µ) > −1/p′, then the operatorIα0+,µ is bounded fromLp(R+) into

X
q
1/p, and∥∥Iα0+,µf

∥∥
X
q

1/p
� l+5 ‖f ‖p, (5.18)

l+5 := ([Re(µ)+ 1/p′]r)−α+1/r (Γ [(α − 1)r + 1])1/r
Γ (α)

. (5.19)

(b) If Re(µ) > 1/p′, then the operatorIα−,µ is bounded fromLp(R+) intoX
q

1/p,
and ∥∥Iα−,µf

∥∥
X
q

1/p
� l−5 ‖f ‖p, (5.20)

l−5 := ([Re(µ)− 1/p′]r)−α+1/r (Γ [(α − 1)r + 1])1/r
Γ (α)

. (5.21)

Puttingµ = 0 in Theorem 7 we arrive at the boundedness of the Hadamard
fractional integration operators (1.30) and (1.31) fromXp

c intoX
q
c .

Theorem 9. Let α > 0, c ∈ R and 1 � p � q � ∞ be such thatα > (1/p) −
(1/q).

(a) If c < 0, then the operatorJ α
0+ is bounded fromXp

c intoX
q
c , and∥∥J α

0+f
∥∥
X
q
c

� C+
6 ‖f ‖Xp

c
, (5.22)

C+
6 := (|c|r)−α+1/r (Γ [(α − 1)r + 1])1/r

Γ (α)
. (5.23)
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(b) If c > 0, then the operatorJ α− is bounded fromXp
c into X

q
c , and∥∥J α−f

∥∥
X
q
c
� C−

6 ‖f ‖Xp
c
, (5.24)

C−
6 := (cr)−α+1/r (Γ [(α − 1)r + 1])1/r

Γ (α)
. (5.25)

Corollary 6. If 1 � p � q � ∞ andα > (1/p)− (1/q), then the operatorJ α− is
bounded fromLp(R+) into X

q

1/p, and∥∥J α−f
∥∥
X
q

1/p
� l6‖f ‖p, (5.26)

l6 :=
(
r

p

)−α+1/r
(Γ [(α − 1)r + 1])1/r

Γ (α)
. (5.27)

Remark 8. Theorems 7–9 and Corollaries 4–6 in the particular caseq = p imply
the inequalities of Theorems 1–3 and Corollaries 1–3, respectively. They were
first established directly since they do not involve deep theorems. Observe that
particular attention is placed upon the many constants involved in the estimates
deduced; they are generally best possible.

6. Hadamard-type fractional integration from X
p
c into X

q
c in special cases

In Sections 4 and 5 we have established the boundedness of the Hadamard-
type fractional integration operators (1.13), (1.25), (1.32), and (1.33) in the cases
when Re(µ) > c, Re(µ) > −c, Re(µ) > c − 1, and Re(µ) > 1 − c, respectively.
In this section we show that such statements can be obtained in the limiting cases
Re(µ) = c, Re(µ) = −c, Re(µ) = c − 1, and Re(µ) = 1 − c for certain special
relations between Re(µ) andc. Our arguments are based on the corresponding
assertions for the Liouville fractional integration operators (2.24) and (2.25).

The classical result [2, Theorem 5.3] is known as a Hardy–Littlewood theorem
with limiting exponent. It states that

Lemma 5. Let 1 � p � ∞, 1 � q � ∞ andα > 0. The operatorsIα+ andIα− are
bounded fromLp(R) into Lq(R) if and only if

0< α < 1, 1<p <
1

α
, q = p

1− αp
. (6.1)

It follows from Lemma 5 that if the conditions in (6.1) are satisfied, then there
hold the estimates∥∥Iα+f ∥∥q �K+‖f ‖p (6.2)

and
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∥∥Iα−f ∥∥q �K−‖f ‖p, (6.3)

whereK+ andK− are certain unspecified positive constants.
Similar statements are true for the Hadamard-type fractional integrals (1.13)

and (1.25) in the cases when Re(µ) = c and Re(µ) = −c, respectively.

Theorem 10. Let 0< α < 1, 1<p < 1/α, q = p/(1− αp), c ∈ R andµ ∈ C.

(a) If Re(µ)= c, then the operatorJ α
0+,µ is bounded fromXp

c into X
q
c , and∥∥J α

0+,µf
∥∥
X
q
c

� C+
7 ‖f ‖Xp

c
. (6.4)

(b) If Re(µ)= −c, then the operatorJ α−,µ is bounded fromXp
c intoX

q
c , and∥∥J α−,µf

∥∥
X
q
c
� C−

7 ‖f ‖Xp
c
. (6.5)

HereC+
7 andC−

7 are certain, unspecified positive constants.

Proof. Let Re(µ) = c. Then in accordance with (4.11),p being replaced byq ,
together with (2.20), (1.36) we have∥∥J α

0+,µf
∥∥
X
q
c

= ∥∥Iα+AMµf
∥∥
L
q

0
= ∥∥Iα+AMµf

∥∥
q
. (6.6)

Since Re(µ) = c, then by Lemmas 2(a) and 1(a)AMµ is an isometric isomor-
phism ofXp

c ontoLp

0 ≡ Lp(R+). So we can apply (6.2) withf being replaced by
AMµf . Using this estimate (6.2) with a constantK+ being replaced by another
constantC+

7 (which depends onµ), we obtain∥∥Iα+AMµf
∥∥
q

� C+
7 ‖AMµf ‖p.

Substituting this estimate into (6.6), taking into account (2.20), (1.36), and apply-
ing (2.22) withϕ =Mµf and (2.11) withζ = µ, we find that∥∥J α

0+,µf
∥∥
X
q
c
� C+

7 ‖AMµf ‖p = C+
7 ‖AMµf ‖Lp

0

= C+
7 ‖Mµf ‖Xp

0
= C+

7 ‖f ‖Xp

Re(µ)
= C+

7 ‖f ‖Xp
c
,

which proves (6.4).
When Re(µ)= −c, relation (6.5) is proved similarly:∥∥J α−,µf

∥∥
X
q
c

= ∥∥Iα+AM−µf
∥∥
L
q
0
= ∥∥Iα+AM−µf

∥∥
q

�C−
7 ‖AM−µf ‖p = C−

7 ‖AM−µf ‖Lp
0

= C−
7 ‖f ‖−Re(µ),p

=C−
7 ‖f ‖Xp

c
.

Thus, Theorem 10 is complete.✷
Corollary 7. Let 0< α < 1, 1<p < 1/α, q = p/(1− αp) andµ ∈ C.
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(a) If Re(µ)= 1/p, then the operatorJ α
0+,µ is bounded fromLp(R+) intoX

q

1/p,
and ∥∥J α

0+,µf
∥∥
X
q

1/p
� l+7 ‖f ‖p. (6.7)

(b) If Re(µ) = −1/p, then the operatorJ α−,µ is bounded fromLp(R+) into
X
q
1/p, and∥∥J α−,µf

∥∥
X
q
1/p

� l−7 ‖f ‖p. (6.8)

Here l+7 andl−7 are certain positive constants.

Corollary 7, which follows from Theorem 10 if we putc = 1/p, solves the
problem raised in Remark 7.

Taking into account the relations (4.14) and applying Theorem 10 withµ

being replaced byµ + 1 andµ − 1, we obtain the corresponding results for the
Hadamard-type fractional integration operatorsIα0+,µf andIα−,µf of (1.32) and
(1.33).

Theorem 11. Let 0< α < 1, 1< p < 1/α, q = p/(1− αp), c ∈ R andµ ∈ C.

(a) If Re(µ) = c− 1, then the operatorIα0+,µ is bounded fromXp
c into X

q
c , and∥∥Iα0+,µf

∥∥
X
q
c
� C+

8 ‖f ‖Xp
c
. (6.9)

(b) If Re(µ) = 1− c, then the operatorIα−,µ is bounded fromXp
c into X

q
c , and∥∥Iα−,µf

∥∥
X
q
c

� C−
8 ‖f ‖Xp

c
. (6.10)

HereC+
8 andC−

8 are certain positive constants.

In particular, the analogue of Corollary 7 follows from Theorem 11, namely
the casec = 1/p.

Finally, by puttingµ = c = 0 in Theorem 10, we can also obtain the bound-
edness fromXp

0 into X
q

0 of the Hadamard fractional integration operatorsJ α
0+f

andJ α−f given by (1.30) and (1.31), indicated in [2, p. 331].
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