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A generalization of the Next-to-Minimal Supersymmetric Model (NMSSM) is studied in which an explicit
μ-term as well as a small supersymmetric mass term for the singlet superfield are incorporated. We
study the possibility of raising the Standard Model-like Higgs mass at tree level through its mixing with
a light, mostly-singlet, CP-even scalar. We are able to generate Higgs boson masses up to 145 GeV with
top squarks below 1.1 TeV and without the need to fine tune parameters in the scalar potential. This
model yields light singlet-like scalars and pseudoscalars passing all collider constraints.
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A long-standing problem for supersymmetric (SUSY) extensions
of the Standard Model is how to evade the LEP bound on the
mass of the lightest (Standard Model-like) Higgs boson without in-
troducing new sources of fine-tuning into the theory. Within the
Minimal SUSY Standard Model (MSSM), the lightest Higgs must
lie below the Z 0 at tree level, and can only be pushed above the
114 GeV reported by LEP [1] with top squark masses and mixings
that appear to reintroduce (albeit in a small way) the hierarchy
problems that SUSY is supposed to solve in the first place. Even
when extending the Higgs sector of the MSSM in non-minimal di-
rections, the mass of the lightest Higgs is tied inexorably to the
Z 0 mass times dimensionless couplings; imposing perturbativity
on those couplings up to very high scales limits their sizes and so
typically preserves the little hierarchy problem.

The prototype for non-minimal SUSY is the Next-to-Minimal
SUSY Standard Model (NMSSM) [2], which introduces just one
Higgs singlet with responsibility for generating the μ-terms of the
MSSM dynamically. The NMSSM is best defined through its super-
potential:

W = WYukawa + λS Hu Hd + 1

3
S3 (1)

where S is the new singlet. Once S obtains a vacuum expectation
value (vev), which happens naturally at the scale of electroweak
symmetry-breaking (vs ∼ mW ), a μ-term naturally arises: μ = λvs .
In the so-called Higgs decoupling limit (in which the mass of the
pseudoscalar Higgs, A0, goes to infinity), the mass of the Stan-
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dard Model-like Higgs boson, h0, receives a positive contribution
through the new F -term, F S :

mh0 ≈ m2
Z 0 cos2 2β + λ2 v2 sin2 2β, (2)

where v is the electroweak vev (v = 174 GeV) and tan β is the
ratio of the vevs of the usual Hu and Hd doublets.

As already mentioned, such a theory does not typically allevi-
ate the little hierarchy problem much. However it is known that
there are regions of parameter space within the NMSSM that do
solve the little hierarchy problem, at the cost of other fine-tunings
that must be enforced [3]. In particular, the NMSSM only solves
the little hierarchy problem if the SUSY soft-breaking terms can be
balanced against the induced μ-term in such a way as to sharply
suppress mixing between the singlet and the lightest component
of the Higgs doublets. We would argue that the underlying prob-
lem is in requiring the singlet field of the NMSSM to solve both
the μ-problem and the little hierarchy problem at the same time.

In a recent paper [4], we generalized the NMSSM so as to make
the solution to the little hierarchy problem more natural, at least
within the confines of the low-energy theory itself. Essentially we
decoupled the tasks of solving the μ-problem from that of raising
the mass of the lightest Higgs above the LEP bound. Whereas the
original NMSSM contains only dimensionless parameters within its
superpotential, our version, which we called the S-MSSM (“Singlet-
extended MSSM”), allows for explicit μ-terms as well as explicit
mass terms for the new singlet:

W = (μ + λS)Hu Hd + 1

2
μs S2. (3)

In the S-MSSM, we took the mass of the singlet, μs , to be quite
large (typically 1–3 TeV), which suppresses vs and the mixing of
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the singlet with h0. The singlet vev is then too small to gener-
ate the required μ-term and so we included an explicit μ-term
as in the MSSM. Of course, in the limit that μs → ∞, the sin-
glet completely decouples and we reproduce the MSSM. But our
surprising result was that within the large range μs ∼ 1–3 TeV
the singlet F -term was still large enough to raise the h0 mass as
high as 140 GeV (with top squarks below a TeV), while vs was
too small to mix the singlet into the h0 and thereby pull the mass
back down. In a follow-up paper [5], we examined the parame-
ter space of this model within a gauge-mediated scenario to make
sure that we were not introducing other sources of fine-tuning by
our choices of low-energy parameters.

We want to emphasize that our previous work relied on vs

being quite small, often around a GeV or so. Here two effects com-
pete to increase or decrease the light Higgs mass. Because the
F -term contribution of the NMSSM, Eq. (2), assumes μs = 0, it
is replaced by an equivalent expression in the S-MSSM that goes
to zero as μs → ∞. But the parameter μs ultimately controls the
size of vs , specifically, vs ∝ 1/μs . Thus larger μs correspond to
smaller vs but also smaller corrections to the light Higgs mass. On
the other hand, vs controls the mixing of the singlet into the light
Higgs, and so as vs → 0, the mixing disappears, increasing the light
Higgs mass. When one accounts for both effects, one finds a wide
range of parameter space in which the contribution from F S is not
yet decoupled while the effects of the mixing are insignificant, and
here we found a solution to the little hierarchy problem.

In this Letter we will consider an entirely different regime, one
in which μs is quite small, and show that even in this regime one
can find solutions to the little hierarchy problem, though for quite
different reasons. Further, this is a region of parameter space in
which the phenomenology at the LHC may be significantly richer
than for the large μs limit of the S-MSSM. We will find that, in
general, this model predicts two scalar states (mostly singlet) with
masses below the SM-like Higgs and, therefore, depending on the
parameters new decays could exist for the Higgs which can make
the discovery at the LHC quite challenging.

The most general superpotential that can be written for the
MSSM with the addition of one gauge singlet, and that preserves
R-parity, is:

W = WYukawa + (μ + λS)Hu Hd + 1

2
μs S2 + 1

3
κ S3 + ξ S. (4)

This superpotential allows S to couple to the Hu Hd bilinear, which
will eventually generate the corrections to the masses of the Higgs
bosons, but it also allows for an explicit μ-term and an explicit
mass term, μs , for the S-superfield. We can also include a tri-
linear S3 term; in the NMSSM, this term is required to avoid a
PQ-symmetry which is broken at the electroweak scale, resulting
in a massless pseudoscalar. Here the symmetry is broken (softly)
by μ,μs �= 0, and so the S3 terms plays little role except to sta-
bilize the potential far from the origin; for the purposes of this
analysis, we simply set κ to zero.

In the presence of non-zero μ,μs-terms, S is a true singlet and
we cannot prevent the SUSY-preserving tadpole term, W ∼ ξ S , nor
a SUSY-breaking tadpole in our scalar potential, V ∼ ξ ′ S . Because
the Z3 symmetry that is usually associated with the NMSSM su-
perpotential is broken only softly by the explicit mass terms, we
know that ξ ∼ μ(s)Λ and ξ ′ ∼ MSUSYμ(s)Λ, both suppressed by
some power of 16π2. Here Λ is a cutoff beyond which S fails to
transform as a true singlet. If S is a true singlet all the way to the
Planck scale, then presumably Λ 
 MPl, in which case vs will be-
come quite large and destabilize the electroweak hierarchy. (One
can see this explicitly if we allow S to couple to the hidden sec-
tor through non-minimal Kähler terms, for example.) However, we
will not argue here that S is a singlet all the way to MPl, but rather
we will treat the S-MSSM superpotential as simply a low-energy
effective theory valid below some cutoff Λ which we take to be
sufficiently far above MSUSY as to allow our analysis to be sensible.

For the reasons given above, we drop both the tadpole term
and the cubic self-interaction, leaving:

W = WYukawa + (μ + λS)Hu Hd + 1

2
μs S2. (5)

We refer to the model described by this superpotential as the S-
MSSM. Despite this being the same superpotential studied in our
previous papers [4,5], the analysis here will differ in an important
way. In our previous analyses, it was assumed that μs was the
largest mass scale in the (low-energy) theory, typically a few TeV.
Here we will assume the opposite, namely that μs � λv < v . We
will see that this leads to a strikingly different Higgs spectrum, yet
one that can naturally evade the LEP bound on the Higgs mass and
therefore solve the little hierarchy problem.

A couple comments are in order about this superpotential in
the small μs limit. Several papers have studied a singlet-extended
MSSM in the so-called PQ-limit. This is the limit in which the
model possesses an explicit PQ-symmetry which is broken by
some unknown, high-scale physics, leaving behind a mass for the
would-be axion but little else. These models generate μ solely
through the vev of S and have no μs term, and in return have
an extremely light axion (actually, the pseudoscalar component
of the S-field). Refs. [6–8] specifically studies the limit in which
μ = μs 
 0. Here we are studying the same class of models, but
with the PQ-breaking soft mass terms larger, though still sup-
pressed compared to the weak scale.

We begin by studying the spectrum of this model. Starting from
our superpotential and adding all the allowed soft SUSY-breaking
term, the Higgs potential is given by

V = (
m2

Hu
+ |μ + λS|2)|Hu|2 + (

m2
Hd

+ |μ + λS|2)|Hd|2
+ (

m2
s + μ2

s

)|S|2
+ [

Bs S2 + (
λμs S† + Bμ + λAλ S

)
Hu Hd + h.c.

]
+ λ2|Hu Hd|2 + 1

8

(
g2 + g′2)(|Hu|2 − |Hd|2

)2

+ 1

2
g2

∣∣H†
u Hd

∣∣2
, (6)

where m2
s , Bs and Aλ are the soft-breaking contributions associ-

ated with the singlet. Minimization of the scalar potential yields
the following three conditions, analogous to those found in the
MSSM:

1

2
m2

Z = m2
Hd

− m2
Hu

tan2 β

tan2 β − 1
− μ2

eff, (7)

sin 2β = 2Bμ,eff

m2
Hu

+ m2
Hd

+ 2μ2
eff + λ2 v2

, (8)

λvs = λ2 v2

2

(μs + Aλ) sin 2β − 2μ

λ2 v2 + μ2
s + m2

s + 2Bs
, (9)

where

μeff = μ + λvs, (10)

Bμ,eff = Bμ + λvs(μs + Aλ). (11)

We will be considering the case in which μs is small compared
to the weak scale: μs � v . For now let us also consider the limit
in which m2

s and Bs are also small compared to v2; the explicit
formulae simplify significantly, and we will put m2

s and Bs back in
for our numerical studies. In this limit, Eq. (9) simplifies greatly:
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λvs 
 1

2
Aλ sin 2β − μ (12)

which immediately leads to the surprising result that

μeff 
 1

2
Aλ sin 2β, (13)

which is independent of μ! That is, for small μs , Bs and m2
s , the

vev of S aligns in such a way as to cancel the explicit μ-term com-
pletely, leaving an effective μ-term which is due entirely to Aλ .
Meanwhile the effective Bμ term becomes:

Bμ,eff 
 Bμ + 1

2
A2

λ sin 2β − μAλ


 Bμ + Aλ(μeff − μ) (14)

which, unlike μeff, does depend on the explicit μ-term.
In the absence of explicit CP-violating phases in the Higgs sec-

tor, the physical spectrum of this model includes a single charged
Higgs boson (H±), three neutral scalars which we label {hs,h, H},
and two neutral pseudoscalars {As, A}. The states labelled with the
subscript will turn out to be dominantly singlet states, while the
non-subscripted states have only a small singlet component and
therefore resemble their eponymous MSSM cousins.

For the state most resembling the usual pseudoscalar Higgs, the
mass is generated as in the MSSM:

m2
A = 2Bμ,eff

sin 2β
+ · · ·

where Bμ,eff is given in Eq. (14) above. The ellipsis represents
terms which are small compared to the weak scale, except when
A2

λ � Bμ,μ2, in which case the leading correction is simply δm2
A =

λ2 v2. Note that we can arrange, by proper choice of Bμ , Aλ and
μ to have μeff ∼ O (mZ ) while mA � mZ . In this way we can ar-
range for our model to reproduce the parameter space studied by
Dermisek and Gunion [3] in which the Higgs boson lies below
the LEP bound but escapes detection by decaying dominantly into
h0 → A0 A0, with A0 below the threshold for decay into a pair of
b-quarks. However, though this limit does exist, we do not see it
as particularly natural or likely in this model.

In order to identify the mass eigenstates of the scalar Higgs
bosons, we must diagonalize a symmetric 3 × 3 mass matrix. It is
helpful in this case to forgo the usual {Hd, Hu, S} basis and instead
rotate the upper 2 × 2 submatrix by the angle β , thereby working
in the basis of {Hd cosβ + Hu sin β, Hu cosβ − Hd sin β, S}. This is
the basis in which the upper 2 × 2 submatrix of the 3 × 3 pseu-
doscalar mass matrix is diagonalized, or equivalently, the basis in
which the scalar masses of the MSSM are diagonalized in the large
mA limit. In this basis, the mass matrix has a simple form:

M2
H

=
(

m2
Z cos2 2β + λ2 v2 sin2 2β (m2

Z − λ2 v2) sin 2β cos 2β 0
m2

A + (m2
Z − λ2 v2) sin2 2β λv Aλ cos 2β

λ2 v2

)
.

(15)

One observes that, in this basis and in the limit of μs,m2
s , Bs �

λ2 v2, there is no mixing of the singlet into the lighter MSSM-like
Higgs at lowest order, a fact noticed already in Ref. [8]. In fact,
in the large mA limit, the mixing vanishes entirely. Yet, the light
Higgs (i.e., the (1,1) element) still receives the same contribution
to its mass from F S that it picks up in the NMSSM. To leading
order in m2

Z /m2
A , the light Higgs mass is simply:

m2
h 
 m2

Z cos2 2β + λ2 v2 sin2 2β

− (m2
Z − λ2 v2)2

m2
sin2 2β cos2 2β. (16)
A

The last term above represents the correction from the non-
decoupling of the A0, and has almost the same form as in the
MSSM except that it is generically smaller than in the MSSM
thanks to an expected partial cancellation between m2

Z and λ2 v2.
The mass of the remaining neutral, MSSM-like Higgs particle is

readily derived:

m2
H 
 m2

A + (
m2

Z − λ2 v2) sin2 2β

+ (m2
Z − λ2 v2)2

m2
A

sin2 2β cos2 2β − λ2 v2 A2
λ

m2
A

sin2 2β (17)

where we drop terms of O (μs/λv) and O (m2
s /λ

2 v2). For λ � 0.5,
this state will fall just below the A0 in mass.

Among the states that are mostly singlet-like, there is a scalar
and a pseudoscalar:

m2
As


 μ2
s + λ2 v2 − λ2 v2 A2

λ

m2
A

, (18)

m2
hs


 μ2
s + λ2 v2 − λ2 v2 A2

λ

m2
A

cos2 2β. (19)

Because these states can be quite light, we have shown explicitly
the effect of μs on their masses. Notice also that the mostly-singlet
scalar is usually heavier (though only slightly) than the mostly-
singlet pseudoscalar.

It is worthwhile to compare and contrast this result with the
usual NMSSM in which μ = μs = 0. In particular, it would appear
that this model is hardly different, because we could take μ,μs →
0 and still have a sizable μeff = λvs . Further, we find dynamically
that μeff 
 1

2 Aλ sin 2β , which is exactly the relation one requires
in the NMSSM to avoid large mixing of the singlet into the SM-like
Higgs, namely [9]

Aλ 
 2μeff

sin 2β
− 2κvs, (20)

in the κ � 1 limit. In the usual NMSSM, this relation must hold in
order to keep the mass of the SM-like Higgs boson above the LEP
bound, but it must be added as an additional constraint (or tun-
ing) on the parameters of the model; here we seem to generate it
almost for free. This automatic cancellation of the singlet-doublet
mixing is also present in the PQ-limit models. In both cases, this is
due to the fact that one can allow κ → 0 (or as small as we want)
because there is no PQ axion that becomes massless as κ → 0 in
the S-MSSM. In the PQ models, this is solved by including an ex-
plicit mass for the PQ axion, but here the would-be axion gets
a mass directly. (As an aside, if one sets Bμ = 0 in our model,
then Eq. (18) simplifies to mAs = μs and so μs can be thought
of as playing the role of the small PQ-breaking that occurs in
Refs. [6–8].)

An interesting question is whether there is any ultraviolet con-
struction that might lead naturally to the limit of our model we
are studying here. One such approach is outlined in the paper of
Ross and Schmidt-Hoberg [10]. Here the authors have considered
two different discrete R-symmetries, a Z R

4 and a Z R
8 , both of which

lead to the superpotential of the SMSSM. In this model, there are
no μ-terms prior to SUSY-breaking, but when SUSY (and its ac-
companying R-symmetry) are broken, then the needed μ and μs

terms are generated through gravity mediation. Likewise, a singlet
tadpole is generated, but it too is of order the weak scale. In the
end, only a Z2 remains, which can be identified with the usual
R-parity.

In this Letter, we will restrict ourselves to analyzing the Higgs
spectrum of this model, examining in particular whether it is
possible to have a spectrum which naturally passes all current
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Fig. 1. Scatter plot of mh (green) and mhs (blue) as function of mA with a stop mass mt̃ = 500 GeV and no stop mixing. See text for additional parameters. (For interpretation
of the references to colors in this figure legend, the reader is referred to the web version of this Letter.)
constraints. We want to especially ensure that it is possible to keep
the SM-like Higgs above the LEP bound without requiring unnat-
urally large top squark masses or mixing. while minimizing the
1-loop contribution arising from the top quark and squark. We
also include the dominant (and negative) 2-loop contributions to
the mass of SM-like Higgs boson using FeynHiggs [11]. Of par-
ticular importance is the coupling λ, which we maximize under
the condition that it remain perturbative up to the apparent grand
unification scale of 2 × 1016 GeV; this is equivalent to setting λ

equal to it infrared quasi-fixed point value. This leads to an upper
bound on the parameter λ which varies with tanβ , but maximizes
at λ 
 0.7. We should note that the requirement of perturbative
unification at a scale around 1016 GeV is something we impose on
the model in order to compare its results with other models in the
same general class, most of which take this requirement as a con-
straint on their parameter space. Because we regard this model,
first and foremost, as a low-energy effective theory with unknown
cutoff, it is possible that λ could be much larger. However, our
choice is the conservative one and also prevents the effects that
arise when adding the explicit singlet masses from being confused
with the effects of an increased λ, both of which will raise the
light Higgs mass.

The parameter space of this model is quite different from the
usual NMSSM. In particular, the singlet gets a vev through Aλ and
not by having m2

s < 0. By choosing m2
s > 0 in the S-MSSM we

avoid any potential cosmological problems associated with run-
away directions in the potential when the universe’s temperature
T ∼ 100 GeV [7]. In fact, we take m2

s = 0 in our analyses that fol-
low, but will comment on non-zero values near the end.

One important constraint on the parameter space is the LEP
bound on the chargino mass, mχ+ > 94 GeV, which translates
into a bound on μeff: |μeff| > 94 GeV. Assuming small m2

s , this
translates into a lower bound on Aλ: Aλ > 190 GeV/ sin 2β . Thus
for small tanβ , Aλ is bounded from below by roughly 190 GeV;
for large tan β the bound on Aλ becomes much larger, implying
that the electroweak symmetry-breaking in the model is becoming
fine-tuned. As we will see, even if we accepted that fine-tuning,
the mass of the h falls below the LEP bound for tanβ � 5 (because
the S-induced corrections go as sin2 2β), and so the large tanβ

region is doubly bad. Thus our model predicts that tanβ will be
small, somewhere less than 5.
We examine this model by scanning over a wide parame-
ter space with 0 � Bμ � (1000 GeV)2, 0 � Aλ � 700 GeV, and
0 � μ � 500 GeV. We keep μs light: 0 � μs � 50 GeV. We also
simplify the parameter space by setting ms = Bs = 0.

In Fig. 1 we show the masses of the SM-like Higgs, h, and
the mostly-singlet scalar, hs , as a function of the MSSM-like pseu-
doscalar mass, mA for a sample of models with tanβ = 2 and
λ = 0.63. For this figure we have restricted mt̃ = 500 GeV and
taken At = 0 to minimize the stop mixing. These conditions essen-
tially represent a minimum 1-loop contribution of the top squarks
to the light Higgs mass, avoiding any hint of tuning coming from
the stop sector. In Fig. 2 we show the corresponding masses of the
singlet-like pseudoscalar, As .

For every point in the figures, the hs and As masses are con-
sistent with the LEP bound, due to their small coupling to the
Z . In principle, the region for which mh < 114 GeV and both
mhs,As < 2mb is phenomenologically viable [3], but we don’t find
points that fall into that region without fine-tuning the parame-
ters in the model, and so we don’t display those.

Looking at Fig. 1, one sees that, apart from a few point at
low mA , the mass of the SM-like Higgs is bounded from below
by about 118 GeV. This is easy to understand as it follows di-
rectly from Eq. (16). If mA is large, the last, negative term decou-
ples, and the Higgs mass is bounded from below at tree level by
(m2

Z cos2 2β + λ2 v2 sin2 2β)1/2. To this are added one- and two-
loop corrections that are nearly universal (given a constant mt̃ and
At ). The little bit of scatter above the lower bound is due to the
small corrections from the finite mA , the small effects of includ-
ing non-zero μs , and non-universal one-loop corrections, including
those that arise from Aλ .

One also sees from the figures that the singlet-like scalars are
expected to be below the SM-like Higgs, with masses that can be
as low as a few GeV. We have checked the coupling of these states
to the Z and their production cross-section at LEP and excluded
any points at which the singlet-like scalars would have been de-
tected. For example, we find that, among the points in the figure,
the cross-section for e+e− → Zhs is at least 10 times smaller than
the SM cross-section for e+e− → Zh with mh ≡ mhs , and often it
is many orders smaller.

In Fig. 3, we want to explore the effects of varying the top
squark masses and their mixing. We have taken one particu-
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Fig. 2. Scatter plot of mAs as function of mA using same parameter set as in Fig. 1.

Fig. 3. Range of mass for h0 for the S-MSSM and the MSSM as a function of MSUSY. See the text for additional parameters.
lar choice of model in the S-MSSM: μs = 20 GeV, μ = Bμ = 0,
Aλ = 280 GeV, and m2

s = 0 for tanβ = 2 and λ = 0.63. We then
set the gluino and stop masses to all be equal to MSUSY and vary
them from 400 to 1100 GeV. We also vary At from 0 to the max-
imal mixing case (At = √

6mt̃ ), and represent this range as the
upper band in the figure. In the lower band we show the MSSM
for the same choices of MSUSY and At , with mA → ∞. As can be
seen from the figure for the entire range of MSUSY the S-MSSM
prediction for mh0 is above the LEP bound whereas for the same
parameters the MSSM can only accommodate masses above the
LEP bound for high masses of MSUSY. In the S-MSSM one can even
have masses for the Higgs very close to the lower bound from the
LHC (∼ 150 GeV) [12].

Finally, we show a plot in which we vary tanβ . In Fig. 4 we
show a scatter of random models in the same range of parame-
ters as for Figs. 1–2, but now with varying tanβ (shown along the
x-axis), and again with mt̃ = 500 GeV and At = 0. The solid line
represents a lower bound on the Higgs mass in all such S-MSSM
models. One sees immediately that the S-MSSM automatically pro-
duces SM-like Higgs bosons with masses exceeding the LEP bound
for tan β � 3.8 (assuming mt̃ > 500 GeV), with some models hav-
ing sufficiently heavy Higgs masses for tanβ � 5. At tan β � 5, the
effects of the singlet on the light Higgs mass disappear (they scale
as sin2 2β ∼ 1/ tan2 β), and so we return to an MSSM-like spec-
trum at moderate to large values of tan β . Were we to allow mt̃ to
increase, or to invoke larger stop mixing, the range of allowed of
tan β would only increase.

One of the simplifications we have used in examining the pa-
rameter space of the S-MSSM has been in setting m2

s = 0 through-
out. However there is no need for this condition, and it is in fact
somewhat unnatural, because there are contributions to the one-
loop renormalization group equation for m2

s that are proportional
to A2

λ , and so a large Aλ will tend to lead to an equally large
m2

s unless the mediation scale for SUSY breaking is not particu-
larly high. One finds several complications as one turns on m2

s ,
but keeping ε = m2

s /(λ
2 v2) � 1. First, the vev of S shifts slightly,

which causes μeff to pick up a slight dependence on the ex-
plicit μ:
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Fig. 4. Scattered plot for m0
h as a function of tanβ for the same parameters as Fig. 1.
λvs 
 1

2
(1 − ε)(Aλ sin 2β − μ), (21)

μeff 
 1

2
(1 − ε)Aλ sin 2β + εμ. (22)

More importantly, the exact zero in the (1,3)-element of the scalar
Higgs mass matrix (see Eq. (15)) is no longer zero, picking up
terms that scale as ε , and thereby inducing a mixing of the S-
scalar into the SM-like Higgs state. However, these mixings are
suppressed by powers of m2

A , and so in the Higgs decoupling limit,
the S again decouples from the h:

δm2
h 


(
m2

s

m2
A

)
2Aλ sin 2β(Aλ sin 2β − 2μ).

Notice that this contribution can have either sign, either rais-
ing or lowering the mass of h. Were h the lightest eigen-
state of the scalar mass matrix, then the mixing could only
lower its mass; but here h is the middle eigenstate, and so
mixing with a lighter state, s, can actually serve to push up
the mass of h. Either way, the effect is small as mA becomes
large.

In our previous papers, in which we set μs ∼ O (TeV) in the
S-MSSM, we found enhanced Higgs masses but little else for dis-
tinctive phenomenology. That was because there were no new light
states, and the only real clue to the existence of the singlet was the
enhanced Higgs mass itself. However in the light singlet version of
the S-MSSM, we find a number of new, light states and some of
these can have a profound effect on phenomenology at the LHC.

One source for new phenomenology is the extended scalar sec-
tor, in particular the two light states hs and As . We have calculated
the Z Zhs coupling for all points in our parameter space, and we
find it to be generically quite small, as mentioned earlier, due to
the suppressed mixing between the Higgs doublets and the singlet.
This is likewise true for the Z Ashs coupling as well as couplings of
the hs and As to SM fermions, making it difficult to directly pro-
duce either at the LHC. On the other hand, there are regions of
parameter space in which h could decay dominantly into hshs or
As As which will mean that at the LHC the predominant decay of
the Higgs will be into multijets, making its discovery quite chal-
lenging.
To summarize we have presented a singlet extension of the
MSSM, the S-MSSM, in which the singlet field plays no role in the
explanation of the μ-problem but, on the other hand, provides a
solution to the little hierarchy problem. By including supersym-
metric masses for both the Higgs doublets (μ) and the singlet
(μs), and then taking the limit of small μs , we have shown that
the model predicts a mass for the SM-like Higgs which are above
the LEP bound for a large region of the parameter space of the
model without requiring a heavy sparticle spectrum. It can even
accommodate masses very close to the current LHC bound so that
some regions of the parameter space of this model are going to be
probed very soon by the LHC. Finally, in this model one can also
find regions of parameter space in which the main decay of the
Higgs is into four jets and therefore the discovery strategies are
quite different from those for the SM Higgs.
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