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Abstract

The purpose of this paper and some to follow is to present a new approach to fractional
integration and differentiation on the half-a¥®s; = (0, co) in terms of Mellin analysis.
The natural operator of fractional integration in this setting is not the classical Liouville
fractional integrall§ S but

1 x c a—1 d
e wi= s [ (4) (oat) HO% o)
0

for @ > 0, ¢ € R. The Mellin transform of this operator is simply — s) ~* M[ f1(s), for
s =c+it, c,t € R. The Mellin transform of the associated fractional differentiation oper-
atong+’cf is similar: (c — s)* M[ f1(s). The operatng+’cf may even be represented

as a series in terms of ) (x), k € N, the coefficients being certain generalized Stirling
functionsS.(a, k) of second kind. It turns out that the new fractional |nte@’§ o and

three further related ones are not the classical fractional integrals of Hadamard (J. Mat. Pure
Appl. Ser. 4, 8 (1892) 101-186) but far reaching generalizations and modifications of these.
These four new integral operators are first studied in detail in this paper. More specifically,
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conditions will be given for these four operators to be bounded in the sffacé Lebesgue
measurable functiong on (0, 00), for ¢ € (—o0, 00), such thatfé’o [u€ f )P du/u < co

for 1< p < oo and esssyp, glu€|f(u)|] < oo for p = oo, in particular in the space
LP(0,00) for 1 < p < oo. Connections of these operators with the Liouville fractional
integration operators are discussed. The Mellin convolution product in the above spaces
plays an important rolel. 2002 Elsevier Science (USA). All rights reserved.

Keywords:Fractional integration and differentiation; Hadamard-type fractional integrals; Mellin
transform; Mellin convolution; Weighted spacespummable functions; Stirling functions of
second kind

1. Introduction

The purpose of this paper and some to follow is to present a new approach
to fractional differentiation and integration in the Mellin setting. In the classical
sense, the Mellin transforovt of f: R, — C is defined by

e.¢]
M f1(s) ::/us_lf(u)du (s=c+it, c,t €R). (1.1
0
It is directly verified that such a transform of the classicalerivative D" f
(D=d/dx),re N={1,2,...}, for “sufficiently good” functionsf is given by

(= 1)rF(S)

M[D" f](s) = Teon MILfIGs —r). (1.2)
As to therth integral
x U Ur—1
(1" f) ) izfdulfduz... / f () du,
0 0
BRG] / =W du (1.3)

its Mellin transform turns out to be

IF'l—r—ys)
I = - 1.4

M[I" f]() m 5 MU +0). (1.4)
As the reader observes immediately, on the right sides of (1.2) and (1.4) there
occur quotients of gamma functions, and the transfavisf1(s = r) involve
reN.

Now D is not the natural operator of differentiation for the Mellin setting, nor

is it the customary := x D; it is actually
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(O f)x) == (G +0) f)x) =xf'(x) +cf (x)
(c=Res) eR, x >0), (1.5)

that of order € N being defined iteratively by

olf.=e.f, OLf =0.(0:71f) r=23,..). (1.6)
Its Mellin transform is given by

M[OLf](s) = (=it M[f1(s), t=Im(s)€R, (1.7)
or, more generally, for arbitrany € R there holds

M[O fl(s) = (u— ) MIfI(s) (s=c+it, t€R). (1.8)

If « = c the latter formula turns into (1.7). Observe that the right side of (1.8)
does not involve the gamma function.

Now the integration operataf] associated with®,—better still the anti-
differentiation operator—is not the classical integration oper&tarf (1.3) but

X uj Ur—1
d d du,
(Jgf)(x)zx—C/uill uizz / ul f (ur) u”
0 0 0 '
- ) (i)
TEETHAL 9,) S
0
(ceR, x>0). (1.9)

Its Mellin transform, indeed, turns out to be

M[ILf15) = (—it) " MLF1(s) (1.10)

or, more generally, for € R

M[T] f1s)=(u—=9)""MIfIs) (s=c+it, teR). (1.11)

Here no gamma functions occur, and the transférthf](s) is independent of.
The operation®, and J/ are natural in the sense that they are inverse to each
other; thus there hold the relations

O f=f O N f=f (1.12)

for x € R4+ under suitable conditions upgh See [1].

The aim of this paper and its follow-ups is to study the foregoing matter in
all details in the fractional instance when the natured replaced by the positive
reale € R,. Similar investigations are well developed for the classical Riemann—
Liouville and Liouville fractional integro-differentiation—see, for example, [2].
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Firstly, the fractional counterpart of the integral (1.9) is

o ) 1 r u\* X a_lf(u)du
(T6 0 f) () ;m/(;) <'°9;> ”
0

(>0, ueR, x>0, (1.13)

which equals (1.9) fox =r € N and u = c. It will turn out that its Mellin
transform has the form (1.11) withe N being replaced by > 0O:

M[TSy 1) = (=) " MIfIs) (s=c+it, t€R). (1.14)

It is known [2, Section 5.1] that the classical left-sided Liouville fractional
integral of ordew > 0 on the half-axisR ;. has the form (1.3)

(I8 f) ) = % /(x —w)* Yfw)du («>0, x>0), (1.15)
0

while the corresponding left-sided Liouville fractional derivative associated with
(1.15) is given by
o . d " m—o
(D0+f)(x) “\x (IO+ f)(x)
(x>0 m=[a]+1, x>0), (1.16)

where[«] is the greatest integer . This suggests defining the fractional order
derivative foru = ¢ € R in the framework of the Mellin transform for > 0 by

(DG f)(x):= x_cémxc(jéifc“f)(x)

d
(x>0 m=[a]+1), §=x—, (12.17)
dx
or (O fH(x) := (Dng,cf)(x) in the other notation. In particular, i = 1, it is

easy to check theit)éﬂf coincides with®, f in (1.5), while forae = 2

(D3, . f) @) =x2f"(x) + (2c + Dxf'(x) + 2 f (x).

This is indeed(@czf)(x) as defined via (1.6) witlr = 2; see [1]. In fact, this
derivative of order € N can be written as (see [1, (8.2)])

(Doy o f) () = (OLF)(x) =D Se(r. k)xk O (x), (1.18)

k=0

where S.(r, k) (0 < k < r) denote the generalized Stirling numbers of second
kind, defined recursively by
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S.(r,0) =", Se(r,r)=1,
Sc(r+Lk)=S8c(r,k— 1)+ (c+k)Sc(r, k);

an alternative definition of these numbers is
k

1 k ;
Se(r ) =—=>"(" ) (=D e+ ). (1.19)
k! 4 J
j=0

Let us return to the fractional instance. In accordance with extensions of
definitions of various types of numbers in combinatorial analysis from the
classical discrete to the fractional case, as developed, e.g., in [3] and [4], in the
fractional version of (1.18) the finite sum would be replaced by an infinite one,
resulting in

(Dg; . f)x) =D Se(e x* FO (), (1.20)
k=0
where
1 &k
k—j -\
Sc(a,k)zﬁjg(:)(j>(—l) I(c+ j)*. (1.21)

Whenc =0, thenS(«, k) = Sp(«, k) are the Stirling functions af > 0 of second
kind introduced in [5] and developed in [6].

Definition (1.20) would be an alternative to (1.17). To make the matter
intuitively clear, let us proceed formally as follows. There hold the relations

]

(k)
fay=3" L0

!
pard k!

k

SR (9)
-3/ k'(X) » (l;)(—l)ijkjuj, (1.22)
k=0 ’

j=0

noting the binomial expansion, and the directly checked one
(O*)(x) = (c+w)*x", Rec+pu)>0. (1.23)

Substituting this result withy = j in (1.22), after differentiating this Taylor series
term by term, we obtain (1.20). Similar arguments yield an alternative version of
(1.13) in the form (1.20)

o
(T8 )@ =D S (o l)x* f O (). (1.24)
k=0
The relations (1.24) and (1.20) present a unified representation for the fractional
integrals (1.13) and derivatives (1.17), being obtained from each other by re-
placingc by —c.
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Similarly to the definition of the right-sided Liouville fractional integrfélf of
the form (1.15), replacing the integration ovérx) by that over(x, oo) [2, (5.3)],
we can define the right-sided fractional integration of the form (1.13)

. 1 eV u\ T Fw du
e T )

(x>0, neR, x >0), (1.25)

and the corresponding fractional differentiation
(D f)(x) :=x(=8)"x (I 2% f)(x)
d
m=[a]+1, a>0), §=x—. (1.26)
dx
These may also be written in the forms

(T2 £) @) =) 8% (e b)xk B (), (1.27)
k=0
(D2 f)@) =) Sk, bx* O, (1.28)
k=0
where
1 & /k .
S*(a, k) := o ,X_E) <]) (=D (c = j)*. (1.29)

We hope that the above approach will be useful in generalizing several known
results and to obtain new trends of research not only in the theory of fractional
calculus, but also in combinatorial analysis, approximation theory, and other
fields.

Note that whenu = 0, (1.13) and (1.25) take on the forms

oo [ N du
.0 =1 [ (10a?)
0

(>0, x>0 (1.30)

and

x® a—1
(jff)(x) = %/(Iog%) f(uu) du (>0, x>0), (1.31)

respectively. The particular integral (1.30) was introduced by Hadamard [7]
and therefore the integrals (1.30) and (1.31) are often referred to as Hadamard
fractional integrals of ordex > O; see [2, Sections 18.3 and 23.1, notes to
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Section 18.3]. Therefore we may call the more general integrals in (1.13) and
(1.25) Hadamard-type fractional integrals.

Our paper deals with these integral operators and two of their modifications,
namely

1 [(u\" “1 ruyd
@0 =1 [(£) (lal) H2% w0, @22
0

o 1 A\ u\ T fdu
(I—,Mf)(x) = m /(;) (log ;) N ()C > 0) (133)

with « > 0 and complex. € C. We note that the operators in (1.32) and (1.33)
are conjugate to those in (1.25) and (1.13), respectively.

We will study the operatorsy', /., J% , f, 15, ,f,andZ? , f inthe space

X? (c eR, 1< p < o0) of those complex-valued Lebesgue measurable functions
f onR4 = (0, co) for which I fllxr < oo, where

00 1/p
d
I fllxr = (/\ucf(u)!’]f) (1< p<oo, ceR) (1.34)
0
and
I llxee = esng{uclf(u)l] (ceR). (1.35)

In particular, whenc = 1/p (1 < p < o0), the spacex? coincides with the
classicalL? (R )-spaceL?(Ry) = X¥, with

1/p
o 1/p
||f||p=</|f(u)|”du) (1< p <o),
0
1/ lloo =eSS§u¢f(u)I- (1.36)

In this paper we will give conditions for the operators in (1.13), (1.25),
(1.32), and (1.33) to be bounded in the spage These results are based on
the corresponding assertions for the Mellin convolution proguetf of two
functionsf, g : R+ — C, defined by

T d
(g*f)(x)=/g<;—c>f(u)7u (x eRy), (1.37)
0

in case the integral exists. We will also obtain the corresponding properties for
the Hadamard fractional integrals (1.30) and (1.31). In particular, the results in
the spacd , (R) will follow.
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It should be emphasized that some results of this paper will be established by
three different methods of proof, which are used throughout, in order to point out
their relevance and importance in our new approach to fractional calculus in the
Mellin setting. The first deals with the self-contained Mellin analysis approach
developed in [1,8], the second method with an operator-theoretic approach.
Whereas both methods cover the mapping properties of the four new operators of
fractional integration from the spacdg’ into itself, the third is connected with the
mapping properties frorx? to X{ for 1 < p < ¢ < oo. The results established
by the third method of proof include in part those of the first two; however, in
contrast to the first two methods, which are rather elementary, the third method is
not self-contained but relies on the deep Riesz—Thorin theorem.

Note that another fractional calculus in the Mellin setting was introduced in [9,
Definition 2.4], where the linear operatai$® andk,.* were defined by

Irn+1—s/m)
ne = 1.
(M 1)) Fotatism MPDE (1.38)
and
I'(n+s/m)
K P e e 1.
(MK f)(s) T et sm MO (1.39)
respectively, for f in a special Fréchet spacg, ,. Here I, = Ing;m,n

and K, “ = 1%,  are the familiar Erdélyi-Kober-type operators of fractional
integration and differentiation; their explicit representations can be found in
[10, Chapter 3] and [2, Section 18.1]. The boundedness of such fractional
integration operators i/ -spaces together with the relations (1.38) and (1.39)
were established in [11, Corollaries 3.1 and 4.1]. Observe that the right-hand sides
of (1.38) and (1.39) involve quotients of gamma functions.

We also mention a series of papers devoted to the investigation of Mellin
multipliers in the frame of the Mellin transformi defined in terms of the Fourier
transform by(M f)(s) = [ T f(e*)du. In [12] a class of multipliers
h was constructed, which lead to a bounded linear mapginigom X/ into
X,’j for 1 < p < oo and suitable complex number, and for which the relation
(MTF)(s) = h(s)(Mf)(s) holds for f € X! n X5; see [13] in this connection.

A similar class of Mellin multipliers in the setting of the spagg,, was examined

in [14], where the fractional integration operat{** in (1.39) was considered

as an example [14, Example 3.4]. A Mellin transform approach to develop a
theory of complex powerg“ of linear operatord” on the basis of the relation
(MT® f)(s —ay) =[h(s —ay)/h(s)|(Mf)(s) in the spacex’;, F, . andthe
corresponding space of generalized functiﬁy@ was carried out in [15,16].

The paper is organized as follows. Section 2 presents isomorphic properties of
some elementary operators in the sp&feand the connections of the Hadamard-
type operators (1.13) and (1.25) considered with the Liouville fractional integral
operators on the real lin®. Mapping properties of the Mellin convolution
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operator (1.37) in the space’ are given in Section 3. Section 4 is devoted to

the boundedness of the operatdi%w, JE 0 Ing, andZ? , inthe spacex’.

Sections 5 and 6 deal with such properties from theXfiespace to the othex?
forl<p<g<oo.

2. Auxiliary results

For a function f(x) defined almost everywhere oR. we define the
elementary operato®,, 7;, Na, R, andQ as follows:

(M f)(x)=x°f(x) (€C), (2.1)
(th f)(x)=Hh f(hx) (heRy, reR), (2.2)
(Nar Y(x)=lal" f(x?) (@€R, a#0, reR), (2.3)
1 /1
®nw=11(3) 2.4)
X X
and
1
(QN)(x) = f(;) (2.5)

It is clear that the inverse operatdvg‘l, (t))7t, Nyt R71, andQ ! have the
forms

(M7 f) @) =M ))x) =xf(x) (£ €C), (2.6)

(z)) ) ) = h’f(%) (heRy, reR), 2.7)

(Nt )@ =lal " f(x") (@eR, a#0, reR), (2.8)

(R71f)(x) = (RF)(x), (2.9)
and

(071 () = () (x). (2.10)

The following assertions are easily verified.
Lemmal.LetceR,1<p<ooandf e X7.
(@) M, with ¢ € C is an isometric isomorphism of” onton_Re(o:
1M fllyr =11l (2.11)
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(b) The translation operatot; with 2 € R, andr € R is an isomorphism ok’
ontoX?:

I fllxe =h"Nf e (2.12)
In particular, r; is an isometric isomorphism of? ontoX?:
2 e = 1F xe- (2.13)

(€) N, witha e R (a # 0) andr € R is an isomorphism ok” onto X7,

INar fllxr = lal"" 2| fllxo. (2.14)

ac

In particular, N, 1/, is an isometric isomorphism of? onto X7..:

[Na.r fllxe, = I f I xp- (2.15)
(d) R is an isometric isomorphism of’ onto X} _:

IRfNxr = 1fllxp- (2.16)
(e) Q is anisometric isomorphism of” onto X”

1Qflxr =S lxe- (2.17)

Remark 1. The assertions of Lemma 1 are indicated in part in [17]; for part (b)
see especially [1,8].

For a functionp(x) defined almost everywhere éhwe define the elementary
operatorA by

(Ap)(x) = g(e"). (2.18)
It is clear its inverset—1 has the form
(A1) () = v (log(x)) (2.19)

for a functiony (x) defined almost everywhere ¢t .
Forc e R and 1< p < oo we denote by.” the space of those complex-valued
Lebesgue measurable functiaps:) on R such thaﬂ|<p||Lf < 00, Where

00 1/p
el r = ( / ‘ec’%p(u)]pdu) (1<p<oo, ceR) (2.20)
—0Q
and
llze = essRsuErc“lgo(u)l] (ceR). (2.21)
ue

The following assertion holds.
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Lemma2. Letce Rand1l< p < oo.

(@) A is isometric isomorphism of? onto LZ:
lA@ll r = ll@llxr- (2.22)
(b) A~1is isometric isomorphism df? onto X% :

lAT Y g =1l o- (2.23)

Proof. If 1 < p < oo, then using (2.18) and (2.20) and making the change of
variableu = log(x), we have

00 1/p
||A<0||Lf=< /\ec“w(e“)’pd“)

—00

o0 1/p
= (/|x%o(x)|”dx> = llgllxe,
0

which proves (2.22) for X p < oco. If p =00, then by (2.18) and (2.21),
lA@lLe = esssu@e”‘ ()] = essgupxﬂgo(xn] = llllx,
ue x>
which yields (2.22) withp = co. The relation (2.23) is proved similarly.C

In conclusion we note that the Hadamard-type integrals (1.13) and (1.25) are
closely connected with the Liouville fractional integrétsf andI® f, defined on
the whole real lindR by

17 d
(19 £) (x) = T (xf i“:)fia (@>0, xeR) (2.24)
and
(1% ) (x) ! fwdn 0 xeR), (2.25)

~T( (u —x)l-«

respectively [2, Section 5.1]. It is directly checked that such connections for the
operators (1.13) and (1.25) are given by the relations

(T84, f) ) = (M A" IS AM,, ) (x) (2.26)
and

(T2, 1)) = (My AT IEAM -y, f) (), (2.27)
where the elementary operatdis, andA are defined by (2.1) and (2.18).



12 P.L. Butzer et al. / J. Math. Anal. Appl. 269 (2002) 1-27

3. Mélin convolution in X?
Let 1< p < oo andp’ be the exponent conjugate i i.e.,

— 4+ —=1, (3-1)
p p

wherep’ = oo for p =1, whilep’ =1 for p = 1.
The first result for the Mellin convolution produgt« f of (1.37) in the space
X7 is given by the following theorem.

Theorem 1. Letc e Rand1< p < oo.If f e XY andg Xcl, theng * f exists
(a.e) onR_, belongs tax?, and

g * fllxr < lglixzllfllxr- (3.2)

Proof. First we consider the case< p < co. By [7, p. 396] the function
[g(x/u) f(u)]°u?~1 is measurable oR,.. If p > 1, then using the property

gxf=[=xg (3.3)
and applying the Holder inequality, we have for almostvadl R
o0
S/Ig(u)ucll/p |gwyu<r/?’ f(£>
u
0
T .du yr R x\|? du Yr
<( [reaomt)  ( [rewren|p(2)F
u u u
0 0
o0 1/p
! ’ X pdbt
:(Ilgllx;)l/p (/Ig(u)lu_””/” f(—) —) .
¢ u u
0

if we take into account (1.34) with = 1. Using Fubini’'s theorem and substituting
y = x/u, we obtain

x\ |’ du\ dx

u u X

)

[(g* )] =(f * &) ()]

1/p du

u

o0 o0
(g% Fllge)” < (Iglxe)”” /xcp(/w(u)mw’
0 0

Pax

o8} d (o8}
/ _ rau
= (1) [[1gaourr S [
0 0

X
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= (Iglly2)"" /|g(u>|u—”’/f’ op Lt : / YOI y
0
=(||g||x;)1+”/” (1 11xe)” = (Iglx)” (1LF )2 -
c X

Now (3.2) follows for 1< p < oo. If p =1, then Fubini’s theorem gives

lg % fllxa < / 1dx/|f<u>| o)
i [

Further, in accordance with (1.35) and (1.34)fet 1, we have for almost all

)CER+,
T _ X du
I(g*f)(X)I</[u”|f(u)l][u g(;)H;
0

o
e X du e
SIfllxe | |u"|8 = IflIxellglix,
0

which yields (3.2) forp = co. This completes the proof of the theorent

du

dx = fllxzllgllxz.

The next theorem presents the second resulg for with g in the spacé(f/.

Theorem 2. Letc € R, 1< p < oo and p’ be given by(3.1). If f € Xx? and
g€ Xf ,theng x f exists as a contlnuous function 81 with
g * Fllxge < Ngly I 1l xz- (3.4)

Proof. Using (2.2) and noting the Holder inequality, we have

|(g*f)(x) — (g * )™

h
/If(u)lu ( ) he ( x)
u
since
/ g(h—x)ﬂmd—“ _ / r;g(f)fw)hcd—“
u u u u
0 0

u —, (3.5)
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If 1 < p < oo, then there follows

|(g* H(xX) = (tf(g * 1)) ()]

< ||f||xg(/’g(;i) _hcg<h7x)
0

’ 1/p
p —c /du
u_ r__—
u

Jx —cp/dy 1/p'
<||f||xf</!g(y)—hcg(hy)\p(;) 7) : (3.6)
0
and thus
(g% ) = (g + N) @ <x NS llyr |8 = ig o (3.7)

for 1 < p < o0. This estimate also holds fgr= 1, because from (3.5) we have

|(g* H(xX) = (tf(g * 1)) ()]

r d
< /‘f(%)‘y‘c[y”\g(y) - h”g(hy)\]yy
0

(o8]
<lls—iglx /’f(%)’y‘“dy =x U fllxzll g — i8] xoo-
0

According to the relation (7) in [8], one has
4 _ . , = I
}!IL)ang Thg“x[? 0, geX¢, (3.8)
and hence (3.7) yields the continuity of the convolution result:
fim [(g % ) = (g + /) (0] =0,

To prove the estimate (3.4), ford p < oo similarly to (3.5) and (3.6) we have

()
o
u
T X
< |If||xf</’g<;)
0
o0 —ep 1/p'
/ P d
=||f||x5</|g(y)l” (’i> —y> ,
0 y y

_du
u ‘—
u

’ 1/p
p —c /du
u_ r__—

(g /)(0)] </|f<u>|uc
0

u

and hence
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I(g*f)(X)I<x‘cllfllxg||gllez (3.9)
for 1 < p < 0. In patrticular,
(g * IO <X U fllxeellglxa (3.10)

Therefore the estimate (3.9) also holds foe 1, because, in accordance with
(3.3) and (3.10),

(g * YOI =1(f ) < fllxrxNgllxee.
Now (3.9) yields (3.4), and so the theorem is proved.

Remark 2. In the casep = 2 Theorems 1 and 2 were proved in [8, Lemma 2.2].
For p =1 see [1].

Takingg(u) = k(u) in Theorems 1 and 2 we obtain the following result for the
Mellin integral convolution operator:

r d
(KF)(0) = (k * f)x) = / k(%) ™ >0, (3.11)

0
Theorem 3. Letc e Rand1 < p < oo.
@) Ifke X} then the operatoK is bounded inX? and there holds the estimate
IKfllxr < Cllfllxr, (3.12)
where
C = [lkllxz < o0 (3.13)

(b) If k e X?', then the operatoK is bounded fronk?” into X° and there holds
the estimate

IK flixee < C'll fllxes (3.14)

where

C' =kl < oo. (3.15)

/
x?

Remark 3. Theorem 3(a) is thef”-analogue of the Young inequality ih,-
spaces; see, for example, [19, p. 199].
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4. Hadamard-typefractional integration in X?

In this section we apply Theorem 3(a) to prove the boundedness property for
the Hadamard-type fractional integrals (1.13), (1.25), (1.32), and (1.33) in the
spacex” . Such a property for the Hadamard-type opera\ﬁg‘ﬁuf andJ? , f
in (1.13) and (1.25) are given by the following theorem.

Theorem 4. LetceR, 1< p<oo,a>0andu eC.
(@) If Re(w) > ¢, then the operator7g, , is bounded inx”, and

|78 f e SCLN Sy, Cf =[Re(w) — I ™. (4.1)
(b) If Re(u) > —c, then the operato® , is bounded ink?, and

|72 fllxr SCrIfllxps € =[Re(w) +c]™. (4.2)
Proof. Jg, u and J2 , are Mellin convolution operators of the form (3.11),
namely
T d
(J§‘+,,tf)(X)=/k1+(;—C>f(u)7u (x eRy), 4.3)
0
kKw)=0 (O<u<l,
+ _ 1 —u a-1
ki (u) = @ u (log(u)) (u>1), (4.4)
and
(T, )®) —/k ( )f(u)— (x eRy), (4.5)
0
1 (X—l
- — I3 —
ki (u) = F(a)u [Iog<u>:| O<u<l,
ki (w)=0 (u>1), (4.6)

respectively. It is directly verified that the constahof (3.13) is given by
C=C; =[Re(u) —cl™ 4.7)
for the operato gw, while by
C=C; =[Re(n) +c]™ (4.8)

for the operato7? . Thus Theorem 4 follows from Theorem 3(a)
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We also note that the results in Theorem 4 may be proved on the basis of the
relations (2.26), (2.27) between the Hadamard-type integrals (1.13), (1.25) and
the Liouville fractional integrals (2.24), (2.25) by using the following result (see
[2, Theorem 5.7] witho = —cp).

Lemma3.LetceR,1< p <ooanda > 0.
(a) If ¢ <0, then the Liouville fractional integration operatdf’ is bounded in
L? and
NSl e <CHNfllps €T =lel™. (4.9)

(b) If ¢ > 0, then the Liouville fractional integration operatdf’ is bounded in
L and

18 f]p <CTNS ey € =c (4.10)

Indeed, using (2.26), (2.11) with= . and f being replaced byrllj‘ﬁAMMf
and (2.23) withp = IYAM,, f, we have
-1
T84 f o = Mo A 1AM |
_ ] |y
= AT SAM, ]| X = l1¢AM, f| Ly 41D
By Lemmas 2(a) and 1(a) M, is an isometric isomorphism of? ontoLf_Rew).

Sincec < Re(u), we can apply Lemma 3(a) witli being replaced baM,, f, ¢
replaced by — Re() andC* = C; to deduce

+
“ IiAMltfHLffRe(M) <C ||AMltf||Lf_Re(m~
Substituting this estimate into (4.11), using (2.22) wite: M, f and (2.11) with
¢ = pu, we find

o + _ ot _ct
|98, 1l xe < CTNAMuFl L =CEIMufllyr  =CTIS Iy,

which proves (4.1).
The relation (4.2) is proved similarly by applying (2.27), (2.11), (2.23),
Lemma 3(b), (2.22), and (2.11), thus

192, 7L = 147 2 AM = |15 AM 1],

—Re(u)
and

| 72,11

xe =AM f < CUIAM- fllpy

c—Re(p)
= C]_ ||M7,uf||xf_Re(M = Cl ||f||xf

The next corollary follows from Theorem 4 if we take= 1/p and apply
definition (1.36).
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Corollary 1. Letl< p<oo,a>0andu € C.

(a) If Re(u) > 1/p, then the operatoy/g, , is bounded inL”(R+), and

l —
|78 f L, <E A, 1 = [Re(u)—;} : (4.12)

(b) If Re(w) > —1/p, then the operatog/® , is bounded inL”(R.), and

177
|7 £, <A, zgz[Re(uHﬂ : (4.13)

Taking into account the obvious relations

o+t = Jor sl %, =92 1f (4.14)

between Hadamard-type fractional integrals (1.32), (1.13) and (1.33), (1.25), and

applying Theorem 4 withw being replaced by. + 1 andu — 1, we obtain the

X”-boundedness properties of the Hadamard-type fractional integration operators
0+ uf andZ? Mf

Theorem 5. Letce R, 1< p<oo,a>0andu €C.

(@) If Re(u) > ¢ — 1, then the operatof,  is bounded inx?, and

0+,
178, flxr <CINFllxr, €3 =IRe(w) +1—cl™ (4.15)

(b) If Re(n) > 1—c, then the operatof” , is bounded inX?, and
172 o fllxr SCH NS llxp, €5 =I[Re() +c—117% (4.16)
Corollary 2. Let1 < p < o0, > 0andu € C, andp’ be given by3.1).

(@) If Re(n) > —1/p’, then the operato 0+., IS boundedinL?(R,), and

1 —o
|Z8, £, <IFNFlp. 13 = [Re(u)+ } . (4.17)

(b) If Re(n) > 1/p’, then the operatofﬁ,u is bounded inL”(R.), and
1 —
|72, fl, <A, 1 =|Re(w) — i (4.18)

Putting,. = 0 in Theorem 4, we obtain thg? -boundedness of the Hadamard
fractional integration operatot®y, f and 7 f given by (1.30) and (1.31).
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Theorem 6. Letc e R, 1< p < oo anda > 0.

(@) If ¢ <0, then the operatoy/y, is bounded ink”, and

|78 fll xr S CNfllxps  Cq =lel ™. (4.19)
(b) If ¢ > 0, then the operato7® is bounded inx?, and
|72 Flyr <C5 I f g, C3=c (4.20)

Corollary 3. If 1 < p < o0 anda > 0, then the operatog7* is bounded in
L?(Ry),and

|7 7], <t fllp,  la=p. (4.21)

We have stated Corollaries 1-3 explicitly since the operatlg’rsﬂ &
5, 0 15, andJ2 mapL? (R4 ) into itself for anye > 0, whereas the classical
LiovaiIIe operators[i, 1% of (2.24), (2.25) only map.?(R) into L4(R) for
O<a<l1l,1l<p<1l/(1—a)withg=p/(1l—ap); see Lemma5 below. This is
one of the further advantages of the four operators introduced in this paper.

Remark 4. Theorem 6 would also follow from Lemmas 2 and 3, if we take into
account the relations (2.26) and (2.27) with= 0.

Remark 5. The boundedness of the operatg® in a weighted space of
p-summable functions was indicated in [13].

Remark 6. Corollaries 1-3 (but not the more general assertions of Theorems 4—6)
could be also proved on the basis of the well-known theorem on the boundedness
in L?(R.) of the integral operator

oo

(KfHHx) :/k(x, u) f(u)ydu (x> 0), (4.22)
0

with a homogeneous kernglx, u) (x > 0, u > 0) of degree—1: k(Ax, Au) =
A Yk(x,u) (A > 0); see, for example, [2, Theorem 1.5]. According to this theo-
rem, if 1< p < oo and

o0 o0
:f|k(x,1)|x—1/l”dx=/|k(1, W YP du < o, (4.23)

then the operatd( is bounded in.?(R,), and

IKfllp < K'ILf Nl p- (4.24)
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Remark 7. As it was shown in Corollary 3, the boundedness properiyAitR ;)
holds for the one Hadamard operat@f f, but such a property is not valid for
the otherJg, f. The above theorem in Remark 6 yields more clearly this fact.
Indeed, for the operatgr® f the kernek (x, u) in (4.22) has the form

k(x,u)=0 (u<x),

1 u\% 11
k(x,u) = m |Og(;) - (u>x), (4.25)

with the finite constant
1 ; r
K =—— / llogx|*~x =7 dx :/e*“/Pu"*ldu =p*. (4.26)
I'(x)
0 0
However, for the operataf, f,

1 x\* 11
k(x,u)= —IOQ(;) ” (u<x),

()
k(x,u)=0 (u>x), (4.27)
and the constant in (4.23) yields the divergent integral
o o
K' = i/(logx)“flel/p/ dx :/e”/puafldu. (4.28)
I' (@) J ,

This fact leads us to conjecture that the opergffy f is probably bounded from
L?(R4) into another space. This is considered below.

5. Hadamar d-typefractional integration from X? into X?

In the previous Section 4 we have studied the boundedness of the Hadamard-
type fractional operators (1.13), (1.25), (1.32), and (1.33) féofninto X7. In
this section we show that these results stay true for the mappings from the one
X7’ -space into anothex?. For this matter we recall the following application of
the Riesz—Thorin convexity theorem [19, 195ff], namely Young’s inequality.

Lemmad. Letc € R and letp, r andq be such that

1 1 1
1<p<oo, 1<r<oo, —=—+4+--12>0. (5.1
qg P T
If fe X! andke X!, then for almost alk > 0, there exists the integrék f)(x),
given by(3.11) and the integral operatoK f = k = f is bounded fronX? into
XZ: there holds the estimate
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IK fllxs < Coll fllxr (5.2)

where

Co = llkllx; < oo. (5.3)

From this lemma we deduce the corresponding statements for the Hadamard-
type fractional integrals (1.13) and (1.25). Namely the following result is true.

Theorem 7. Leta >0, ce Rand1 < p < ¢ < oo be such thatr > (1/p) —
(1/¢),andu € C.

(@) If Re(u) > ¢, then the operatorg, , is bounded fronx? into XZ, and

| T84 f e < CENF ke, (5.4)
where

— 1/r
C} = (Req) — ) L@ = Dr 1D

3

I ()
1 1 1
-=-—-—+1 (5.5)
rq p
(b) If Re(u) > —c, then the operato7® , is bounded fronk¢ into X{, and
|72 g < Co U Ny (5.6)

where

_ —at1/r (Cl(@ = Dr + 1DY7
Ci = (Re) + ep) T LN

1 1 1
=41 (5.7)
r.-q p

)

Proof. The Hadamard-type integré{‘)"+’u is an integral (3.11) of the form (4.3),
(4.4). 1f 1< p < g < oo, we definer as in (5.1) by ¥r = (1/9) — (1/p) + 1.
Itis clear that(1/p) + (1/r) > 1. So the conditions in (5.1) are satisfied and we
can now apply Lemma 4 to the Hadamard-type integﬁlyu. Since 1< r < 00,
then in accordance with (4.4) and (1.34),

oo

_ 1
Xe ') /

1
00 1/r
= 1 /‘ef[Re(“)fc]Wu(afl)rdu . (5.8)
()
0

o9

1/r
xTH (|ng)°‘*l rd_x
X
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Since the integral is convergentif and onlwit~ 1 — (1/r) = (1/p) — (1/¢9) and
Re(u) > ¢, one has; € X% (1<r < oo) ifand only if & > (1/p) — (1/¢) and
Re() > ¢, which coincides with the conditions of the theorem in the case (a).
Substitutingy = [Re(w) — clur in (5.8) gives the constaidt; in (5.5). Applying
Lemma 4 withk (1) = kf (1) we obtain assertion (a) of the theorem.

To prove (b), we use the obvious property

(7%, ) @) = (0T, . Of ) ), (5.9)
connecting the Hadamard-type fractional integral (1.25) and (1.13) via the el-
ementary operator (2.5). By Lemma 1(@)is an isometric isomorphism of’,
onto X” .. Therefore since Ret) > —c, we can apply assertion (a) withbeing
replaced by—c to obtain (b). Using (5.9), (2.16), and the estimate (5.2) vfith
andc being replaced by f and—c, we have

172 o = |98 @F |y < CHIQF Nxr = Chll £l

which gives (5.6). Here the constafi}, being obtained from the constaﬁj in

(5.5) when replacing by —c, coincides withC,,” givenin (5.7). We also note that
assertion (b) of the theorem can be proved similarly to the proof of (a) by applying
Lemma 4 to the Hadamard-type integr#t |, in the form (4.5), (4.6). O

Puttingc = 1/p in Theorem 7, we obtain the following result.

Corollary 4. Leta >0, ce Rand1 < p < ¢ < oo be such thatr > (1/p) —
(1/9),andu € C.

(a) If Re(u) > 1/p, then the operatory, u is bounded froni.” (R ) into Xl/p
and

||jg‘+,uf||xg/p <L flp, (5.10)
sl (D@ = Dr + 1YY"
(b) If Re(n) > —1/p, then the operato7? , is bounded fromL”(R;) into
X1, and
172 f g, <L 171 (5.12)
sl (D@ = Dr + 1YY"
— (IRe(o) + 1/pir) T LD (5.13)

The corresponding statements for the Hadamard-type fractional integration op-
eratorsZg,  f andZ%  f of (1.32) and (1.33) follow from (4.14) and Theo-
rems 7(a) and (b) wm;u being replaced by. + 1 andu — 1, respectively.
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Theorem 8. Leta >0, ce Rand1 < p < ¢ < oo be such thatr > (1/p) —
(1/¢),andu € C.

(@) If Re(w) > ¢ — 1, then the operatoZg, , is bounded fronx? into X¢, and

176, f | xe < CS NS gz (5.14)
C = (IRe) + 1— ) 1@ —Fl();’)+ W (5.15)
(b) If Re(u) > 1— ¢, then the operatof® , is bounded fronX{ into X¢, and
172 0 f o <C5 s (5.16)
Cs = ([Re(n) + ¢ — 1]V)_a+1/r L _1“1()(:;;L L : (5.17)

Corollary 5. Leta >0, ce Rand1 < p < ¢ < oo be such thatr > (1/p) —
(1/q), p' is given by(3.1)andu € C.

(@) If Re(n) > —1/p’, then the operatorzgﬁu is bounded fromL?(R;) into
x{i,,, and

[ 8‘+,,tf||xg/p <ENflp. (5.18)
—at1/r (Tl = Dr + 1DY7
I'(a)

(b) If Re(u) > 1/p’, then the operatoZ® , is bounded fronL”(R) into Xj/p,
and

I3 = (IRe(w) + 1/p'1r) (5.19)

1720 f g <ES1S0p, (5.20)

—at1yr (Pl — Dr + 1DYr
I'(x) ’

I == ([Re(w) — 1/p'lr) (5.21)

Puttingu = 0 in Theorem 7 we arrive at the boundedness of the Hadamard

fractional integration operators (1.30) and (1.31) fr&thinto X¢.

Theorem 9. Leta >0, ce Rand1 < p < ¢ < oo be such thatr > (1/p) —
1/q).

(a) If ¢ <0, then the operatoy7g, is bounded fromk? into X{, and

|78 £l xe <CENFllge, (5.22)

_ yr
Ct = (jelry e+ 1@ Fl();;rl]) , (5.23)
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(b) If ¢ > 0, then the operato7® is bounded fronx? into X¢, and

|7 fllxa < Cg N fllxes (5.24)

— 1/r

Corallary 6. 1f 1 < p < g < o0 anda > (1/p) — (1/g), then the operato/® is
bounded fromL.”(R_) into Xj/p, and

HJi’fIIXg/p <lsll f 1, (5.26)

e = (1)‘““/ " (Il — Dr + 1Y
6= (@)

(5.27)

Remark 8. Theorems 7—9 and Corollaries 4-6 in the particular gasep imply

the inequalities of Theorems 1-3 and Corollaries 1-3, respectively. They were
first established directly since they do not involve deep theorems. Observe that
particular attention is placed upon the many constants involved in the estimates
deduced,; they are generally best possible.

6. Hadamar d-typefractional integration from X7 into X7 in special cases

In Sections 4 and 5 we have established the boundedness of the Hadamard-
type fractional integration operators (1.13), (1.25), (1.32), and (1.33) in the cases
when Réu) > ¢, Re(u) > —c¢, Reu) > ¢ — 1, and Réu) > 1 — ¢, respectively.

In this section we show that such statements can be obtained in the limiting cases
Re(n) = ¢, Re(u) = —c, Re(n) = ¢ — 1, and Réw) = 1 — ¢ for certain special
relations between Rg) andc¢. Our arguments are based on the corresponding
assertions for the Liouville fractional integration operators (2.24) and (2.25).

The classical result [2, Theorem 5.3] is known as a Hardy—Littlewood theorem
with limiting exponent. It states that

Lemma5. Letl1< p < oo, 1< g < ooanda > 0. The operatord¢ andI® are
bounded fronL? (R) into L9 (R) if and only if

1
O<a <1, l<p<-—, q= (6.1)
o

l—ap’

It follows from Lemma 5 that if the conditions in (6.1) are satisfied, then there
hold the estimates

|5 r 1, < KFIr, (6.2)

and
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|21, < K0S (6.3)

whereK T and K ~ are certain unspecified positive constants.

Similar statements are true for the Hadamard-type fractional integrals (1.13)
and (1.25) in the cases when(®8 = ¢ and R&u) = —c, respectively.
Theorem 10. LetO<a <1, 1<p<1l/a,g=p/(1—ap),ce Randu € C.

(@) If Re(u) = ¢, then the operatoy7g, , is bounded fronX¢ into X¢, and

| T84 f e < CTIFNxe- (6.4)
(b) If Re(u) = —c, then the operato7® , is bounded fronX¢ into X{, and
|72 0 llxe <C7 UM (6.5)

Here C; andC; are certain, unspecified positive constants.

Proof. Let Re(w) = ¢. Then in accordance with (4.11), being replaced by,
together with (2.20), (1.36) we have

|74 1t Nxo = 1AM f| g = |12 AM 1], (6.6)

Since Réu) = ¢, then by Lemmas 2(a) and 1(&)M,, is an isometric isomor-
phism of X7 ontoLg = L?(R4). So we can apply (6.2) witlf being replaced by
AM,, f. Using this estimate (6.2) with a constatit” being replaced by another
constanC;L (which depends op), we obtain

|18 AMf], <CTIAM Sl

Substituting this estimate into (6.6), taking into account (2.20), (1.36), and apply-
ing (2.22) withg = M, f and (2.11) withy = p, we find that

| T4 f |y < CTUAMfllp = CTIAM, fl 7
+ + +
=C7IMufllyy =C7 1 flIxp,, =C7llflxr,

which proves (6.4).
When Réun) = —c, relation (6.5) is proved similarly:

|72, s = 1AM g = 124N, 1],
SCIAM-y fllp = C7IAM - fllLp = C7 1L l-Reo).p
=C7 1 flxe-

Thus, Theorem 10 is completen

Corollary 7. LetO<a <1,1<p<1/a,qg=p/(l—ap)andu € C.
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(a) If Re(n) =1/ p, then the operato gjw is bounded fronL.” (R..) into X7

1/p

and b

||*7(§x+uf|| Xz/p < l;r”f”p (67)

(b) If Re(n) = —1/p, then the operato7? , is bounded fromL? (R, ) into
X1, and

17200 g, < TSN (6.8)
HerelJ andl; are certain positive constants.

Corollary 7, which follows from Theorem 10 if we put= 1/p, solves the
problem raised in Remark 7.

Taking into account the relations (4.14) and applying Theorem 10 with
being replaced by. + 1 andu — 1, we obtain the corresponding results for the
Hadamard-type fractional integration operatﬁgqs_’ u fandZ?  f of (1.32) and
(1.33).

Theorem11. LetO<a <1,1<p<l/a,g=p/(L—ap),ce Randu € C.
(@) If Re(u) = ¢ — 1, then the operatofg, , is bounded fronk? into X4, and

1781 F s <Cgll flixe- (6.9)

(b) If Re() = 1— ¢, then the operatof® , is bounded fronX{ into X¢, and

|72 S ke < Cg Il f NIy (6.10)

Here Cg andCg are certain positive constants.

In particular, the analogue of Corollary 7 follows from Theorem 11, namely
the case =1/p.

Finally, by puttingie = ¢ = 0 in Theorem 10, we can also obtain the bound-
edness from‘(g into Xg of the Hadamard fractional integration operatogs f
and7“ f given by (1.30) and (1.31), indicated in [2, p. 331].
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