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a b s t r a c t

In this paper, a novel learning strategy for radial basis function networks (RBFN) is
proposed. By adjusting the parameters of the hidden layer, including the RBF centers and
widths, the weights of the output layer are adapted by local optimization methods. A new
local optimization algorithm based on a combination of the gradient and Newtonmethods
is introduced. The efficiency of some local optimization methods to update the weights of
RBFN is studied in solving systems of nonlinear integral equations.
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1. Introduction

The radial basis function (RBF) networks have attracted the attention of many researchers due to their simple
architecture, computational efficiency, powerful generalization capability and learning schemes. These networks were first
brought to widespread attention by Broomhead and Lowe [1] in 1988. Moody and Darken [2], Renals and Rohwer [3], and
Girosi and Poggio [4] among others made major contributions to the theory, design, and application of RBF networks. The
RBF networks have been shown to be universal approximators; that is, theoretically, any continuous function defined on a
compact set can be approximated to a given accuracy by increasing the number of hidden nodes (see [4–7]).
The RBF network is a class of feed forward neural networks and in its most basic form involves three entirely different

layers. The first layer is an input layer of which each node corresponds to an attribute of an input sample, and passes directly
to the hidden layer without weights, i.e., the weight connection is unity. The nonlinear responses of the hidden nodes are
weighted in order to calculate the final outputs of the network in the third (output) layer. The transformation from the
input layer to the hidden layer is nonlinear, whereas the transformation from the hidden layer to the output layer is linear.
Mathematically, given an input vector x, the output of the jth node in the output layer, that implements a sum of arbitrary
basis functions defined on its inputs, can be expressed as:

ûj(x) =
m∑
i=1

wijφi(x), (1)

where m is the number of hidden nodes, wij is the weight from the ith hidden node to the jth output node and φi(x) is
an activation function which is a locally radial symmetric function. This function is characterized by its center, which is a

I This work was supported by the Australian Research Council Discovery Project Grant DP0556685.
∗ Corresponding author.
E-mail addresses: golbabai@iust.ac.ir (A. Golbabai), m.mammadov@ballarat.edu.au (M. Mammadov), seif@iust.ac.ir (S. Seifollahi).

0898-1221/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2009.03.038

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81109245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:golbabai@iust.ac.ir
mailto:m.mammadov@ballarat.edu.au
mailto:seif@iust.ac.ir
http://dx.doi.org/10.1016/j.camwa.2009.03.038


1652 A. Golbabai et al. / Computers and Mathematics with Applications 57 (2009) 1651–1658

vector with dimension equal to the number of inputs to the node. A popular choice, which is also used in this work, is the
multiquadric function:

φi(x) = (‖x− ci‖2 + a2i )
1/2 (2)

where ci and ai are the center and the width of the ith hidden node respectively, and ‖.‖ is the Euclidean norm [8].
An RBF network is trained in many different ways that can be categorized into one-, two- and three-stage learning

schemes. In this work, we use a two-stage type learning scheme. First the RBF parameters, including the centers and the
widths, are set, and then the weights of the output layer are adapted by a local optimization method. In addition, from the
variety of learning constructions for the RBF network in the literature, such as the OLS algorithm [9], the resource allocation
network [10], and various implementations of adaptively growing and pruning algorithms (see [11–14]), we adopt a growing
based structure algorithm.
The gradient descent training has proven to be more efficient than some other conventional methods [15]; however,

it is easy plunging into local minima. There are some other methods that can be used to accelerate training speed and to
avoid spurious local minima. One way, to overcome these difficulties, is the use of descent direction methods involving
combination of different local methods. In recent years, there has been a growing interest in applying different combination
methods for the optimization task. Among several existing combinations in the literature, the combination of steepest
descent and Newton’s methods seems to be more promising for unconstrained optimization problems [16]. It is shown that
this method is globally convergent and at the same time has a high convergence rate. However, in numerical experiments, it
is often observed that, in some iterations the gradient direction could be a better choice than Newton’s direction. Keeping in
mind this, we propose a modification of the algorithm presented in [16], in which the contribution of the gradient method
is more considerable.
In recent years, the RBF network has emerged as an important type of methods for the numerical solution of differential

equations and more recently it was used for solving linear integral equations (see [17,18]). This paper extends the results
of [18] and formulates a training method for a multi-output RBF network with applications in system of nonlinear integral
equations. In the implementation of this network to solve the system, a trial solution of the system is presented by the neural
network of incremental architecture with a set of unknown parameters. Then, these parameters are trained by minimizing
an appropriate error function composed of the problem residue. Different numerical techniques can be applied to solve
it. In this study, we fix the centers and the widths of the RBFs and then determine the output weights by applying a local
optimization method. We mainly adopt two local optimization algorithms. The first one is the algorithm developed in [16]
thatwill be refereed as ShA (Shi’s Algorithm). The second algorithm, developed in this paper, can be considered as amodified
version of ShA and, therefore, will be refereed as MShA. These two algorithms are based on a combination of the gradient
and Newton’smethods that aimed to speed up the training process of the RBF network. The performance of the RBF network
by using these local optimization methods is compared in solving systems of nonlinear integral equations.
The rest of the paper is structured as follows. Local optimization methods, ShA and MShA, are described in Section 2.

In Section 3, a training algorithm for the RBF network is presented. The application of the RBF network to system of
nonlinear integral equations is explained in Section 4. Numerical results obtained by the RBF network using two different
local optimization methods and their comparison are given in Section 5. Conclusions are reported in Section 6.

2. Local optimization strategies

Themost commonly used error function in theRBFnetwork is the sumsquare error (SSE). For amulti-output RBFnetwork,
with no nodes in the output layer, the SSE minimization problem can be written as

Minimize: f (z) =
ns∑
i=1

no∑
j=1

e2i,j; (3)

where ei,j is the jth output residual in the presence of the ith input sample, ns is the number of input samples and z stands
for the unknown network parameters to be determined.
In nonlinear case, the minimization of the error function is usually carried out using iterative methods. This is basically

due to the fact that there are no analytical methods to determine the optimal values of parameters. To find a solution to this
problem, among the variety of exiting methods, the descent direction method is the most commonly used technique due to
its fast convergence property.
Descent direction framework
Denote∇f (z) by g(z).Given an initial point z1 ∈ Rq and an error tolerance ε > 0, each iteration k = 1, 2, . . . of a descent

method contains the following steps:

• if ‖gk‖ < ε, then stop;
• compute a descent direction dk at zk satisfying

gTk dk < 0; (4)
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• determine an appropriate step length αk > 0;
• set zk+1 = zk + αkdk, and go to the next iteration.

Depending on the choice of dk and αk, where dk is a descent direction and αk is a line search factor, different descent
direction methods have been developed. There are some criterions for accepting αk as an admissible step length such
as backtracking method, Armijo, Goldestain and Wolfe line search methods. In Wolfe’s case, the step length αk > 0 is
determined by an inexact line search along the direction dk satisfying

f (zk + αdk) ≤ f (zk)+ ρ1αgTk dk, (5)

gTk+1dk ≥ ρ2g
T
k dk, (6)

where ρ1 ∈ (0, 1/2) and ρ2 ∈ (ρ1, 1) are fixed parameters. By consideringWolfe conditions (5) and (6), it is shown that the
above algorithm is globally convergent.

Theorem 1 ([19]). Let αk in the above descent algorithm be defined by (5) and (6). Let also dk satisfy

cos(θk) ≥ δ (7)

for some δ > 0 and for all k, where θk is the angle between dk and−gk. If g(z) exists and is uniformly continuous on the level set
Ω = {z : f (z) ≤ f (z1)}, then either gk = 0 for some k, or gk → 0.

A simple method satisfying condition (7) is the gradient method in which dk = −gk for all k. This method is globally
convergent and can be used to find a local optimal solution to problem (3). Unfortunately, although the method is of global
convergence property and usually works well in some early steps, as a stationary point is approached, it may descend very
slowly [19].
In order to copewith the above-mentioned problem, Newton basedmethods with superlinear convergence property can

be used. At the kth iteration, the classical Newton’s direction is the solution of the following system

Hkd = −gk, (8)

whereHk is the Hessianmatrix at zk. IfH is positive definite then Newton’s direction is a descent direction and consequently
the systemhas a unique solution. EvenwhenH is positive definite, it is not guaranteed that Newton’smethodwill be globally
convergent. Consequently, although Newton’s method generally converges faster than the gradient method, it depends on
a starting point.
On the other hand, the application of Newton’s method to the learning of neural networks is expensive for large

structures. A number of techniques avoiding the direct computation of H may be used, for example quasi-Newtonmethods.
These techniques are based generally on suitable approximations of the Hessian. Other alternative approaches are the
combination methods which have been attracted extensive attention in recent years. In these approaches, in most cases
the search direction is defined as a combination of different vectors. ShA, introduced in [16], is one of the most successful
algorithms of this group that uses a combination of the gradient method and Newton’s method. We present this algorithm
below.

Algorithm ShA ([16]). Let δ, η, ρ1 and ρ2 be four parameters so that 0 < δ < 1, 0 < η < 1, 0 < ρ1 < 1/2 and ρ1 < ρ2 < 1,
then the steps of the algorithm are as follows.

0. Choose a starting point z1 ∈ Rq, and an error tolerance ε > 0.
1. For k = 1, 2, . . . ;

1.0 If ‖gk‖ < ε, then stop.
1.1 Compute Newton’s direction d1 at zk, that satisfies (8), and then go to step 1.2. If d1 is not computable due to the
singularity of Hk, then compute the gradient direction d2 at zk, set dk = d2 and go to step 1.9.

1.2 If k = 1 or if ‖gk‖ ≤ ‖gk−1‖ then go to step 1.3, otherwise go to step 1.5.
1.3 Set z̄ = zk + d1.
1.4 If f (z̄) < f (zk) and ‖g(z̄)‖ ≤ η‖gk‖, then set zk+1 = z̄ and go to the next iteration, otherwise go to step 1.5.
1.5 Compute the gradient direction d2 at zk.
1.6 If dT1d2 ≥ δ‖d1‖.‖d2‖ then set dk = d1 and go to step 1.9, otherwise go to step 1.7.
1.7 If dT1d2 < 0, then set dk = d2 and go to step 1.9, otherwise compute λ̄ such that

λ̄ = min
{
λ; 0 ≤ λ ≤ 1,

((1− λ)d1 + λd2)T d2
‖(1− λ)d1 + λd2‖.‖d2‖

≥ δ

}
,

1.8 Set dk = (1− λ̄)d1 + λ̄d2.
1.9 Use the line search rules (5) and (6) to determine a step length αk > 0 along the direction dk.

1.10 Set zk+1 = zk + αkdk and go to the next iteration.



1654 A. Golbabai et al. / Computers and Mathematics with Applications 57 (2009) 1651–1658

The above algorithm is an efficient algorithm for training and updating the unknown parameters of the RBF network
due to its global convergence and superlinear convergence rate. This method is very close to Newton’s method. Practical
implementations show that, in some cases the gradient method can be a more suitable choice than Newton’s method. For
instance, when the difference of the function values, in two previous iterations, is large and the value of the gradient in the
previous iteration is also large enough, the gradient method may work better than Newton’s method.
In this paper, we introduce the following modification of this algorithm named MShA.

AlgorithmMShA. Let δ,ρ1 andρ2 be the parameters as defined in AlgorithmShA. Take any positive constantsυ > 1, ν � 1,
ξ > 0, b1 ∈ (0, 1), b2 ∈ (1, 1δ ) and b3 > 1 and initialize γ0 by 1.

0. Choose a starting point z1 ∈ Rq, and an error tolerance ε > 0.
1. For k = 1, 2, . . . ;

1.0 If ‖gk‖ < ε, then stop.
1.1 If Newton’s direction d1 at zk is not computable, due to the singularity ofHk, or if k 6= 1 and if |gk| > υ and |fk−fk−1| > ν,
then compute the gradient direction d2 at zk, set dk = d2 and go to step 1.8.

1.2 Set δ̄ = δ and γk = γ0. If k 6= 1 and if ‖gk − gk−1‖ < ξ , adjust δ̄← b1δ̄, otherwise δ̄← b2δ̄.
1.3 Compute the gradient direction d2 at zk and compute Newton’s direction d1 at zk, that satisfies (8).
1.4 If dT1d2 ≥ δ̄‖d1‖.‖d2‖ then set dk = d1 and go to step 1.8, otherwise go to the next step.
1.5 If dT1d2 < 0, then set dk = d2 and go to step 1.9, otherwise set γ̄ = γk and compute λ̄ as follows:

λ̄ =
1

γ̄ + ‖gk‖
. (9)

1.6 Set d(λ̄) = (1− λ̄)d2 + λ̄d1.
1.7 If d(λ̄)Td2 < δ̄‖d(λ̄)‖‖d2‖, set γk ← b3γk and go back to step 1.5, otherwise set dk = d(λ̄) and go to the next step.
1.8 Use the line search rules (5) and (6) to determine a step length αk > 0 along the direction dk.
1.9 Set zk+1 = zk + αkdk and go to the next iteration.

The above algorithm for selecting dk is based on Theorem 1. The following theorem establishes a global convergence
property of the algorithm MShA.

Theorem 2. Consider using the algorithm MShA to solve problem (3). If g(z) exists and is uniformly continuous on the level set
Ω = {z : f (z) ≤ f (z1)}, then either gk = 0 for some k, or gk → 0.

Proof. Let assume that gk 6= 0 for all k. Here, we show that the direction dk obtained by the algorithm satisfies condition
(7) of Theorem 1. Denote δ∗ = b1δ. Clearly, δ∗ ∈ (0, 1). We show that condition (7) holds for δ∗; that is,

cos(θk) ≥ δ∗ (10)

for all k, where θk is the angle between dk and d2 = −gk.
Take any k. We have one of the following cases.
Case 1. The direction dk is obtained at step 1.1 or step 1.5. In this case dk = −gk and, consequently, it is easy to see that

cos(θk) = 1 > δ∗; that is, (10) holds.
Case 2. The direction dk is obtained at step 1.4 in the form dk = d1. In this case, δ̄ = b1δ or δ̄ = b2δ which means that

δ̄ ≥ b1δ = δ∗ as b1 < 1 < b2.
Thus, from step 1.4, we have

cos(θk) ≥
dTkd2

‖dk‖.‖d2‖
≥ δ̄ ≥ δ∗; (11)

that is, (10) holds.
Case 3. The direction dk is obtained at step 1.7. According to steps 1.5–1.7, the number λ̄ is chosen so that the inequality

d(λ̄)Td2 ≥ δ̄‖d(λ̄)‖‖d2‖, holds, where δ̄ = b1δ or δ̄ = b2δ. The existence of such a number λ̄ follows from the fact that
d(λ̄)→ d2 as λ̄→ 0 (γ̄ →∞). Then, similar to Case 2 we have (10).
In all the above cases, the obtained direction, dk, satisfy in the assumption of Theorem 1, hence the remainder proof is

similar to the proof of Theorem 1 given in [19]. �
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3. The proposed training algorithm

We consider a multi-output RBF network and propose an algorithm for the training of the network based on a growing
based architecture. For the sake of simplicity, in the present algorithm we define the centers and the widths of the RBFs
fixed in advance. Thus, the output weights are only the unknown parameters of the network which must be determined.
The values of the widths affect significantly on the accuracy of results and the determination of these parameters is still

a challenging problem. These parameters control the amount of overlapping of RBFs as well as the network generalization.
Small values yield a rapidly decreasing functionwhereas larger values result in amore gently varying function. In the present
study, we define the width of ith hidden node as follows:

ai = β/i, (12)

where β is a positive constant. The meaning of this definition is that when the number of hidden nodes increase, we want
to be sure that the values of the widths (corresponding to the added nodes) decrease.

RBFN Learning Algorithm. The learning algorithm of the RBF network is briefly summarized below. This algorithm is
a growing based algorithm in which the network is allowed to grow step by step. If we denote the set of centers by
C = {c1, c2, . . . , cm}, the set of validation data by X = {x1, . . . , xn} and the set of training data by Xt that here is considered
to be a subset of X , then the steps of the algorithm are summarized as follows:
Step 0. Initialize a tolerance tol > 0, take m0 centers from C and m0 constants for the widths as in (12), initialize
wi,j, i = 1, . . . ,m0, j = 1, . . . , no, take a sample from X , to be added to Xt , and set k = 1.
Step 1. Apply a local optimization method to determine the unknown parameters (weights) of the network.
Step 2. If the validation error, calculated on X , is less than tol or all of the validation data have been already incorporated in
the training phase, then stop, otherwise go to the next step.
Step 3. If k 6= 1 and the validation error has increased, then insert a new node to the hidden layer (m0 = m0 + 1), select its
center from C, set its width as in (12) and set the new output weights by 0.
Step 4. If the number of training data exceeds an integer N , discard one of the training data and set k = k− 1.
Step 5. Select a new sample from X and add it to Xt , set k = k+ 1 and go to Step 1.

Wewill apply two different local optimizationmethods in Step 1. We denote by ‘‘RBFN–ShA’’ the algorithm that uses the
algorithm ShA and by ‘‘RBFN–MShA’’ the algorithm that uses the algorithm MShA described in Section 2.
According to the above instruction, the algorithm is terminated if the validation error during a given iteration is less than

tol or the number of iteration exceeds n. The validation error will normally decrease during the phase of training, as well
as the training error. We start with a few node in the hidden layer, then we continue the training process by incorporating
more training samples andmore hidden nodes and allow the network to grow. This yields that the network is reconstructed
with less complexities. When the network begins to over-fit the data, the error on the validation set may start to rise. To
overcome this difficulty and to have a network with less complexity, we apply a new strategy described below. It relates
to the selection of new training samples and new nodes and is different from other existing approaches (see [12,17] and
references therein).
Selection of new training sample: To select a new training sample, we calculate the error weights on the set X \ Xt ,

that is
∑no
j=1 e

2
i,j, i = 1, . . . , length(X \ Xt). Then, we find the data with the maximum error weight and add it to the

training set Xt . Also for the sake of less computational cost and reducing the number of existing training data, after some
iteration a new sample is replaced by one sample in the training data. More precisely, the error weights on training set Xt
(i.e.,

∑no
j=1 e

2
i,j, i = 1, . . . , ns) are calculated and the data which has the smallest error weight is discarded from Xt and a new

sample from X \ Xt , which has a maximum distance from Xt , is added to Xt .
Initialization of new node: At the beginning of the learning algorithm, we define a sufficiently large set of centers

distributed uniformly. They are selected one by one as a new node is inserted to the network. The center of new node
is chosen so that its distance, from the nearest existing center in the network, is maximal among all the other candidate
centers not used in the network. The width of new node is defined as in (12).

4. System of nonlinear integral equations

To test the performance of the RBF network with the proposed algorithm presented in Section 3, we consider the
following system of nonlinear integral equations

u(x)−
∫ x

0
K(x, t, u(t))dt = g(x), (13)

where

u(x) = (u1(x), . . . , uno)
T,

g(x) = (g1(x), . . . , gno(x))
T,

K(x, t, u(t)) = (K1(x, t, u(t)), . . . , Kno(x, t, u(t)))
T.
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To obtain a solution to the above system, the collocation method based on RBFs can be used which assumes a discretization
of the domain into a set of collocation points. Assume that the centers and the widths are fixed in advance, then we have
the following system of nonlinear equations

ûj(xi)−
∫ xi

0
K(xi, t, û(t))dt − g(xi) = 0, (14)

where ûj’s are approximate solutions of (13), defined in the form (1). Here, the number of variables (and the number of
equations) is m × no. Generally, there are no analytical solutions to this system, so it can be solved by iterative methods
in terms of the unknown weights. Also, this system may often be very ill-conditioned and it may be impossible to solve
accurately. This ill-conditioning is influenced by the number of centers as well as values of the widths. On the other hand,
fixing appropriate number of RBFs, which results enough accurate solutions, is a great challenging problem. An alternative
to solve (13) is use of a neural network. Here, we use the RBF network with the growing learning structure presented in
Section 3. The system arisen in each iteration of the learning algorithm is transformed to a sum square error minimization
problem

f (z) =
ns∑
i=1

no∑
j=1

e2i,j, (15)

where the term ei,j is constructed as follows:

ei,j = ûj(xi)−
∫ xi

0
K(xi, t, û(t))dt − g(xi). (16)

It should be noted that the optimal solutions of the neural network with zero value of cost function correspond to solutions
of system (14). Also, in implementation of the learning algorithm, we remind the following points:

(1) In each iteration of the algorithm we deal with a system of nonlinear equations with low dimension, but the number of
equations are not necessarily the same as the number of variables; the system is reformulated as optimization problem
(15) in each iteration of the algorithm.

(2) The number of equations is equal to the number of the nodes in the output layer. More precisely, each node in the output
layer state one equation in (13).

(3) The number of equations and the number of variables may vary from one iteration to another one.

5. Numerical results

For general nonlinear kernel K(x, t, u), there is no simpleway to evaluate analytically the integrals in (13), so a numerical
integration scheme is used. In our calculations, we use the Simpson numerical integration scheme with 10 subintervals. To
measure the accuracy of solutions, we use the max error given by

Ej = max
1≤i≤nt

|ûj(xi)− uj(xi)|, j = 1, . . . , no (17)

where ûj(xi) and uj(xi) are the values of the approximate and exact solutions at the point xi, and nt is the number of data for
testing the network performance.
In the following results, the functions used in all of the hidden nodes are the multiquadratic functions, but a number

of alternatives can also be used (see [8]). The validation data used in the training process contains 100 data distributed
randomly in the domain and the performance of the network is tested using nt = 500 data distributed uniformly from the
domain. In step 4 of the RBFN learning algorithm,when k > N = 10, a new training sample is replaced by one of the existing
training data. The termination parameters ε and tol, used in local optimization methods and in the learning algorithm, are:
ε = 10−8 and tol = 10−7. The parameters used in Section 2 are: δ = 0.001, η = 0.99, ρ1 = 0.001, ρ2 = 0.9, ν = 100,
υ = 10, ξ = 1, b1 = 0.01, b2 = 100 and b3 = 1.1. Also, the value of β in (12) is set as β = 10.

Example 1. Consider the following system of nonlinear Fredholm integral equations of the second kindwith exact solutions
u1(x) = x and u2(x) = x2 (see [20])

u1(x) = x−
5
18
+

∫ 1

0

1
3
(u1(t)+ u2(t))dt,

u2(x) = x2 −
2
9
+

∫ 1

0

1
3
(u21(t)+ u2(t))dt.

The network begins with one node in the hidden layer and as observations are received, new hidden nodes are added one
by one. Algorithm RBFN–MShA is terminated with m = 5 nodes. The maximum errors, in this case, are E1 = 2.20 × 10−6
and E2 = 4.62× 10−6. Algorithm RBFN–ShA is terminated withm = 5 nodes with the maximum errors E1 = 4.39× 10−6
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Table 1
ej = |ûj(x)− uj(x)|, j = 1, 2, in some test points x for Example 1.

x RBFN–ShA RBFN–MShA
e1 e2 e1 e2

0.0 4.03× 10−6 5.42× 10−6 2.03× 10−6 2.67× 10−6

0.1 3.69× 10−6 4.97× 10−6 1.87× 10−6 2.43× 10−6

0.2 1.79× 10−7 1.28× 10−6 8.76× 10−8 6.35× 10−7

0.3 3.21× 10−6 4.23× 10−6 1.61× 10−6 2.07× 10−6

0.4 2.84× 10−6 5.04× 10−6 1.43× 10−6 2.49× 10−6

0.5 1.56× 10−7 7.48× 10−7 7.59× 10−8 4.02× 10−7

0.6 2.72× 10−6 4.50× 10−6 1.36× 10−6 2.19× 10−6

0.7 2.27× 10−6 5.11× 10−6 1.15× 10−6 2.54× 10−6

0.8 1.31× 10−6 1.40× 10−6 6.46× 10−7 6.55× 10−7

0.9 4.38× 10−6 9.07× 10−6 2.19× 10−6 4.50× 10−6

1.0 1.19× 10−6 2.47× 10−6 5.89× 10−7 1.20× 10−6

Table 2
ej = |ûj(x)− uj(x)|, j = 1, 2, in some test points x for Example 2.

x RBFN–ShA RBFN–MShA
e1 e2 e1 e2

0.0 7.14× 10−4 7.54× 10−5 4.48× 10−4 2.09× 10−5

0.1 1.23× 10−5 8.54× 10−6 1.67× 10−5 1.41× 10−7

0.2 2.45× 10−4 2.28× 10−5 1.66× 10−4 5.70× 10−6

0.3 1.96× 10−4 1.04× 10−5 1.25× 10−4 5.61× 10−6

0.4 3.87× 10−5 1.98× 10−6 1.23× 10−5 4.79× 10−6

0.5 1.06× 10−4 1.83× 10−6 8.70× 10−5 4.99× 10−6

0.6 1.70× 10−4 1.16× 10−5 1.28× 10−4 6.33× 10−6

0.7 1.40× 10−4 2.99× 10−5 1.07× 10−4 8.69× 10−6

0.8 6.33× 10−5 3.80× 10−5 6.02× 10−5 1.29× 10−5

0.9 5.03× 10−5 1.61× 10−5 6.91× 10−5 2.14× 10−5

1.0 2.71× 10−4 5.82× 10−5 2.57× 10−4 3.89× 10−5

and E2 = 9.30×10−6. The performance with the gradient method is poor. The errors, in this case, are E1 = 2.27×10−3 and
E2 = 1.58 × 10−3, when m = 8 and all of the validation data are used. The numerical results on some test data points are
shown in Table 1. The results presented in Table 1 show that the performance of RBFN–MShA is better than the RBFN–ShA.

Example 2. Consider the following system of nonlinear Volterra integral equations of the first kind with the exact solutions
u1(x) = x2 and u2(x) = x (see [21])∫ x

0
(1− x2 + t2)(u1(t)+ u32(t))dt =

1
3
x3 +

1
4
x4 −

2
15
x5 −

1
12
x6,∫ x

0
(5+ x− t)(u31(t)− u2(t))dt = −

5
2
x2 −

1
6
x3 +

5
7
x7 +

1
56
x8.

Similar to Example 1 we start with one node in the hidden layer. Algorithm RBFN–MShA is terminated with m = 4 nodes.
The maximum errors, in this case, are E1 = 4.48 × 10−4 and E2 = 3.89 × 10−5. Algorithm RBFN–ShA is terminated with
m = 4 nodes with the maximum errors E1 = 7.14× 10−4 and E2 = 7.54× 10−5. The errors by using the gradient method
are E1 = 6.27× 10−2 and E2 = 6.08× 10−2,whenm = 8 and all of the validation data are used. The numerical results on
some test data points are shown in Table 2.

Example 3. Consider the following system of nonlinear Volterra integral equations of the second kind with the exact
solutions u1(x) = sin(x) and u2(x) = cos(x) (see [22])

u1(x) = sin(x)− x+
∫ x

0

(
u21(t)+ u

2
2(t)

)
dt,

u2(x) = cos(x)−
1
2
sin2(x)+

∫ x

0
u1(t)u2(t)dt.

We start with one node in the hidden layer. Algorithm RBFN–MShA is terminated withm = 6 nodes. The maximum errors,
in this case, are E1 = 1.50 × 10−6 and E2 = 4.40 × 10−6. Algorithm RBFN–ShA is terminated with m = 6 nodes with the
maximum errors E1 = 1.56× 10−6 and E2 = 6.13× 10−6. The errors by using the gradient method are E1 = 5.80× 10−2
and E2 = 2.51× 10−2, whenm = 8 and all of the validation data are used. The numerical results on some test data points
are shown in Table 3.
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Table 3
ej = |ûj(x)− uj(x)|, j = 1, 2, in some test points x for Example 3.

x RBFN–ShA RBFN–MShA
e1 e2 e1 e2

0.0 2.86× 10−7 1.66× 10−6 6.94× 10−7 7.85× 10−7

0.1 4.05× 10−7 1.95× 10−6 8.33× 10−7 9.47× 10−7

0.2 1.15× 10−7 1.01× 10−6 2.85× 10−7 4.37× 10−7

0.3 2.64× 10−7 1.70× 10−6 4.35× 10−7 7.52× 10−7

0.4 2.05× 10−7 2.47× 10−7 1.58× 10−7 1.41× 10−7

0.5 8.01× 10−8 1.81× 10−6 5.03× 10−7 8.75× 10−7

0.6 4.28× 10−9 1.02× 10−6 2.67× 10−7 5.93× 10−7

0.7 5.74× 10−7 8.03× 10−7 6.69× 10−8 6.27× 10−8

0.8 8.70× 10−7 1.18× 10−8 2.15× 10−7 6.08× 10−7

0.9 3.13× 10−7 4.65× 10−6 1.16× 10−6 3.25× 10−6

1.0 1.56× 10−6 3.57× 10−6 1.23× 10−6 3.70× 10−6

6. Conclusions

The training of the RBF network that uses a combination of gradient andNewtonmethods as a backpropagation algorithm
is described and illustrated. Moreover, this paper proposes a novel approach to optimize the output weights of the RBF
network, which is a new modification strategy based on the original algorithm ShA [16].
In applications to systems of nonlinear integral equations, both RBFN–ShA and RBFN–MShA provide only a small number

of nodes to achieve good approximations. In particular, the experimental results also illustrate that RBFN–MShA provides
almost more accurate solutions than the other one.
In this paper, in order to keep the design of the network simple, the centers and the widths of the RBFs are chosen in

advance. However, they can be included in the list of unknownparameters in the optimization procedure,whichmay require
more computational time.
The method developed here is a general method and can be applied to some other types of integral equations.
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