UNIVERSAL CRUMPLED CUBES \dagger

Robert J. Dayerman and William T. Eaton
(Received 23 September 1969; revised 2 July 1971)

§̧1. INTRODUCTION

It is known [16, 18] that the 3-cell is universal in the sense that any sewing of itself to a crumpled cube yields the 3 -sphere S^{3}. This suggests the following definition: A crumpled cube C is universal if, for each crumpled cube D and sewing h of C and D, the resulting space $C \bigcup_{h} D$ is topologically equivalent to S^{3}. The main result of this paper, Theorem 5.1, implies that there exists an uncountable family of topologically distinct universal crumpled cubes.

Martin [22] has shown that a necessary condition for $C \bigcup_{h} D=S^{3}$ is that for each $p \in \mathrm{Bd} C$ either p is a piercing point of C or $h(p)$ is a piercing point of D. On the other hand, examples of Ball [2] and Cannon [10] indicate that this condition is not sufficient. Techniques developed to prove Theorem 5.1 lead to a modification of Martin's condition, suggested by McMillan's Cellularity Criterion [19] and his characterization of piercing points [20], which is sufficient for $C \bigcup_{h} D=S^{3}$.

We say a subset K of the boundary of a crumpled cube C is semicellular in C if for each open subset U of C containing K there is an open set V such that $K \subset V \subset U$ and loops in $V-K$ are null-homotopic in $U-K$. The Sewing Theorem (Theorem 4.1) establishes that a sufficient condition for $C \bigcup_{h} D=S^{3}$ is that for each $p \in \operatorname{Bd} C$ either p lies interior to a semi-cellular disk of C or $h(p)$ lies interior to a semi-cellular disk of D.

Martin's condition that the sewing h mismatch non-piercing points does imply $C \bigcup_{h} D=S^{3}$ in certain cascs; for example, if C is a countably knotted crumpled cube [12, Th. 3]. In addition, Theorem 5.7 states that this condition is sufficient if Int C is homeomorphic to Euclidean 3 -space E^{3}.

Arguments in Section 3 follow an outline similar to Section 2 of [12]; nevertheless, with the exception of Lemma 3.1, this paper can be read without reference to [12]. The crucial new idea, using the semi-cellularity condition to realize a prescribed sewing, is found in the proof of Lemma 3.3. Examples and properties of semi-cellular sets, including a characterization in terms of piercing points, are described in Section 2.

[^0]A crumpled cube C is a topological space homeomorphic to the closure of the bounded complementary domain of a 2-sphere embedded in Euclidean 3 -space E^{3}. The boundary of C, denoted $\mathrm{Bd} C$, consists of the points of C where it fails to be a 3 -manifold, and the interior of C, denoted Int C, is defined by Int $C=C-\mathrm{Bd} C$. A sewing h of two crumpled cubes C and D is a homeomorphism of $\mathrm{Bd} C$ onto $\mathrm{Bd} D$, and the space $C \bigcup_{h} D$ given by the sewing is the identification space obtained from the (disjoint) union of C and D by identifying each point x in $\mathrm{Bd} C$ with the point $h(x)$ in $\mathrm{Bd} D$.

Let C be a crumpled cube and p a point in $\mathrm{Bd} C$. Then p is a piercing point of C if there exists an embedding f of C into S^{3} such that $f(\mathrm{Bd} C)$ can be pierced with a tame arc at $f(p)$. McMillan has characterized the piercing points as those points p in $\mathrm{Bd} C$ such that C - $\{p\}$ is $1-U L C$ [20].

If X is a metric space and C is a compact subset of X, then X / C denotes the decomposition space associated with the upper semi-continuous decomposition of X whose only non-degenerate element is C.

§2. SEMI-CELLULARITY IN CRUMPLED CUBES

Lemma 2.1. Let S be a 2 -sphere in S^{3} and X a non-separating subcontinuum of S which is semi-cellular in both crumpled cubes bounded by S. Then X is a cellular subset of S^{3}.

Proof. Let C_{1} and C_{2} denote the crumpled cubes bounded by S. If U is an open set in S^{3} containing X, we find another open set V containing X such that each loop in $\left(C_{i} \cap V\right)-X$ is null homotopic in $\left(C_{i} \cap U\right)-X$. Any loop L in $V-X$ can be adjusted by a homotopy in $V-X$ so that it intersects S in a finite point set, and the adjusted L can be represented as the sum of loops L_{1}, \ldots, L_{n} such that L_{i} is contained in either $\left(C_{1} \cap V\right)-X$ or $\left(C_{2} \cap V\right)-X(i=1, \ldots, n)$. Since each L_{i} is contractible in $U-X, L$ is contractible in $U-X$; thus, the Cellularity Criterion of McMillan [19, Th. 1'] implies that X is cellular.

If S is a 2 -sphere in S^{3} and X is a subcontinuum of S which is cellular in S^{3}, X is not necessarily semi-cellular in each of the crumpled cubes bounded by S. However, the following theorem, combined with [22], implies that X is semi-cellular in at least one of these crumpled cubes.

Theorem 2.2. Let C be a crumpled cube, X a non-separating subcontinuum of $\mathrm{Bd} C$, and π the projection map of C onto the decomposition space C / X. Then X is semi-cellular in C if and only if the following conditions hold: C / X is a crumpled cube and $\pi(X)$ is a piercing point of C / X.

Proof. If C / X is a crumpled cube such that $\pi(X)$ is a piercing point, McMillan's characterization of piercing points [20, Th. 1] can be applied to show that X is semi-cellular in C.

In case X is semi-cellular in C, we consider C to be embedded in S^{3} so that $K=C l\left(S^{3}-C\right)$ is a 3-cell $[16,18]$. Then X is cellular in S^{3} by Lemma 2.1, and there exists a map π of S^{3} onto itself whose only (non-degenerate) inverse set is X. Since X does not separate $\mathrm{Bd} C, \pi(\mathrm{Bd} C)$ is a 2 -sphere; hence π maps C onto a crumpled cube equivalent to
C / X. Once again. Theorem 1 of [20] can be used to show that $\pi(X)$ is a piercing point of $\pi(C)$.

The following lemma is applied repeatedly in Section 3.
Lemma 2.3. If C is a crumpled cube and the subdisk D of $\mathrm{Bd} C$ is semi-cellular in C, then each subdisk D^{\prime} of D is semi-cellular in C.

Proof. Let U be an open set containing D^{\prime}. It is sufficient to consider the case that D is the union of D^{\prime} and a disk $D^{\prime \prime}$ such that $D^{\prime} \cap D^{\prime \prime}$ is an arc (in the boundary of each). Let A be an arc in $D^{\prime \prime}$ separating D^{\prime} from $D-U$. We find an open subset W of C containing D such that W is the union of three open sets W_{1}, W_{2}, and W_{3}, satisfying
(1) $D^{\prime} \subset W_{i} \subset U$,
(2) $W_{1} \cap W_{3}=\varnothing$,
(3) $A \subset W_{2} \subset U-D^{\prime}$, and
(4) W_{2} is contractible in $U-D^{\prime}$.

Condition 4 holds because A is contractible and C is an absolute retract [6, Th. 4]. Consequently, any contraction f_{t} of A in itself extends to a contraction g_{t} of C in itself, and it is easy to find a neighbourhood W_{2} of A such that $g_{:}\left(W_{2}\right) \subset U-D^{\prime}(0 \leq t \leq 1)$.

By hypothesis, there exists an open set V^{*} containing D such that each loop in $V^{*}-D$ is null-homotopic in $W-D$. We define $V=V^{*} \cap W_{1}$.

If L is a loop in $V-D^{\prime}$, we shall show that L is null-homotopic in $U-D^{\prime}$. By pushing L slightly, we can suppose that L is contained in $V-D$. Thus, L is contractible in $W-D$. If the image of the contraction extends into W_{3}, we cut it off in W_{2}, and we replace a portion of the original contraction with a map into $U-D^{\prime}$, by using Condition 4. This establishes that L is contractible in $\left(W_{1}-D^{\prime}\right) \cup\left(U-D^{\prime}\right) \subset U-D^{\prime}$.

Lemma 2.4. If C is a crumpled cube and D is a subdisk of $\mathrm{Bd} C$ which is semi-cellular in C, then each point of D is a piercing point of C.

Proof. This is an casy consequence of Lemma 2.3 and McMillan's characterization of piercing points.

The following theorem is an existence result for semi-cellular sets. The original argument stemmed from the geometric techniques of [8, Th. 1], but we give an alternate proof.

Theorem 2.5. If the interior of the crumpled cube C is an open 3-cell and X_{1} and X_{2} are disjoint, non-separating subcontinua of $\mathrm{Bd} C$, then either X_{1} or X_{2} is semi-cellular in C.

Proof. We consider C to be embedded in S^{3} so that $K=C l\left(S^{3}-C\right)$ is a 3-cell. Both X_{1} and X_{2} are cellular subsets of S^{3}, since for each neighbourhood U_{i} of X_{i} there exists a disk D_{i} such that

$$
X_{i} \subset D_{i} \subset \operatorname{Bd} K \cap U_{i}(i=1,2)
$$

But K is cellular by hypothesis and K collapses to D_{i}. Therefore, using [21, Th. 1] we find that there exists a 3-cell B_{i} such that

$$
X_{i} \subset D_{i} \subset \operatorname{Int} B_{i} \subset B_{i} \subset U_{i}(i=1,2) .
$$

As a result, the decomposition spaces C / X_{1} and C / X_{2} are crumpled cubes. If π denotes a map of S^{3} onto itself whose only inverse sets are X_{1} and X_{2}, then $\pi(C)$ is also a crumpled cube. Furthermore, a neighbourhood of $\pi\left(X_{i}\right)$ in $\pi(C)$ is homeomorphic to a neighbourhood of the image of X_{i} in C / X_{i}; thus, $\pi\left(X_{i}\right)$ is a piercing point of $\pi(C)$ if and only if the image of X_{i} is a piercing point of $C / X_{i}(i=1,2)$. Note that Int $\pi(C)$ is an open 3 -cell, since it is a homeomorphic (via π) to Int C. Consequently, Theorem 2 of [21] implies that either $\pi\left(X_{1}\right)$ or $\pi\left(X_{2}\right)$ is a piercing point of $\pi(C)$. We appeal to Theorem 2.2 to complete the proof.

Corollary 2.6. If the interior of a crumpled cube C is an open 3 -cell, then there exists a point q in $\mathrm{Bd} C$ such that each point of $\mathrm{Bd} C-\{q\}$ lies interior to a subdisk of $\mathrm{Bd} C$ semicellular in C.

Lemma 2.7. If the interior of the crumpled cube C is an open 3 -cell, and q is a nonpiercing point of C, then each non-separating subcontinuum X of $\mathrm{Bd} C$ contained in $\mathrm{Bd} C-\{q\}$ is semi-cellular in C.

Proof. Let E be a subdisk of $\mathrm{Bd} C-X$ containing q. By Theorem 2.5 either X or E is semi-cellular in C, and E is excluded by Lemma 2.4.

Remark. Although we can avoid the question in the later applications of this paper, it would be interesting to know whether each disk in the boundary of a crumpled cube C is semi-cellular in C if Int C is an open 3-cell and each point of $\mathrm{Bd} C$ is a piercing point of C.

§ 3. A METHOD FOR SQUEEZING CERTAIN CELLS

Consider a 3-cell C in S^{3} such that $\mathrm{Bd} C$ contains a disk D which is semi-cellular in S^{3} - Int C, and let h be a homeomorphism of D onto $\operatorname{Bd} C$ - Int D which leaves $\operatorname{Bd} D$ fixed. In this section we describe how to squeeze C to a disk by a map f of S^{3} to itself such that $f \mid D$ is a homeomorphism and $f \mid D=f h$. There are two basic steps: in the first step, as suggested by techniques of [12], we squeeze C to a collection of thin tubes, which may be very long; in the second we attach portions of each tube to itself, preserving the homeomorphism h, in such a way that the resulting image of C consists of small.cells. We obtain the map f by iterating these steps.

Lemma 3.1. Suppose C_{1} and C_{2} are 3 -cells in S^{3} such that $C_{1} \cap C_{2}=\operatorname{Bd} C_{1} \cap \operatorname{Bd} C_{2}=D$ is a tame disk, B is an arc in $\mathrm{Bd} D, h$ is a homeomorphism of B onto $C l((\mathrm{Bd} D)-B)$ such that $h \mid \operatorname{Bd} D=1, U$ is an open set containing $D-B$, and $\varepsilon>0$. Then there exist a map of S^{3} onto S^{3} and homeomorphisms g_{i} of C_{i} onto $f\left(C_{i}\right)(i=1,2)$ such that
(1) $f \mid S^{3}-U=1$,
(2) $f(D)=B$ and $f \mid S^{3}-D$ is a homeomorphism onto $S^{3}-B$,
(3) $f h=1$, and
(4) $g_{i} \mid S^{3}-U=1$ and $\rho\left(g_{i}, 1\right)<\varepsilon(i=1,2)$.

Proof. Without loss of generality we make the following assumptions:
(5) $D=\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1, z=\varepsilon / 12\right\}$,
(6) $B=\left\{(x, y, z) \mid x=-\sqrt{1-y^{2}}, z=\varepsilon / 12\right\}$,
(7) $h\left(-\sqrt{1-y^{2}}, y, z / 12\right)=\left(\sqrt{1-y^{2}}, y, \varepsilon / 12\right)$,
(8) the solid geometric cylinder $A=\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq \varepsilon / 6\right\}$ lies in the 3-cell $C_{1} \cup C_{2}$,
(9) the $\operatorname{disk} F=\left\{(x, y, z) \mid x=\sqrt{1-y^{2}}, 0 \leq z \leq \varepsilon / 6\right\}$ intersects $\operatorname{Bd}\left(C_{1} \cup C_{2}\right)$ in a tame Sierpinski curve X,
(10) $h(B) \cup \mathrm{Bd} F$ lies in the inaccessible part of X, and
(11) $A-B \subset U$.

Note that the closures of the components of $\left(C_{1} \cup C_{2}\right)-A$ which intersect Int F form a null sequence $\left\{K_{i}\right\}$ of disjoint 3-cells. The map f is now constructed using the technique of [12, Lemma 4] on the solid cylinder A.

We require the following definitions throughout the rest of this section.
Let K be a 3-cell in S^{3} and D a disk in Bd K. The cross sectional diameter of K with respect to D is said to be less than the number d if there exists a homeomorphism g of $D \times I$ onto K such that $g(x, 0)=x$ for all $x \in D$ and $\operatorname{diam} g(D \times t)<d$ for all $t \in I$.

A collection of 2-cells D_{1}, \ldots, D_{n} in a disk D is a cellular subdivision of D if and only if Int $D_{i} \cap$ Int $D_{j}=\varnothing(i \neq j)$ and $D=\cup D_{i}$.

Lemma 3.2. Suppose C is a 3-cell in S^{3}, D is a disk in $\mathrm{Bd} C, h$ is a homeomorphism of D onto $C l(\operatorname{Bd} C)-D)$ such that $h \mid \operatorname{Bd} D=1, U$ is an open set containing $C-D$, and $\varepsilon>0$. Then there exist a cellular subdivision $D_{1}, D_{2}, \ldots, D_{n}$ of D and a map of S^{3} onto S^{3} such that
(1) $f \mid S^{3}-U=1$,
(2) $f \mid S^{3}-C$ is a homeomorphism onto $S^{3}-f(C)$,
(3) f h is a homeomorphism,
(4) $f h \mid \cup \mathrm{Bd} D_{i}=1$,
(5) $f h(D) \cap D=\cup \mathrm{Bd} D_{i}$, and
(6) $D_{i} \cup\left(f h\left(D_{i}\right)\right)$ bounds a 3 -cell $K_{i} \subset U$ such that the cross-sectional diameter of K_{i} is less than ε.
Proof. Let A be the standard 3-cell $\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1\right\}$. By [5, Th. 4.2] there exists a 0 -dimensional F_{σ} set F in $\mathrm{Bd} C$ such that $F \cup \operatorname{Ext} C$ is $1-U L C$. It is straight forward to show that there exists a homeomorphism H of $\left\{(x, y, z) \mid z=-\sqrt{1-x^{2}-y^{2}}\right\}$ onto D such that if r is a rational number in $[-1,1]$ then $H\left(\left\{(x, y, z) \mid z=-\sqrt{1-r^{2}-y^{2}}, x=r\right\}\right) \subset$ $D-\left(F \cup h^{-1}(F)\right)$ and $H\left(\left\{(x, y, z) \mid z=-\sqrt{1-x^{2}-r^{2}}, y=r\right\}\right) \subset D-\left(F \cup h^{-1}(F)\right)$. Then H can be extended to the top of A by the formula $H\left(x, y, \sqrt{1-x^{2}-y^{2}}\right)=h H(x, y,-$ $\sqrt{1-x^{2}-y^{2}}$), and this homeomorphism of Bd A onto Bd C can be extended to a homeomorphism H of A onto C. There exist rational numbers $-1=r_{0}<r_{1} \ldots<r_{m}=1$ such that the cross-sectional diameter of the 3-cell $C_{i j}=H\left(\left\{(x, y, z) \mid r_{i} \leq x \leq r_{i+1}, r_{j} \leq y \leq r_{j+1}\right.\right.$, $\left.\left.|z| \leq \sqrt{1-x^{2}-y^{2}}\right\}\right)$ with respect to the disk $D_{i j}=H\left(\{(x, y, z)) \mid r_{i} \leq x \leq r_{i+1}, r_{j} \leq y \leq r_{j+1}\right.$,
$\left.z=-\sqrt{1-x^{2}-y^{2}}\right\}$) is less than $\varepsilon / 3$. The disks $\left\{D_{i j}\right\}$ form the required cellular subdivision of D. The required f is obtained by applying Lemma 3.1 a finite number of times as follows

Let U_{1}, \ldots, U_{m-1} be a collection of disjoint open sets in U such that the disk $E_{i}=H\left(\left\{(x, y, z) \mid x=r_{i}, \quad y^{2}+z^{2} \leq 1-r_{i}{ }^{2}\right\} \quad\right.$ less the arc $\quad B_{i}=\left\{(x, y, z) \mid x=r_{i}\right.$, $\left.\left.z=-\sqrt{1-r_{i}^{2}-y^{2}}\right\}\right)$ lies in U_{i}. Apply Lemma 3.1 to the tame disk E_{i}, arc B_{i}, homeomorphism $h \mid B_{i}$ and open set $U_{i}(i=1, \ldots, n-1)$. The resulting maps can be pieced together to form a map f^{\prime} of S^{3} onto S^{3}. Let $\left\{V_{i j}\right\}$ be a collection of disjoint open sets in U such that the disk $E_{i j}=f^{\prime} H\left(\left\{(x, y, z)\left|r_{i} \leq x \leq r_{i+1}, y=r_{j},|z| \leq \sqrt{\left.1-r_{j}^{2}-x^{2}\right\}}\right.\right.\right.$ less the arc $B_{i j}=f^{\prime} H\left(\left\{(x, y, z) \mid r_{i} \leq x \leq r_{i+1}, y=r_{j}, z=-\sqrt{1-r_{j}^{2}-x^{2}}\right\}\right)$ lies in $V_{i j}$. Apply Lemma 3.1 to the tame disk $E_{i j}$, arc $B_{i j}$, homeomorphism $h \mid B_{i j}$ and open set $V_{i j}$, and collect the resulting maps to form a map $f^{\prime \prime}$ of S^{3} onto S^{3}. The required map $f=f^{\prime \prime} f^{\prime}$. We may assume that Lemma 3.1 was applied with small enough epsilons to insure that there exists an $\varepsilon / 3$-homeomorphism $g_{i j}$ of $C_{i j}$ onto $f\left(C_{i j}\right)$. It follows that the cross-sectional diameter of $f\left(C_{i j}\right)$ with respect to $D_{i j}$ is less than ε.

Lemma 3.3. Suppose $\varepsilon>0, C$ is a 3 -cell in S^{3}, and D is a disk in $\mathrm{Bd} C$ such that C has cross-sectional diameter less than ε with respect to D and each subdisk of Int D is semicellular in $C l\left(S^{3}-C\right), h$ is a homeomorphism of D onto $C l(\mathrm{Bd} C-D)$ such that $h \mid \operatorname{Bd} D=1$, and U is an open set containing $C-\mathrm{Bd} D$. Then there exist a cellular subdivision D_{0}, \ldots, D_{n} of D and a map f of S^{3} onto S^{3} such that
(1) $f \mid S^{3}-U=1$,
(2) f is a homeomorphism of $S^{3}-C$ onto $S^{3}-f(C)$,
(3) both $f \mid D$ and $f \mid h(D)$ are homeomorphisms,
(4) $f(D) \cap f h(D)=f\left(\cup \mathrm{Bd} D_{\mathrm{i}}\right)$,
(5) $f\left|\cup \operatorname{Bd} D_{i}=f h\right| \cup \operatorname{Bd} D_{i}$, and
(6) $f\left(D_{i}\right) \cup f h\left(D_{i}\right)$ bounds a 3-cell in $f(C)$ of diameter less than 2ε.

Proof. Let g be a homeomorphism of $D \times I$ onto C such that $g(x, 0)=x$ for all $x \in D$ and $\operatorname{Diam} g(D \times t)<\varepsilon$ for all $t \in I$. Then there exists a sequence of positive numbers

$$
0=t_{0}<t_{1}<\ldots<t_{n}=1
$$

such that Diam $g\left(D \times\left[t_{1}, t_{i+1}\right]\right)<\varepsilon$. Since g can be adjusted slightly, if necessary, we assume without loss of generality that for $i=1, \ldots, n$ the simple closed curve $J_{i}=h^{-1} g\left(\mathrm{Bd} D \times t_{i}\right)$ is tame [4, Th. 1]. Let J_{0} be a tame simple closed curve in D which separates $\operatorname{Bd} D$ and J_{1}. By pushing the interiors of each annulus on D bounded by successive J_{i} 's toward Int C, we form a collection of tame annuli $A_{0}, A_{1}, \ldots, A_{n-1}$ in $g\left(D \times\left[0, t_{1}\right)\right)$ whose interiors are pairwise disjoint subsets of Int C and whose boundaries satisfy $\mathrm{Bd} A_{i}=J_{i} \cup J_{i+1}$. Similarly, there exists a tame disk A_{n} in $g\left(D \times\left[0, \mathrm{t}_{1}\right)\right)$ such that $\mathrm{Bd} A_{n}=J_{n}$, Int $A_{n} \subset \operatorname{Int} C$, and Int $A_{n} \cap \operatorname{Int} A_{i}=\varnothing(i \neq n)$. Let F_{i} denote the subdisk of D bounded by J_{i}.

In the next three paragraphs we describe the construction of a collection of disks "below" D that will control the squeezing map f. Let U_{0} be an open subset of $U-\operatorname{Int} A_{0}$
containing F_{1} such that $U_{0} \cap C \subset F_{0}$. From the hypothesis we find that F_{1} is semi-cellular in $\mathrm{Cl}\left(S^{3}-C\right)$. Consequently, J_{0} bounds a singular disk, with no singularities near J_{0}, in $\left(F_{0}-F_{1}\right) \cup\left(U_{0} \cap\left(S^{3}-C\right)\right)$. Thus, after a careful simplicial approximation to Δ_{0}, making use of the Side Approximation Theorem [7, Th. 1] to avoid the introduction of singularities near J_{0}, we apply Dehn's Lemma [23] to obtain a tame disk G_{0} with properties similar to those of Δ_{0}. We require, in particular, that $G_{0} \cap C$ be contained in the solid torus bounded by $\left(F_{0}-F_{1}\right) \cup A_{0}$.

Working our way inside, we find that J_{1} bounds a singular disk, with no singularities near J_{1}, in $\left(F_{1}-F_{2}\right) \cup\left(U_{1} \cap\left(S^{3}-C\right)\right.$), where U_{1} is a neighbourhood of F_{2} in U so close to F_{2} that $\Delta_{1} \cap G_{0}=\varnothing$. Once again, after adjustments to satisfy the hypotheses of Dehn's Lemma, we obtain a tame disk G_{1} with similar properties.

Continuing in this fashion, we find a collection of mutually exclusive disks G_{0}, G_{1}, \ldots, G_{n-1} such that
$\operatorname{Bd} G_{i}=J_{i}$,
$G_{i} \cap\left(\cup A_{i}\right)=\operatorname{Bd} G_{i}$,
$G_{i} \subset U$,
$G_{i} \cap C \subset$ the solid torus bounded by $\left(F_{i}-F_{i+1}\right) \cup A_{i}$.
Let B_{0} denote an annulus in $C \cap g\left(D \times\left[0, t_{\mathrm{t}}\right]\right)$ bounded by J_{0} and $g\left(\mathrm{Bd} D \times t_{1}\right)$ such that Int $B_{0} \subset \operatorname{Int} g\left(D \times\left[0, t_{1}\right]\right)$ and $B_{0} \cap\left(\cup A_{i}\right)=J_{0}$. Let $B_{i}=g\left(\operatorname{Bd} D \times\left[t_{i}, t_{i+1}\right]\right)$ $(i=1, \ldots, n-1)$ and $P_{i}=g\left(D \times t_{i}\right)(i=1, \ldots, n-1)$.

We define a homeomorphism f on the domain $\left(\cup G_{i}\right) \cup\left(\cup A_{i}\right)$ as follows:

$$
\begin{aligned}
& f \mid G_{0}=1, \\
& f \mid A_{0}: A_{0} \rightarrow B_{0} \text { such that } f\left|J_{1}=h\right| J_{1}, \\
& f \mid A_{i}: A_{i} \rightarrow B_{i} \text { such that } f\left|\operatorname{Bd} A_{i}=h\right| \operatorname{Bd} A_{i}(i=1, \ldots, n-1), \\
& f \mid G_{i}: G_{i} \rightarrow P_{i}(i=1, \ldots, n-1) \text {, and } \\
& f \mid A_{n}: A_{n} \rightarrow g(D \times 1) .
\end{aligned}
$$

Extend f so as to take the 3 -cell in U bounded by $G_{0} \cup A_{0} \cup G_{1}$ onto the 3-cell on U bounded by $G_{0} \cup B_{0} \cup P_{1}$, the cell bounded by $G_{i} \cup A_{i} \cup G_{i+1}$ onto the cell bounded by $P_{i} \cup B_{i} \cup P_{i+1}(i=1, \ldots, n-2)$, and the cell bounded by $G_{n-1} \cup A_{n-1} \cup A_{n}$ onto the cell bounded by $P_{n-1} \cup B_{n-1} \cup g(D \times 1)$.

Extend f via the identity to the remainder of $S^{3}-\operatorname{Int} C$ and to the toroidal region in C bounded by $\left(D-\operatorname{Int} F_{1}\right) \cup B_{0} \cup g\left(\operatorname{Bd~} D \times\left[0, t_{1}\right]\right)$. Use Tietze's Extension Theorem to complete the definition of f from the rest of C to the disk $g(D \times 1) \cup\left(\cup B_{i}\right)$. A schematic view of the action of this map is given in Fig. 1.

This construction forces each component of $S^{3}-f\left(S^{3}-C\right)$ into some 3-cell of the form $g\left(D \times\left[t_{j-1}, t_{j+1}\right]\right)$; thus, the closure of each such component has diameter less than 2ε. Let M_{1} denote the closure of the component of $S^{3}-f\left(S^{3}-C\right)$ bounded by $f\left(D-\right.$ Int $\left.F_{1}\right)$ $\cup h\left(D-\operatorname{Int} F_{1}\right)$; for $i=2, \ldots, m$ let M_{i} denote the closure of the component of

Fig. 11.
$S^{3}-f\left(S^{3}-C\right)$ bounded by $f\left(F_{i-1}-\right.$ Int $\left.F_{i}\right) \cup h\left(F_{i-1}-\right.$ Int $\left.F_{i}\right)$. One easily can show each M_{i} to be a solid torus. One should observe also that the only component of $S^{3}-f\left(S^{3}-C\right)$ not contained in $\cup M_{i}$ is the interior of a 3-cell bounded by $f\left(F_{n}\right) \cup h\left(F_{n}\right)$.

To finish the proof we must squeeze further so that the closure of each component of $S^{3}-f\left(S^{3}-C\right)$ is a small 3 -cell. To do this, we choose three pairwise disjoint, tame disks $\Delta_{i j}(j=1,2,3)$ in each solid torus M_{i} with Int $\Lambda_{i j} \subset$ Int M_{i} and such that there exist arcs $R_{i j}$ in D whose endpoints are points of J_{i-1} and J_{i} (in case $i=1$, then the endpoints of $R_{i j}$ are points of Bd D and J_{1}) satisfying $\mathrm{Bd} \Delta_{i j} \cap f(D)=f\left(R_{i j}\right)$ and $\mathrm{Bd} \Delta_{i j} \cap h(D)=h\left(R_{i j}\right)$. The only problem in locating these tame disks $\Delta_{i j}$ is to find arcs $R_{i j}$ satisfying the preceding conditions and such that $f\left(R_{i j} \cup h\left(R_{i j}\right)\right)$ is tame. From [5, Th. 6.2] it follows that there exists a 0-dimensional F_{σ}-subset Z_{i} of $\mathrm{Bd} M_{i}$ such that $Z_{i} \cup\left(S^{3}-M_{i}\right)$ is $1-U L C$, and it follows from [9, Th. 2.4] and [17, Th. 6] that for any such arc $R_{i j}$ contained in

$$
\left(F_{i-1}-\operatorname{Int} F_{i}\right)-\left[(f \mid D)^{-1}\left(Z_{i} \cap f(D)\right) \cup h^{-1}\left(Z_{i} \cap h(D)\right)\right]
$$

the simple closed curve $f\left(R_{i j} \cup h\left(R_{i j}\right)\right)$ is tame.
Thus, $M_{i}-\bigcup_{j=i}^{3} \Delta_{i j}$ is the union of three components whose closurcs $C_{i j}(j=1,2,3)$ are each 3-cells. Applying Lemma 3.1 to each of the $\Delta_{i j}$'s, we obtain a map f^{*} of S^{3} onto itself such that $f^{*}\left(\Delta_{i j}\right)=h\left(R_{i j}\right), f^{*}$ takes $S^{3}-\cup \Delta_{i j}$ homeomorphically onto $S^{3}-\cup h\left(R_{i j}\right), f^{*} \mid S^{3}-U=1$, for each point x in $\cup R_{i j}$,

$$
f^{*} f(x)=f^{*} f h(x)=h(x),
$$

and $\operatorname{diam} f^{*}\left(C_{i j}\right)<2 \varepsilon$.
The required subdivision of D has its 1 -skeleton the graph $\mathrm{Bd} D \cup\left(\bigcup_{i=1}^{n} J_{i}\right) \cup\left(\bigcup_{j=1}^{3} \bigcup_{i=1}^{n}\right.$ $R_{i j}$; the required map is $f^{*} f$.

The following lemma is proved by first using Lemma 3.2 and then applying Lemma 3.3 to each of the resulting cross-sectionally small 3 -cells.

Lemma 3.4. Suppose C is a 3 -cell in S^{3}, D is a disk in $\mathrm{Bd} C$ such that each subdisk of Int D is semi-cellular in S^{3} - Int C, h is a homeomorphism of D onto $C l((\mathrm{Bd} C)-D)$ such that $h \mid \mathrm{Bd} D=1, U$ is an open set containing $C-\mathrm{Bd} D$, and $\varepsilon>0$. Then there exist a cellular subdivision $D_{1}, D_{2}, \ldots, D_{n}$ of D and a map f of S^{3} onto S^{3} such that
(1) $f \mid S^{3}-U=1$,
(2) $f \mid S^{3}-C$ is a homeomorphism onto $S^{3}-f(C)$,
(3) both $f \mid D$ and $f \mid h(D)$ are homeomorphisms,
(4) $f(D) \cap f h(D)=f\left(\cup \mathrm{Bd} D_{i}\right)$,
(5) $f\left|\cup \mathrm{Bd} D_{i}=f h\right| \cup \mathrm{Bd} D_{i}$,
(6) $f\left(D_{i}\right) \cup f h\left(D_{i}\right)$ bounds a 3-cell in $f(C)$ of diameter less than ε, and
(7) Diam $D_{i}<\varepsilon$.

Theorem 3.5. Suppose C is a 3 -cell in S^{3} and, D is a disk in $B d C$ such that each subdisk of D in Int D is semi-cellular in the crumpled cube $C l\left(S^{3}-C\right), h$ is a homeomorphism of D onto $C l(\mathrm{Bd} C-D)$ such that $h \mid \mathrm{Bd} D=1$, and U is an open set containing $C-\mathrm{Bd} D$. Then there exists a map of S^{3} onto S^{3} such that
(1) $f \mid S^{3}-U=1$,
(2) $f \mid S^{3}-C$ is a homeomorphism onto $S^{3}-f(C)$, and
(3) $f \mid D=f h$ and $f h$ is a homeomorphism onto $f(C)$.

Proof. The map f is the limit of a sequence of maps $\left\{f_{i}\right\}$ obtained by repeated use of Lemma 3.4. Specifically, let U_{0}, U_{1}, \ldots be a sequence of open sets in S^{3} such that $U \supset U_{0} \supset U_{1} \supset \ldots$ and $\cap U_{i}=C-\operatorname{Bd} D$, and let $\varepsilon_{0}, \varepsilon_{1}, \ldots$ be a sequence of positive numbers such that $\sum_{0}^{\infty} \varepsilon_{i}$ is bounded. The map f_{0} is the identity on S^{3}. It follows that there exist a cellular subdivision $\left\{D_{i}{ }^{1}\right\}$ of D and a $\operatorname{map} f_{1}$ of S^{3} onto S^{3} that satisfy the conclusions of Lemma 3.4. Let $K_{i}{ }^{1}$ be the 3 -cell that $f_{1}\left(D_{i}{ }^{1}\right) \cup f_{1} h\left(D_{i}{ }^{1}\right)$ bounds in $f_{1}(C)$ and let $\left\{V_{i}{ }^{1}\right\}$ be a finite collection of disjoint open sets in $f_{1}\left(U_{1}\right)$ such that $K_{i}{ }^{1}-f_{1}\left(\mathrm{Bd} D_{i}{ }^{1}\right) \subset V_{i}{ }^{1}$ and Diam $V_{i}{ }^{1}<\varepsilon_{1}$.

Inductively we assume that $\left\{D_{i}{ }^{n}\right\}$ is a cellular subdivision of D, f_{n} is a map of S^{3} onto S^{3}, K_{i}^{n} is the 3 -cell bounded by $f_{n}\left(D_{i}^{n}\right) \cup f_{n} h\left(D_{i}^{n}\right)$, and $\left\{V_{i}^{n}\right\}$ is a finite collection of disjoint open sets in $f_{n}\left(U_{n}\right)$ such that $K_{i}^{n}-f_{n}\left(\operatorname{Bd} D_{i}{ }^{n}\right) \subset V_{i}^{n}$ and Diam $V_{i}^{n}<\varepsilon_{n}$. Lemma 3.4 is applied the 3-cell K_{i}^{n}, disk $f^{n}\left(D_{i}^{n}\right)$, homeomorphism $f_{n} h f_{n}{ }^{-1} \mid f_{n}\left(D_{i}^{n}\right)$, open set V_{i}^{n}, and positive
number ε_{n+1} to obtain a map f_{n+1}^{i} of S^{3} onto S^{3} and a cellular subdivision $\left\{E_{i}^{i}\right\}$ of $f_{n}\left(D_{i}{ }^{n}\right)$. The map f_{n+1} is obtained by piecing together $\left\{f_{n+1}^{i}\right\}$; the collection $\left\{D_{i}^{n+1}\right\}$ is given by $\left\{f_{n}^{-1}\left(E_{j}^{i}\right)\right\}_{i j}$. Each 2-sphere $f_{n+1}\left(D_{i}^{n+1}\right) \cup f_{n+1} h\left(D_{i}^{n+1}\right)$ bounds a 3-cell K_{i}^{n+1} in $f_{n+1}(C)$. A finite collection $\left\{V_{i}^{n+1}\right\}$ of disjoint open sets in $f_{n+1}^{i}\left(U_{n+1}\right)$ are chosen such that $K_{i}^{n+1}-$ $f_{n+1}\left(\operatorname{Bd} D_{i}^{n+1}\right) \subset V_{i}^{n+1}$, $\operatorname{Diam} V_{i}^{n+1}<\varepsilon_{n+1}$, and $\bigcup_{i} v_{i}^{n+1} \subset \bigcup_{i} v_{i}^{n}$.

It is straightforward to check that the limit of the maps $\left\{f_{n}\right\}$ satisfies the conclusions of this theorem.

§4. A GENERAL SEWING THEOREM

Theorem 4.1. Suppose C_{1} and C_{2} are crumpled cubes and h a homeomorphism of $\mathrm{Bd} C_{1}$ onto $\operatorname{Bd} C_{2}$. Then $C_{1} \bigcup_{n} C_{2}=S^{3}$ if there exists a set $F \subset \operatorname{Bd} C_{1}$ such that
(1) $F \cup \operatorname{Int} C_{1}$ is 1-ULC, and
(2) for each $p \in F$ either p lies in the interior of a semi-cellular disk of C_{1} or $h(p)$ lies in the interior of semi-cellular disk of C_{2}.
Proof. Without loss of generality we assume that C_{1} and C_{2} are embedded in S^{3} such that $S^{3}-\operatorname{lnt} C_{i}$ is a 3 -cell $[16,18]$. Let U be an open subset of $\mathrm{Bd} C_{1}$ containing F such that for each point $p \in U$ there exists a disk $D \subset U$ such that either D is semi-cellular in C_{1} or $h(D)$ is semi-cellular in C_{2}. It follows that there exists a locally finite graph $G \subset U$ such that
(3) G is locally tame,
(4) the closures of the components of $U-G$ form a null sequence $\left\{D_{i}\right\}$ of disks, and
(5) either D_{i} is semi-cellular in C_{1} or $h\left(D_{i}\right)$ is semi-cellular in $C_{2}(i=1,2, \ldots)$.

The interior of each disk D_{i} is pushed slightly into $S^{3}-C_{1}$ to form a tame disk E_{i} such that $\mathrm{Bd} E_{i}=\mathrm{Bd} D_{i}$ and Int $E_{i} \cap$ Int $E_{j}=\varnothing$ if $i \neq j$. It follows from [9] and [17] that the 2-sphere $S=\left(\operatorname{Bd} C_{1}-\cup D_{i}\right) \cup\left(\cup E_{i}\right)$ is tame and thus bounds a cell C containing C_{1}. Furthermore, for each $i, E_{i} \cup D_{i}$ bounds a cell K_{i} in C.

There is a homeomorphism g of C onto $S^{3}-\operatorname{Int} C_{2}$ such that $g \mid \mathrm{Bd} C_{1}-\cup$ Int $D_{i}=$ $h \mid \operatorname{Bd} C_{1}-\cup \operatorname{Int} D_{i}$. Let U_{1}, U_{2}, \ldots be a null sequence of disjoint open sets in S^{3} such that $g\left(K_{i}\right)-g\left(\mathrm{Bd} D_{i}\right) \subset U_{i}$. The proof is completed by applying Theorem 3.5 to each 3-cell $g\left(K_{i}\right)$ in one of two ways: in case D_{i} is semi-cellular in C_{1}, Theorem 3.5 is applied to the 3 -cell $g\left(K_{i}\right)$, the disk $g\left(D_{i}\right)$, the homeomorphism $h g^{-1} \mid g\left(D_{i}\right)$, and the open set U_{i}; in case D_{i} fails to be semi-cellular in C_{1} (hence, $h\left(D_{i}\right)$ is semi-cellular in C_{2} by Condition 5), it is applied to the 3 -cell $g\left(K_{i}\right)$, the disk $h\left(D_{i}\right)$, the homeomorphism $g h^{-1} \mid h\left(D_{i}\right)$, and the open set U_{i}.

§5. UNIVERSAL CRUMPLED CUBES

As a corollary to Theorem 4.1 we obtain the following sufficient condition that a crumpled cube be universal.

Theorem 5.1. Let C be a crumpled cube and F a subset of $B d C$ such that Int $C \cup F$ is $1-U L C$ and each point of F lies interior to a subdisk in $\mathrm{Bd} C$ semi-cellular in C. Then C is a universal crumpled cube.

Theorem 5.2. If C is a crumpled cube such that $\operatorname{lnt} C$ is an open 3 -cell and each point of $\mathrm{Bd} C$ is a piercing point of C, then C is a universal crumpled cube.

Proof. By Corollary 2.6, there exists a point q of $\mathrm{Bd} C$ such that each point of Bd $C-\{q\}$ lies interior to a subdisk of $\mathrm{Bd} C$ semi-cellular in C. Let $F=\mathrm{Bd} C-\{q\}$; then. McMillan's characterization of piercing points [20] implies that $F \cup \operatorname{Int} C$ is $1-U L C$ Theorem 5.1 can be applied to show that C is universal.

Corollary 5.3. Gillman's crumpled cube [15, Section 2] is universal.
Corollary 5.4. Alford's crumpled cube [1, Section 2] is universal.
COROLLARy 5.5. There exists an uncountable family of universal crumpled cubes, no two of which are homeomorphic.

Proof. The family of spheres of [1, Section 3] can be constructed so as to bound crumpled cubes with the desired properties.

The boundary of a crumpled cube C is said to be free relative to Int C if for each positive number ε there exists a map f of $\mathrm{Bd} C$ into Int C such that $\rho(f, I)<\varepsilon$.

Corollary 5.6. If the boundary of a crumpled cube C is free relative to Int C, then C is universal.

Under this hypothesis each subdisk of $\mathrm{Bd} C$ is semi-cellular in C. It is not known whether such a crumpled cube must be a 3-cell.

Another Example. The crumpled cubes found in the literature which turn out to be universal all share the property that their interiors are open 3-cells. This property is not essential for universality. By modifying the hooking described by Gillman in [15, Section 2], one can construct a crumpled cube C such that (1) each Sierpinski curve in $\mathrm{Bd} C$ is tame, (2) each subdisk of Bd C is semi-cellular in C, and (3) Int C is not simply connected. The only difference between this construction and Gillman's is the last eyebolt in each stage of the defining sequence for C is hooked around the first eyebolt in that stage, forming a circular chain of eyebolts rather than an arc-like chain. It follows from Condition (2) and Theorem 5.1 (with $F=\mathrm{Bd} C$) that C is universal.

Using the preceding results we obtain a necessary and sufficient condition that a sewing of two crumpled cubes gives S^{3}, provided the interior of one of the cubes is an open 3-cell.

Theorem 5.7. Suppose C_{1} and C_{2} are crumpled cubes, h a homeomorphism of $\mathrm{Bd} C_{1}$ to $\operatorname{Bd} C_{2}$, and Int C_{2} is an open 3-cell. Then the sewing $C_{1} \bigcup_{h} C_{2}=S^{3}$ if and only if the following condition holds: each non-piercing point of C_{1} is identified by h with a piercing point of C_{2}.

Proof. The necessity of this condition follows from [22]. On the other hand, if h is a sewing satisfying the condition, then by [21, Th. 2] C_{2} contains at most one non-piercing point. In case C_{2} contains no non-piercing point, then C_{2} is universal by Theorem 5.2. If C_{2} contains a non-piercing point q, then by hypothesis $h^{-1}(q)$ is a piercing point of C_{1}.

In this case, let $F=\mathrm{Bd} C_{1}-h^{-1}(q)$. Thus, $F \cup$ Int C_{1} is 1-ULC [20], and, for each point p of $F, h(p)$ lies interior to a subdisk of $\mathrm{Bd} C_{2}$ semi-cellular in C_{2} (see Lemma 2.7). Theorem 4.1 implies that this sewing gives S^{3}.

The above discussion leads naturally to the following list of questions.
Question 1. Is the sufficient condition of Theorem 5.1 necessary for a crumpled cube to be universal?

Question 2. Is the crumpled cube described by Bing [3] universal?
Question 3. Is a crumpled cube C universal if each arc in $\mathrm{Bd} C$ is tame :
Question 4. Is there a universal crumpled cube C such that $\mathrm{Bd} C$ is locally tame modulo a Cantor set?
J. W. Cannon has asked whether there exists a crumpled cube D that would serve as a " test" cube for universality.

Question 5. Is there a crumpled cube D such that, if $C \bigcup_{h} D=S^{3}$ for all sewings h, then C is a universal crumpled cube?
Addendum-After submitting this paper, the authors improved its results, answering the preceding questions. Eaton [14] established that a crumpled cube C is universal if, for each Cantor set X in $\mathrm{Bd} C, C-X$ is 1-ULC, and Daverman [11] discovered that this condition characterizes universal crumpled cubes. As a result, the answers to Questions 2, 3, and 5 are affirmative; to Questions 1 and 4, negative. Also, Eaton [14] characterized the sewings of two crumpled cubes C_{1} and C_{2} that yield S^{3} as those homeomorphisms h of $\mathrm{Bd} C_{1}$ to $\mathrm{Bd} C_{2}$ for which there exist subsets F_{i} of $\mathrm{Bd} C_{i}(i=1,2)$ such that $F_{i} \cup \operatorname{Int} C_{i}$ is $1-U L C$ and $h\left(F_{1}\right) \cap F_{2}=\varnothing$.

REFERENCES

1. W. R. Alford: Some 'nice' wild 2-spheres in E3, Topology of 3-manifolds and Related Topics, pp. 29-33, Prentice-Hall, Englewood Cliffs, N. J. (1962).
2. B. J. Ball: The sum of two solid horned spheres, Ann. Math. (2) 69 (1959), 253-257.
3. R. H. Bing: A wild surface each of whose arcs is tame, Duke Math. J. 28 (1961), 1-16.
4. R. H. Bing: Each disk in E^{3} contains a tame arc, Am. J. Math, 84 (1962), 583-590.
5. R. H. Bing: Pushing a 2 -sphere into its complement, Michigan Math. J. 11 (1964), 33-45.
6. R. H. Bing: Retractions onto spheres, Am. Math. Monthly 71 (1964), 481-484.
7. R. H. Bing: Improving the side approximations theorem, Trans. Am. math. Soc. 116 (1965), 511-525.
8. C. E. Burgess: Criteria for a 2 -sphere to be tame modulo two points, Michigan Math. J. 14 (196?), 321-330.
9. J. W. Cannon: Sets which can be missed by side approximations to spheres, Pacific J. Math 34 (1970), 321-334.
10. L. O. Cannon: Sums of solid horned spheres, Trans. Am. math. Soc. 122 (1966), 203-228.
11. R. J. Daverman: A characterization of universal crumpled cubes, Notices Am. Math. Soc. 17 (1970). 533.
12. R. J. Daverman and W. T. Eaton: A dense set of sewengs of two crumpled cubes yields S^{3}, Fund. Math. 65 (1969), 51-60.
13. R. J. Daverman and W. T. Eaton: An equivalence for the embeddings of cells in a 3 -manifold, Trans. Am. math. Soc. 145 (1969), 369-382.
14. W. T. Eaton: The sum of solid spheres, (to appear).
15. D. S. Gillman: Note concerning a wild sphere of Bing, Duke Math. J. 31 (1964), 247-254.
16. L. L. Lininger: Some results on crumpled cubes, Trans, Am. math. Soc. 118 (1965), 534-549.
17. L. D. Loveland: Tame subsets of spheres in E^{3}, Pacific J. Math. 19 (1966), 489-517.
18. N. Hosay: The sum of a real cube and a crumpled cube is S^{3}, Notices Am. math. Soc. 10 (1963), 666. See also Errata 11 (1964), 152.
19. D. R. McMmlan, Jr.: A criterion for cellularity in a manifold, Ann. Math. (2) 79 (1964), 327-337.
20. D. R. McMillan, Jk.: Some topological properties of piercing points, Pacific J. Math. 22 (1967). 313-322.
21. D. R. McMillan, Jr: Piercing a disk along a cellular set, Proc. Am. math Soc. 19 (1968), 153-157.
22. J. Martin: The sum of two crumpled cubes, Michigan Math. J. 13 (1966), 147-151.
23. C. D. Papakyriakopolilos: On Dehn's Lemma and the asphericity of knots, Ann. Math. (2) 66 (1957), 1-26.

[^0]: \dagger Research supported by NSF Grant GP-8888.

