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51. INTRODUCTION 

IT IS known [16, 181 that the 3-cell is universal in the sense that any sewing of itself to a 

crumpled cube yields the 3-sphere S’. This suggests the following definition: A crumpled 

cube C is universal if, for each crumpled cube D and sewing h of C and D, the resulting 

space Cu D is topologically equivalent to S 3. The main result of this paper, Theorem 5.1, 
h 

implies that there exists an uncountable family of topologically distinct universal crumpled 

cubes. 

Martin [22] has shown that a necessary condition for C U D = S3 is that for each 
h 

PE Bd C either p is a piercing point of C or h(p) is a piercing point of D. On the other hand, 

examples of Ball [2] and Cannon [lo] indicate that this condition is not sufficient. Tech- 

niques developed to prove Theorem 5.1 lead to a modification of Martin’s condition, 

suggested by McMillan’s Cellularity Criterion [19] and his characterization of piercing 

points [20], which is sufficient for C U D = S3. 
h 

We say a subset K of the boundary of a crumpled cube C is semicelhlar in C if for 

each open subset U of C containing K there is an open set V such that Kc V c U and 

loops in V - K are null-homotopic in (I - K. The Sewing Theorem (Theorem 4.1) 

establishes that a sufficient condition for C U D = S3 is that for each p f Bd C either 
h 

p lies interior to a semi-cellular disk of C or h(p) lies interior to a semi-cellular disk of D. 

Martin’s condition that the sewing h mismatch non-piercing points does imply 

CU D = S3 in certain cases; for example, if C is a countably knotted crumpled cube 

112: Th. 31. In addition, Theorem 5.7 states that this condition is sufficient if Int C is 

homeomorphic to Euclidean 3-space E3. 

Arguments in Section 3 follow an outline similar to Section 2 of [12]; nevertheless, 

with the exception of Lemma 3.1, this paper can be read without reference to [12]. The 

crucial new idea, using the semi-cellularity condition to realize a prescribed sewing, is 

found in the proof of Lemma 3.3. Examples and properties of semi-cellular sets, including 

a characterization in terms of piercing points, are described in Section 2. 
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A crumpled cube C is a topological space homeomorphic to the closure of the bounded 

complementary domain of a ?-sphere embedded in Euclidean ;-space E’. The boruidary of 
C, denoted Bd C, consists of the points of C where it fails to be a j-manifold, and the 

interior of C, denoted Int C, is defined by Int C = C - Bd C. A seu,ing iz of two crumpled 

cubes C and D is a homeomorphism of Bd C onto Bd D, and the space C u D giren by the 
h 

setring is the identification space obtained from the (disjoint) union of C and D by identi- 

fying each point I in Bd C with the point h(x) in Bd D. 

Let C be a crumpled cube and p a point in Bd C. Then p is a piercing point of C if there 

exists an embedding f of C into S3 such thatf(Bd C) can be pierced with a tame arc at f(p). 

McMillan has characterized the piercing points as those points p in Bd C such that C-{p} 

is l-ULC [20]. 

If X is a metric space and C is a compact subset of X, then X/C denotes the decompo- 

sition space associated with the upper semi-continuous decomposition of X whose only 

non-degenerate element is C. 

52. SEMI-CELLULARITY IN CRUMPLED CUBES 

LEMMA 2.1. Let S be a 2-sphere in S’ and X a non-separating subcontinuum of S w,hich 

is semi-cellular in both crumpled cubes bounded by S. Then X is a cellular subset of S3. 

Proof. Let C, and C2 denote the crumpled cubes bounded by S. If lJ is an open set 

in S’ containing X, we find another open set V containing X such that each loop in 

(Ci A V) - X is null homotopic in (Ci n U) - X. Any loop L in V - X can be adjusted 

by a homotopy in V - X so that it intersects S in a finite point set, and the adjusted L can 

be represented as the sum of loops L,, . . , L, such that Li is contained in either (C, n V) - X 

or (C, n V) - X (i = 1, , n). Since each L, is contractible in U - X, L is contractible 

in U - X; thus, the Cellularity Criterion of McMillan [19, Th. I’] implies that X is cellular. 

If S is a 2-sphere in S3 and X is a subcontinuum of S which is cellular in S3, X is not 

necessarily semi-cellular in each of the crumpled cubes bounded by S. However, the follow- 

ing theorem, combined with [22], implies that X is semi-cellular in at least one of these 

crumpled cubes. 

THEOREM 2.2. Let C be a crumpled cube, X a non-separating subcontirzuum of Bd C, and 
n the projection map of C onto the decomposition space C/X. Then X is semi-cellular in C if 

and only if the following conditions hold: C/X is a crumpled cube and x(X) is a piercing point 

of C/X. 

Proof. If C/X is a crumpled cube such that n(X) is a piercing point, MclMillan’s 
characterization of piercing points [20, Th. I] can be applied to show that X is semi-cellular 

in C. 

In case X is semi-cellular in C, we consider C to be embedded in S3 SO that 

K = Cf(S3 - C) is a 3-cell [16, 181. Then X is cellular in S3 by Lemma 2.1, and there exists 

a map n of S3 onto itself whose only (non-degenerate) inverse set is X. Since X does not 

separate Bd C, ;c(Bd C) is a 2-sphere; hence z maps C onto a crumpled cube equivalent to 
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c/X. Once again. Theorem 1 of [20] can be used to show that E(X) is a piercing point of 

n(C). 

The following lemma is applied repeatedly in Section 3. 

LEMMA 2.3. If C is a crumpled cube and the subdisk D of Bd C is semi-cellular in C, 

then each subdisk D’ of D is semi-cellular in C. 

ProoJ Let U be an open set containing D’. It is sufhcient to consider the case that D 

is the union of D’ and a disk D” such that D’ n D” is an arc (in the boundary of each). 

Let A be an arc in D” separating D’ from D - U. M’e find an open subset W of C containing 

D such that W is the union of three open sets H’,, W, , and W, , satisfying 

(1) D’ c Wi c U, 

(2) W, fJ W, = 0, 
(3) A c W2 c 0’ - D’, and 

(4) W2 is contractible in U - D’. 

Condition 4 holds because A is contractible and C is an absolute retract [6, Th. 41. Conse- 

quently, any contraction fi of A in itself extends to a contraction g1 of C in itself, and it is 

easy to find a neighbourhood Wz of A such that gl( W,) c U - D’ (0 It I 1). 

By hypothesis, there exists an open set V* containing D such that each loop in V* - D 

is null-homotopic in W - D. We define Y = V* n W,. 

If L is a loop in V - D’, we shall show that L is null-homotopic in U - D’. By pushing 

L slightly, we can suppose that L is contained in Y - D. Thus, L is contractible in W - D. 

If the image of the contraction extends into W, , we cut it off in W,, and we replace a 

portion of the original contraction with a map into U - D’, by using Condition 4. This 

establishes that L is contractible in (W, - D’) u (U - 0’) c I/ - D’. 

LEhrhfA 2.4. If C is a crumpled cube and D is a subdisk of Bd C L(VfricIr is semi-cellular 

in C, then each point of D is a piercing point of C. 

Proof, This is an easy consequence of Lemma 2.3 and McMillan’s characterization 

of piercing points. 

The following theorem is an existence result for semi-cellular sets. The original argu- 

ment stemmed from the geometric techniques of 18, Th. I], but we give an alternate proof. 

THEOREM 2.5. If the interior of the crumpled cube C is an open 3-cell and X, and X, 

are disjoint, non-separating subcontinua of Bd C, then either X, or X, is semi-cellular in C. 

Proof. We consider C to be embedded in S’ so that K = Cl (S3 - C) is a 3-cell. Both 

X, and X, are cellular subsets of S3, since for each neighbourhood Ui of Xi there exists a 

disk Di such that 

Xi c Di c Bd K n U,(i = 1,2). 

But K is cellular by hypothesis and K collapses to Di. Therefore, using 121, Th. l] we find 

that there exists a 3-cell Bi such that 

Xi c Di c Int Bi c B, c Ui(i = 1,2). 
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AS a result, the decomposition spaces C/X, and C/X, are crumpled cubes. If E denotes 

a map of S3 onto itself whose only inverse sets are Xi and X2, then Z(C) is also a crumpled 

cube. Furthermore, a neighbourhood of rr(X,) in x(C) is homeomorphic to a neighbourhood 

of the image of Xi in C/X,; thus, r(Xi) is a piercing point of X(C) if and only if the image of 

Xi is a piercing point of C/X,(i = 1, 2). Note that Int n(C) is an open 3-cell, since it is a 

homeomorphic (via n) to Tnt C. Consequently, Theorem 2 of [21] implies that either 

X(X,) or n(Xz) is a piercing point of n(C). We appeal to Theorem 2.2 to complete the proof. 

COROLLARY 2.6. Zf the interior of a crumpled cube C is an open 3-cell, then there exists 

a point q in Bd C such that each point of Bd C - {q} lies interior to a subdisk of Bd C semi- 

cellular in C. 

LEMMA 2.7. Zf the interior of the crumpled cube C is an open 3-cell, and q is a non- 

piercing point of C, then each non-separating subcontinzlunz X of Bd C contained in Bd C -{q} 

is semi-cellular in C. 

Proof: Let E be a subdisk of Bd C - X containing q. By Theorem 2.5 either X or E 

is semi-cellular in C, and E is excluded by Lemma 2.4. 

Remark. Although we can avoid the question in the later applications of this paper, 

it would be interesting to know whether each disk in the boundary of a crumpled cube C 

is semi-cellular in C if Int C is an open 3-cell and each point of Bd C is a piercing point of C. 

53. A METHOD FOR SQUEEZING CERTAIN CELLS 

Consider a 3-cell C in S3 such that Bd C contains a disk D which is semi-cellular in 

S3 - Int C, and let h be a homeomorphism of D onto Bd C - Int D which leaves Bd D 

fixed. In this section we describe how to squeeze C to a disk by a map f of S3 to itself 

such that f 1 D is a homeomorphism and f [ D = fh. There are two basic steps: in the first 

step, as suggested by techniques of [12], we squeeze C to a collection of thin tubes, 

which may be very long; in the second we attach portions of each tube to itself, preserving 

the homeomorphism h, in such a way that the resulting image of C consists of small‘cells. 

We obtain the map f by iterating these steps. 

LEMMA 3.1. Suppose C, and C2 are 3-cells in S3 .WC/I that C, n C2 = Bd C, n Bd CZ = D 

is a tame disk, B is an arc in Bd D, h is a homeomorphism of B onto Cf((Bd D) - B) such 

that h 1 Bd D = 1, U is an open set containing D - B, and E > 0. Then there exist a map 

of S3 onto S3 and homeomorphisms gi of Ci onto f (Ci) (i = 1,2) such that 

(l)f]S3- u= 1, 

(2) f(D) = B andf ] S3 - D is a homeomorphism onto S3 - B, 

(3) fh = 1, and 

(4) gi1s3 - u= 1 and p(gi, 1) < E (i = 1,2). 

Proof. Without loss of generality we make the following assumptions: 

(5) D = {(x,y,z)lx’ + y2 I 1, z = &/12}, 

(6) B = {(x,y,z)lx = -,,/v, z = e/12}, 
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(7) h( -$q-, L’, E/12) = i,Jq-, y, E/12), 

(8) the solid geometric cylinder A = {(xr,y,r) j x2 + yz I 1, 0 I z < a/6} lies in the 3-cell 

C, u C2, 

(9) the disk F = {(x,y,z) / x = ,,/m, 0 I z I q’6) intersects Bd(C, u C?) in a tame 

Sierpinski curve X, 

(10) h(B) u Bd Flies in the inaccessible part of X, and 

(11) A-Bc u. 

Note that the closures of the components of (C, u C,) - A which intersect Int F form a 

null sequence {Ki} of disjoint 3-cells. The map f is now constructed using the technique 

of [12, Lemma 41 on the solid cylinder A. 

We require the following definitions throughout the rest of this section. 

Let K be a 3-cell in S3 and D a disk in Bd K. The cross sectional diameter of K with 

respect to D is said to be less than the number d if there exists a homeomorphism g of 

D x I onto K such that g(x, 0) = x for all x E D and diam g(D x t) < d for all t E I. 

A collection of 2-cells D,, . . . , D, in a disk D is a cellular subdivision of D if and only 

ifIntDinIntDj=(2((i#j)andD=uDi. 

LEMMA 3.2. Suppose C is a 3-cell in S3, D is a disk in Bd C, fz is a homeomorphism of D 

onto Ci(Bd C) - D) such that h 1 Bd D = 1, U is an open set containing C - D, and E > 0. 

Then there exist a cellular subdivision D,, D, , . . . , D, of D and a map f of S3 onto S3 such 

that 

(1) f’IS”- u= 1, 

(2) f 1 S3 - C is a homeomorphism onto S3 -f(C), 

(3) fh is a homeomorphism, 

(4) fhl UBd Di = 1, 

(5) fh(D) n D = u Bd Di, and 

(6) Di u (fh(Di)) bounds a 3-cell Ki c U such that the cross-sectional diameter 
is less than E. 

Of Ki 

Proof. Let A be the standard 3-cell {(x,y,z)l x2 + y2 + zz I I}. By [5, Th. 4.21 there 

exists a O-dimensional F, set Fin Bd C such that F u Ext C is 1 - ULC. It is straight forward 

to show that there exists a homeomorphism H of {(x,y,z) 1 z = - J1 - x2 - y’} onto D 

such that if r is a rational number in [ - 1, l] then H({(x,y,z) 1 z = - Jl - r ’ - y2, x = r}) c 

D - (F u h-‘(F)) and H({(x,y,z)Iz = --dm, y = r}) c D - (F u h-‘(F)). Then 

H can be extended to the top of A by the formula H(x,y, ,/w) = hH(x,y, - 

J1 - xz - y’), and this homeomorphism of Bd A onto Bd C can be extended @ a homeo- 

morphism H of A onto C. There exist rational numbers - 1 = r0 < rl . . . < r,,, = 1 such 

that the cross-sectional diameter of the 3-cell C, = H({(x,y,z) j ri I x I ri+l, rj I y < rj+l, 

1~1 I ,/I - x2 - y’})with respect to the disk Dij = H({(x,Y,z))/ ri I x < ri+l, rj _< y I rj+l, 
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z= -I ‘1 - X’ - y2)) is less than e/3. The disks (Oijj form the required cellular subdivision 

of D. The requiredfis obtained by applying Lemma 3.1 a finite number of times as follows 

Let C’i, , U,,,_, be a collection of disjoint open sets in U such that the disk 

Ei = H({(x,I’,z)j.r = Ti, yz + ,3 5 1 - ri’} less the arc Bi = {(,Y,F, z) j x = i-i, 

z= -JI -ri’-,,2}) 1’ ies in Ui. Apply Lemma 3.1 to the tame disk Ei, arc Bi, homeo- 

morphism h 1 Bi and open set Ui (i = 1, . . . , n - 1). The resulting maps can be pieced together 

to form a mapf’ of S3 onto S3. Let { Vij} be a collection of disjoint open sets in (i such 

that the disk Eij =f’H({(,~,y,z)jr~ 2 ,Y 5 ri+i,y = rj, /zj I ,/l - rjz - x’j less the arc 

Bij =f'H({(.X,_Y,Z) / ri I X < ri+ L, Y = rj, Z = - ,/l - rj2 - x’}) lies in Vij. Apply Lemma 

3.1 to the tame disk Eij, arc Bij, homeomorphism hi Bij and open set Vij, and collect 

the resulting maps to form a mapf” of S3 onto S 3. The required map f =f”If’. We may 

assume that Lemma 3.1 was applied with small enough epsilons to insure that there exists 

an e/3-homeomorphism gij of Cij ontof(Cij). It follows that the cross-sectional diameter 

off(Cij) with respect to Dij is less than E. 

LEMhiA 3.3. Suppose E > 0, C is a 3-cell in S3, and D is a disk in Bd C such that C has 

cross-sectional diameter less than E with respect to D and each subdisk of Int D is semi- 

cellular in Cl(S3 - C), h is a homeomorphism of D onto Cl(Bd C - D) such that h 1 Bd D = 1, 

and U is an open set containing C - Bd D. Then there exist a cellular subdivision D,, , D, 

of D and a map f of S3 onto S3 such that 

(1) flS’ - u= 1, 

(2) f is a homeomorphism of S3 - C onto S’ -f(C), 

(3) both f 1 D and f I h(D) are homeomorphisms, 

(4) f(D) nfh(D) =f(u Bd Di), 

(5) f I v Bd Di = fh I u Bd Di, and 

(6) f( Di) u fh(Di) bounds a 3-cell in f(C) of diameter less than 2~. 

Proof. Let g be a homeomorphism of D x I onto C such that g(x,O) = x for all x E D 

and Diam g(D x t) < E for all 1 E I. Then there exists a sequence of positive numbers 

0 = t, < t, < . . < 1, = 1 

such that Diam g(D x [tl , tiil]) <E. Since g can be adjusted slightly, if necessary, 

we assume without loss of generality that for i = 1, . . . , n the simple closed curve 

Ji = h-‘g (Bd D x ti) is tame [4, Th. I]. Let J, be a tame simple closed curve in D which 

separates Bd D and J,. By pushing the interiors of each annulus on D bounded by 

successive J,‘s toward Int C, we form a collection of tame annuli A,, A,, , A,-, in 

g(D x [0, tI)) whose interiors are pairwise disjoint subsets of Int C and whose boun- 

daries satisfy Bd Ai = Ji u Ji+l. Similarly, there exists a tame disk A, in g(D x [0, ti)) 

such that Bd A, = J,, Int A, c Tnt C, and Int A, n Int Ai = 0 (i # n). Let Ft denote the 

subdisk of D bounded by Ji . 

In the next three paragraphs we describe the construction of a collection of disks 

“ below ” D that will control the squeezing map f. Let U, be an open subset of U - Int A, 
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containing F, such that C;, A C c F,. From the hypothesis we find that F, is semi-cellular 

in Cf(S3 - C). Consequently, J, bounds a singular disk, with no singularities near J, , in 

(F, - F,) u (U, n (S’ - C)). Thus, after a careful simplicial approximation to AO, making 

use of the Side Approximation Theorem [7, Th. I] to avoid the introduction of singularities 

near J, , we apply Dehn’s Lemma [23] to obtain a tame disk Go with properties similar to 

those of AO. We require, in particular, that G, n C be contained in the solid torus bounded 

by (F, - Fr) u A,, . 

Working our way inside, we find that J, bounds a singular disk, with no singularities 

near J,, in (FI - F2) u (U, n (S3 - C)), where U, is a neighbourhood of F2 in ci so close 

to Fz that A1 n G, = a. Once again, after adjustments to satisfy the hypotheses of Dehn’s 

Lemma, we obtain a tame disk G, with similar properties. 

Continuing in this fashion, we find a collection of mutually exclusive disks G,, 

G,, . . . . G,,_l such that 

Bd Gi = Ji, 

Gi n (u Ai) = Bd Gi, 

Gic U, 

Gi n C c the solid torus bounded by (Fi - Fi+ I) u Ai. 

Let B, denote an annulus in C n g(D x [0, tr]) bounded by Jo and g(Bd D x tl) 

such that Tnt B, c Int g(D x [0, t, J) and B, n (uAi) = J,, . Let Bi = g(Bd D x [ti, ti+I]) 

(i=t ,..., n-l)andPi=g(Dxti)(i=l ,..., n-l). 

We define a homeomorphismfon the domain (UC,) u (uAi) as follows: 

_flG, = 1, 

flA,: A, -+Bo such thatf]J, = h[J,, 

flAi:Ai+Bisuchthatf]BdAi=h]BdAi(i=l,...,n-l), 

1‘1 Gi: Gi AP, (i = 1, . . . , n - l), and 

f‘I A,: A, -*g(D x 1). 

Extend f so as to take the 3-cell in U bounded by C, u A0 u G, onto the 3-cell on U 

bounded by Go u B, u P,, the cell bounded by Gi u Ai u G,+, onto the cell bounded by 

PiuBiuPi+l(i=l,..., n - 2), and the cell bounded by G,_ I u A, _ L u A, onto the cell 

bounded by P,_l u B,_, u g(D x 1). 

Extend f via the identity to the remainder of S3 - Int C and to the toroidal region 
in C bounded by (D - Tnt FI) u B, u g(Bd D x [0, tl]). Use Tietze’s Extension Theorem 
to complete the definition offfrom the rest of C to the disk g(D x 1) u (uBi). A schematic 
view of the action of this map is given in Fig. 1. 

This construction forces each component of S3 -f(S3 - C) into some 3-cell of the 

form g(D x [fj-l, ij+,]); thus, the closure of each such component has diameter less than 

2s. Let M, denote the closure of the component of S3 -f (S3 - C) bounded byf( D - Int Fr) 

uh(D - Int F,); for i = 2, . , m let Mi denote the closure of the component of 
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FIG. II 

S3 -f(S3 - C) bounded byS(F,_, - lnt Fi) u h(Fi_, - Int Fi). One easily can show each 

Mi to be a solid torus. One should observe also that the only component of S3 -J(S3 - C) 

not contained in uMi is the interior of a 3-cell bounded byf(F,) u h(F,). 

To finish the proof we must squeeze further so that the closure of each component ot 

S3 -f(S’ - C) is a small 3-cell. To do this, we choose three pairwise disjoint, tame disks 

Aij(j = 1, 2, 3) in each solid torus Mi with Int Aij c Int Mi and such that there exist arcs 

Rij in D whose endpoints are points of J,_i and Ji (in case i = 1, then the endpoints of R, 

are points of Bd D and Ji) satisfying Bd Aij nf(D) =f(Rij) and Bd Aij n h(D) = fZ(Rij). 

The only problem in locating these tame disks Aij is to find arcs R,, satisfying the preceding 

conditions and such that f(Rij u h(Rij)) is tame. From [5, Th. 6.21 it follows that there 

exists a O-dimensional F,-subset Zi of Bd Mi such that Zi u (S3 - Mi) is l-ULC, and it 

follows from [9, Th. 2.41 and [17, Th. 61 that for any such arc Rij contained in 

(Fi_I - Int Fi) - [(fj D)-‘(Zi nf(D)) u h-‘(Zi n h(D))] 

the simple closed curvef(R,, u h(Rij)) is tame. 

Thus, Mi - fi Aij is the union of three components whose closures C, (i = 1, 2, 3) 
j=i 

are each 3-cells. Applying Lemma 3.1 to each of the Aij’s, we obtain a map f’ of S3 

onto itself such that f*(Aij) = h(Rij), f * takes S3 - u Aij homeomorphically onto 

S3 - u h(Rij), f * 1 S3 - CJ = 1, for each point x in u Rij, 

f *f (4 =I *fm) = 4x), 
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and diamf*(Cij) < 2~. 

The required subdivision of D has its l-skeleton the graph Bd D LJ (iQJi) u (6 fi 
j=l i=l 

Rij); the required map isf*J 

The following lemma is proved by first using Lemma 3.2 and then applying Lemma 3.3 

to each of the resulting cross-sectionally small 3-cells. 

LEMMA 3.4. Suppose C is a 3-cell in S3, D is a disk in Bd C such that each subdisk of 

Int D issemi-cellular in S’ - Int C, h is a homeomorphism of D onto CI((Bd C) - D) such 

that h j Bd D = 1, U is an open set containing C - Bd D, and E > 0. Then there exist a celhdar 

subdivision D,, D2 , . . , , D, of D and a map f of S3 onto S3 such that 

(1) f/S’ - u = 1, 

(2) f 1 S3 - C is a homeomorphism onto S3 -f(C), 

(3) both f 1 D andf 1 h(D) are homeomorphisms, 

(4) f(D) nfh(D) =f (u Bd Di)* 

(5) f 1 U Bd Di =fh[ U Bd Di, 

(6) f (Di) u fh(Di) bounds a 3-cell in f (C) of diameter less than E, and 

(7) Diam Di <E. 

THEOREM 3.5. Suppose C is a 3-cell in S’ and, D is a disk in Bd C suclr that each subdisk 

of D in Int D is semi-cellular in the crumpled cube CI(S3 - C), h is a homeomorphism of D 

onto Cf(Bd C - D) such that h 1 Bd D = 1, and U is an open set containing C - Bd D. Then 

there exists a map f of S’ onto S’ such that 

(I) flS’- u= 1, 

(2)flS’-CC h 1s a omeomorphism onto S3 -f(C), and 

(3) fl D = fh andfl I is a homeomorphism onto f (C). 

Proof. The map f is the limit of a sequence of maps {fi} obtained by repeated use of 

Lemma 3.4. Specifically, let U,, U,, . _. be a sequence of open sets in S’ such that 

u 1 u, 1 u, 1 . . . and nUi = C - Bd D, and let E,, , ccl, . . . be a sequence of positive 

numbers such that f si is bounded. The map f0 is the identity on S3. It follows that there 
0 

exist a cellular subdivision {Di’> of D and a mapf, of S’ onto S3 that satisfy the conclusions 

of Lemma 3.4. Let Ki’ be the 3-cell thatfi(Di’) U f,h(Di’) bounds in fl(C) and let { Y,r} be 

a finite collection of disjoint open sets in f,(U,) such that Ki’ - f,(Bd D,l) c Vi1 and 

Diam Vi’ < si. 

Inductively we assume that iDi” } is a cellular subdivision of D, f, is a map of S3 onto 

S3, K: is the 3-cell bounded byf,(Dr) u f. h(D;), and {Vi”} is a finite collection of disjoint 

open sets inf.(UJ such that Kin - f,(Bd Din) c Vi” and Diam Vi” < E, . Lemma 3.4 is applied 

the 3-cell Ki”, disk f”(Di”), homeomorphism fnhf,-‘jf,(Di”), open set Vi”, and positive 
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number E, _ , to obtain a mapfj’,, of S3 onto S3 and a cellular subdivision {Ejij off,(Dp). 

The mapf,+, is obtained by piecing together (fl-rii; the collection {Do”} is given by 

{f;l(Eji)}ij. Each 2-sphere f~,i(D~“) uf,+,h(D~+‘) bounds a 3-cell Kril in fn+i(C). 

A finite collection { b’!+ij of disjoint open sets inf,‘+i(U”+ i) are chosen such that K,!‘+l - 

f,,,(Bd 0;“) c Vii’, Diam Y:+i < c,+i, and u rl’i c I,_, l;i”. 
L L 

It is straightforward to check that the limit of the maps {f”) satisfies the conclusions 

of this theorem. 

$4. A GENERAL SEWING THEOREM 

THEOREM 4.1. Suppose C, and Cz are crumpled cubes and h a homeomorphism of Bd C, 

onto Bd C2 Then C, U C, = S3 if there exists a set F c Bd C, such that 
h 

(1) F u lnt C, is I-ULC, and 

(2) for each p E F either p lies in the interior of a semi-cellular disk of C, or h(p) lies in 

the interior of semi-cellular disk of Cz . 

Proof. Without loss of generality we assume that C, and Cz are embedded in S3 such 

that S’ - lnt Ci is a 3-cell [16, 181. Let (I be an open subset of Bd C, containing F such 

that for each point p E U there exists a disk D c U such that either D is semi-cellular in 

C, or h(D) is semi-cellular in Cz It follows that there exists a locally finite graph G c U 

such that 

(3) G is locally tame, 

(4) the closures of the components of Cf- G form a null sequence { Di} of disks, and 

(5) either Di is semi-cellular in C, or h(Di) is semi-cellular in Cz (i = 1, 2, . . .). 

The interior of each disk Di is pushed slightly into S3 - C, to form a tame disk Ei such 

that Bd Ei = Bd Di and Int Ei n Int Ej = 0 if i#j. It follows from [9] and [17] that the 

2-sphere S = (Bd C, - uD,) u (uE,) is tame and thus bounds a cell C containing C,. 

Furthermore, for each i, Ei u Di bounds a cell Ki in C. 

There is a homeomorphism g of C onto S3 - Int Cz such that g 1 Bd C, - u lnt Di = 

hlBdC,--uIntDi.Let U,,Uz ,... be a null sequence of disjoint open sets in S3 such 

that g(Ki) - g(Bd Di) c Ui. The proof is completed by applying Theorem 3.5 to each 

3-cell g(Ki) in one of two ways: in case Di is semi-cellular in C,, Theorem 3.5 is applied 

to the 3-cell g(KJ, the disk g(Di), the homeomorphism hg-’ \g(Di), and the open set c/i; 

in case Di fails to be semi-cellular in C, (hence, h(Di) is semi-cellular in Cz by Condition 

5), it is applied to the 3-cell g(K,), the disk h(D,), the homeomorphism gh-’ 1 h(Di), and 

the open set Ui. 

55. UNIVERSAL CRUMPLED CUBES 

As a corollary to Theorem 4.1 we obtain the following sufficient condition that a 

crumpled cube be universal. 
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THEOREM 5.1. Let C be a crumpled cube and F asubset of Ed C such that Int C u F is 

I-ULC and each point of F lies interior to a subdisk in Bd C semi-cellular in C. Then C is a 

unicersal crumpled cube. 

THEOREM 5.2. If C is a crumpled cube such that Int C is an open 3-cell and each point 

of Bd C is a piercing point of C, then C is a universal crumpled cube. 

Proof By Corollary 2.6, there exists a point q of Bd C such that each point of Bd 

C - {q} lies interior to a subdisk of Bd C semi-cellular in C. Let F = Bd C - (4); then. 

McMillan’s characterization of piercing points [20] implies that F u Int C is l-LILC 

Theorem 5.1 can be applied to show that C is universal. 

COROLLARY 5.3. Gillman’s crumpled cube [15, Section 21 is unicersal. 

COROLLARY 5.4. Alford’s crumpled cube [ 1, Section 21 is unicersal. 

COROLLARY 5.5. There exists an uncountable family of unicersal crumpled cubes, no 

two of which are homeomorphic. 

Proof The family of spheres of [I, Section 31 can be constructed so as to bound 

crumpled cubes with the desired properties. 

The boundary of a crumpled cube C is said to be free relative to Tnt C if for each posi- 

tive number E there exists a map f of Bd C into Int C such that p(f, I) < E. 

COROLLARY 5.6. If the boundary of a crumpled cube C is free relatice 

C is unioersal. 

Under this hypothesis each subdisk of Bd C is semi-cellular in C. It 

whether such a crumpled cube must be a 3-cell. 

to Int C, then 

is not known 

Another Example. The crumpled cubes found in the literature which turn out to be 

universal all share the property that their interiors are open 3-cells. This property is not 

essential for universality. By modifying the hooking described by Gillman in [l5, Section 21, 

one can construct a crumpled cube C such that (1) each Sierpinski curve in Bd C is tame, 

(2) each subdisk of Bd C is semi-cellular in C, and (3) Int C is not simply connected. The 

only difference between this construction and Gillman’s is the last eyebolt in each stage of 

the defining sequence for C is hooked around the first eyebolt in that stage, forming a 

circular chain of eyebolts rather than an arc-like chain. It follows from Condition (2) and 

Theorem 5.1 (with F = Bd C) that C is universal. 

Using the preceding results we obtain a necessary and sufficient condition that a sewing 

of two crumpled cubes gives S3, provided the interior of one of the cubes is an open 3-cell. 

THEOREM 5.7. Suppose C, and Cz are crumpled cubes, h a homeomorphism of Bd C, to 

Bd C2 , and Int C, is an open 3-cell. Then the sewing C, u C, = S3 (fand only tf the following 
h 

condition holds: each non-piercing point of C, is identified by h with a piercing point of CZ . 

Proof The necessity of this condition follows from [22]. On the other hand, if h is a 

sewing satisfying the condition, then by [21, Th. 21 C2 contains at most one non-piercing 

point. In case C1 contains no non-piercing point, then C2 is universal by Theorem 5.2. If 

C2 contains a non-piercing point q, then by hypothesis h-l(q) is a piercing point of C,. 
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In this case, let F =Bd C, - h-‘(q). Thus, F u Tnt C, is I-ULC [lo], and, for each point 

p of F, h(p) lies interior to a subdisk of Bd C, semi-cellular in C2 (see Lemma 2.7). Theorem 

4.1 implies that this sewing gives S3. 

The above discussion leads naturally to the following list of questions. 

Question 1. Is the sufficient condition of Theorem 5.1 necessary for a crumpled cube 

to be universal? 

Question 2. Is the crumpled cube described by Bing [3] universal? 

Question 3. Is a crumpled cube C universal if each arc in Bd C is tame’! 

Question 4. Is there a universal crumpled cube C such that Bd C is Iocaliy tame 
module a Cantor set? 

J. W. Cannon has asked whether there exists a crumpled cube D that would serve as a 

“ test” cube for universality. 

Question 5. Is there a crumpled cube D such that, if C u D = S3 for all sewings h, 
h 

then C is a universal crumpled cube? 

Addendum-After submitting this paper, the authors improved its results, answering the 

preceding questions. Eaton [14] established that a crumpled cube C is universal if, for 

each Cantor set X in Bd C, C - X is I-ULC, and Daverman [l l] discovered that this con- 

dition characterizes universal crumpled cubes. As a result, the answers to Questions 

2, 3, and 5 are affirmative; to Questions 1 and 4, negative. Also, Eaton [14] characterized 

the sewings of two crumpled cubes C, and C, that yield 5” as those homeomorphisms h of 

Bd C, to Bd C, for which there exist subsets Fi of Bd Ci (i = 1,2) such that Fi u Int Ci 

is l-ULC and h(F,) n F, = 0. 
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