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Canonical tensor model is a theory of dynamical fuzzy spaces in arbitrary space–time dimensions.
Examining its simplest case, we find a connection to a special case of minisuperspace model of general
relativity in arbitrary dimensions. This is a first step in interpreting variables in canonical tensor model
based on the known language of general relativity.
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1. Introduction

Locality is an important issue in quantum gravity: due to the
diffeomorphism invariance, one cannot define any well-defined
local observables in general space–time,1 which is also closely
related to Bekenstein’s entropy bounds [2,3]. This notion might
suggest that space–time has a fundamental fuzziness and eventu-
ally acquires a smooth manifold structure at a long-distance scale.
Since fuzzy spaces posses no notion of dimensionality and local-
ity in general, their space–time dimension is not a parameter but
something that ought to be determined through dynamics; addi-
tionally, as a result of dynamics, locality has to be favoured at a
long-distance scale.

Canonical tensor model is one of such trials introduced by one of
the current authors as a theory of dynamical fuzzy spaces [4–7].
The fundamental variable is a rank-three tensor, which specifies
the structure of fuzzy spaces; the time evolution of fuzzy spaces
can be determined by a Hamiltonian flow. Somewhat amazingly,
the Hamiltonian can be uniquely fixed under some reasonable as-
sumptions [5]. So far, it has been shown that locality is favoured
as a result of dynamics at least when indices can take only two
values [7].

The canonical tensor model may not be an isolated model and
is expected to be related to other types of tensor models. Here
taking an overlook at history of tensor models, let us introduce
several cousins. Dating back to the original introduction of ten-

* Corresponding author.
E-mail addresses: sasakura@yukawa.kyoto-u.ac.jp (N. Sasakura),

Yuki.Sato@wits.ac.za (Y. Sato).
1 In the AdS/CFT correspondence [1], such local observables can be defined on an

infinite conformal boundary in an anti-deSitter space.
http://dx.doi.org/10.1016/j.physletb.2014.03.006
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
sor models [8–10], the first motivation was to construct a model
of higher-dimensional simplicial quantum gravity as a natural ex-
tension of matrix models which describe two-dimensional simpli-
cial quantum gravity. As far as a symmetric tensor is concerned,
this program did not work [9,11]. However, tensor models with
unsymmetric tensors called coloured tensor models have been pro-
posed [12]; the newly introduced “colour” degrees of freedom turn
out to fit together well with simplicial geometries and this line
of work is still in progress [13]. On the other hand, apart from
the interpretation as a simplicial quantum gravity, tensor models
have developed into so-called group field theories letting indices
be group-valued [14–18] and into the canonical tensor model as
a theory of dynamical fuzzy spaces which we argue in this Let-
ter.

Most importantly, as a theory of quantum gravity the canonical
tensor model ought to be related to general relativity in arbitrary
dimensions as well. Therefore, interpreting rank-three tensors in
the canonical tensor model based on the established language of
general relativity is absolutely imperative. However, this part is still
veiled in mystery. The purpose of this Letter is to make progress
in that direction: in a simple situation that indices can take only
a single value (N = 1), we have identified the tensors as variables
of general relativity in a special case of minisuperspace. The Let-
ter is organised as follows. In Section 2, we examine the canonical
tensor model with N = 1 and derive an effective action written
by its degrees of freedom. In Section 3, we consider the Einstein–
Hilbert action in arbitrary dimensions and reduce it by the special
minisuperspace ansatz. As a result, we obtain a corresponding ef-
fective action, which is nothing but the effective action derived
from the canonical tensor model. In Section 4, we summarise our
results.
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2. Canonical tensor model

The canonical tensor model has been developed by a series
of works [4–7], and designed to describe a theory of dynamical
fuzzy space in the canonical formalism. Since the fuzzy space it-
self does not necessarily include information of space dimensions
a priori, the canonical tensor model might have a potential to de-
scribe quantum gravity in arbitrary dimensions. Physical degrees
of freedom in the canonical tensor model are a rank-three ten-
sor Mabc and its canonical conjugate Pabc ; its classical and even
quantum dynamics can be completely determined by the unique
Hamiltonian in principle. However, so far, the role of the rank-
three tensors is unclear: we don’t know how to interpret them
in the standard language of gravitation. The main purpose of this
Letter is to address this issue in the most simplest case.

We start with reviewing the basic concepts of the fuzzy space
described by the canonical tensor model. The fuzzy space is a no-
tion of space defined not by coordinates but by the algebra of
linearly independent functions on the space; the product of such
functions, fa (a = 1, . . . , N), is characterised by a rank-three ten-
sor:

fa � fb = Cab
c fc . (2.1)

To make contact with the canonical tensor model, we further im-
pose two requirements [19]:

1. Reality conditions:

f ∗
a = fa, ( fa � fb)

∗ = fb � fa, (2.2)

where ∗ stands for a complex conjugation;
2. A trace-like property:

〈 fa| fb � fc〉 = 〈 fa � fb| fc〉 = 〈 fc � fa| fb〉, (2.3)

where the inner product 〈 fa| fb〉 has been chosen to be real,
symmetric and bilinear.

Since there exists a real linear transformation of fa which does
not spoil the two requirements above, without loss of generality
one can choose the inner product as follows:

〈 fa| fb〉 = δab, (2.4)

if the inner product was set to be positive-definite as an initial
condition. Using (2.4), the degrees of freedom of the fuzzy space
can be solely expressed by the rank-three tensor:

Cabc = 〈 fa � fb| fc〉 = Cab
d〈 fd| fc〉. (2.5)

Since (2.4) is invariant under the orthogonal group transformation
O (N), the rank-three tensor Cabc has the following kinematical
symmetry:

C ′
abc = Ja

d Jb
e Jc

f Cdef , J ∈ O (N). (2.6)

The two requirements on the function fa are translated into the
generalised Hermiticity condition of Cabc :

Cabc = Cbca = Ccab = C∗
bac = C∗

acb = C∗
cba. (2.7)

To make contact with general relativity, the time evolution of
the fuzzy space (in other words, the rank-three tensor) is presum-
ably generated by a “local” generator which somehow corresponds
to the Hamiltonian constraint in general relativity. In addition, the
system ought to have the invariance under the orthogonal group
transformation (2.6), which can be expected to correspond to the
spatial diffeomorphism in general relativity. Therefore, it is rea-
sonable to define the Hamiltonian in such a way that the system
becomes a constrained system with the generators of the time evo-
lution and the orthogonal transformation as first-class constraints.
In this way, the total Hamiltonian of the canonical tensor model
can be given as

H = NaHa + N[ab]J[ab] + ND, (2.8)

where a,b, c = 1, . . . , N; [ab] denotes that a and b are anti-
symmetric; Na , N[ab] and N are Lagrange multipliers;

Ha = Pa(bc) Pbde Mcde; (2.9)

J[ab] = 1

2
(Pacd Mbcd − Pbcd Macd); (2.10)

D = −1

3
Mabc Pabc; (2.11)

Pa(bc) = 1
2 (Pabc + Pacb). As a convention, indices appearing re-

peatedly are summed from 1 to N . Here Ha and J[ab] are the
generators of the time evolution and the orthogonal group trans-
formation, respectively; additionally D, the generator of the scale
transformation, has been introduced in order to regulate divergent
behaviours of dynamics [6]. The rank-three tensors satisfy the fol-
lowing Poisson bracket:

{Mabc, Pdef } = δadδbeδc f + (
cyclic permutations of (d, e, f )

);
(2.12)

the other brackets vanish. In fact, the form of the time-evolution
generator Ha can be uniquely fixed up to an overall sign, if one
imposes several reasonable assumptions, i.e., (1) closed algebra,
(2) cubic terms at most, (3) invariance under the time-reversal
symmetry and (4) connectivity [5]. The constrains, Ha , J[ab] and
D, are first-class: they form a first-class constraint algebra:
{

H
(
T 1), H

(
T 2)} = J

([
T̃ 1, T̃ 2]), (2.13){

J (V ), H(T )
} = H(V T ), (2.14){

J
(

V 1), J
(

V 2)} = J
([

V 1, V 2]), (2.15){
D, H(T )

} = H(T ), (2.16){
D, J (V )

} = 0, (2.17)

where H(T ) = TaHa , J (V ) = V [ab]J[ab] and T̃ab = P (ab)c Tc; [ , ] de-
notes the matrix commutator. It has been pointed out [4] that this
algebra has a close relationship with the Dirac algebra of general
relativity [20–24].

From now we will examine a simple version of the canoni-
cal tensor model called minimal canonical tensor model [6]. In this
minimal model, the rank-three tensors, Mabc and Pabc , are not
Hermitian in the sense of (2.7) but totally symmetric tensors. In
that case, one can consistently add a “cosmological constant” term
λMabb to Ha , if the constraint D is ignored, as was shown in the
first part of [5]; the Hamiltonian becomes

H = NaHa + N[ab]J[ab], (2.18)

where J[ab] is the same as (2.10), while Ha is changed to

Ha = Pabc Pbde Mcde − λMabb. (2.19)

The constraint algebra still takes the form given by (2.13), (2.14)
and (2.15), while the part containing D, (2.16) and (2.17), are dis-
carded in this setting.

In order to extract some information of geometry from the
rank-three tensors, let us consider the minimal model with N = 1:
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when N = 1, the whole fuzzy space at some time slice can be de-
scribed by a single function f1. Here we rewrite the ingredients in
(2.18) as follows:

L ≡ 1

3
M111, Π ≡ P111, N ≡ 3N1, Λ ≡ λ. (2.20)

By this convention, the Hamiltonian (2.9) becomes

H = N
(
LΠ2 − ΛL

)
, (2.21)

with the Poisson bracket,

{L,Π} = 1. (2.22)

By the standard Legendre transformation, the corresponding action
turns out to be

SCT(L, N) =
∫

dt

(
L̇(t)2

4N(t)L(t)
+ ΛN(t)L(t)

)
, (2.23)

where L̇ denotes the time derivative of L. What we will do in the
next section is to compare this action with a special case of min-
isuperspace action of general relativity in d + 1 dimensions. (2.19)
is unique up to an overall sign, as previously mentioned; when
comparing the actions, this ambiguity becomes important. We will
elaborate this issue in Section 3.

3. Minisuperspace in general relativity

In this section, for the purpose of interpreting the variable L
in the action (2.23) based on some known language, we consider
(d + 1)-dimensional general relativity in a special case of min-
isuperspace. To begin with, remember the Einstein–Hilbert action
with a cosmological constant Λ in d + 1 dimensions (d > 1):

SEH = 1

16πG N

∫
dd+1x

(
R(d+1) − 2Λ

)
, (3.1)

where G N and R(d+1) are the Newton constant and the Ricci scalar
in (d + 1)-dimensional space–time, respectively. It has been given
that space–time can be decomposed into space and time without
breaking symmetry by Arnowitt, Deser and Misner (ADM) [20]:

ds2 = −N2 dt2 + hij
(
Ni dt + dxi)(N j dt + dx j), (3.2)

where N , Ni and hij are a lapse function, a shift vector and a
spatial metric, respectively; the Latin indices run from 1 to d. By
applying the ADM decomposition, the Einstein–Hilbert action with
the cosmological constant can be rewritten in the following form
up to total derivative terms:

SEH = 1

16πG N

∫
dt ddx

√
hN

(
Kij K i j − K 2 + R(d) − 2Λ

)
, (3.3)

where h is the determinant of the spatial metric; Kij is the extrin-
sic curvature defined as

Kij = 1

2N
(ḣi j − ∇i N j − ∇ j Ni); (3.4)

K is a trace of the extrinsic curvature. Here ∇i denotes the covari-
ant derivative associated with the spatial metric.

Then we consider the following ansatz:

N = N(t), Ni = 0, hij = a(t)2δi j, (3.5)

where a(t) is a scale factor of the Universe, and δi j is the Kro-
necker delta. Through the anzatz (3.5), we focus only on a zero
mode of the metric. Plugging the metric ansatz (3.5), one obtains
the effective action:
SEH(a, N) = V

16πG N

∫
dt ad

(
d(1 − d)

ȧ2

Na2
− 2ΛN

)
, (3.6)

where

V =
∫

ddx. (3.7)

When the effective action (3.6) is written based on a quantity in-
variant under spatial diffeomorphism,

L(t) =
∫

ddx
√

h(t) = V ad(t), (3.8)

one recovers (2.23) up to some redefinitions of coupling constants
and an overall sign:

SEH(L, N) = α

16πG N

∫
dt

(
L̇(t)2

4N(t)L(t)
+ dΛ

2(d − 1)
N(t)L(t)

)
,

(3.9)

where

α = 4(1 − d)

d
. (3.10)

For d > 1, the overall sign (3.10) is different from the one of (2.23);
this difference could be important when coupling matter fields.
However, taking into account that there is no principle to choose
the overall sign of the Hamiltonian in the N = 1 canonical tensor
model (2.19), the sign difference for d > 1 is not essential. In other
words, one can fix the overall sign of the Hamiltonian in the N = 1
canonical tensor model in such a way as to coincide with (3.9).
Note that the effective action (3.9) is universal: the effect of the
dimensionality appears merely as the redefinition of coupling con-
stants and the overall factor. As is clear from the ansatz we made
(3.5), even if one adds higher spatial derivative terms by breaking
Lorentz symmetry explicitly, the action still remains the same up
to some redefinitions of coupling constants and an overall sign. For
instance, in the case of Hořava–Lifshitz gravity [25], one adds spa-
tial derivative terms in such a way that the unitarity is preserved
but the full space–time symmetry is broken down to the so-called
foliation-preserving diffeomorphism:

SHL = 1

κ

∫
dt ddx

√
hN

× (
Kij K i j − λK 2 + γ R(d) − 2Λ + ηbibi + · · ·), (3.11)

where κ , λ γ , Λ and η are coupling constants; bi is a d-dimen-
sional vector field [26]:

bi = ∂i N

N
. (3.12)

The dots in (3.11) mean higher spatial derivative terms. When tak-
ing the ansatz (3.5), one obtains

SHL(L, N) = α

κ

∫
dt

(
L̇(t)2

4N(t)L(t)
+ dΛ

2(dλ − 1)
N(t)L(t)

)
, (3.13)

where

α = 4(1 − dλ)

d
. (3.14)

Furthermore, the same form of the effective action has been ob-
tained in the (1 + 1)-dimensional setup of Causal Dynamical Tri-
angulations (CDT) [27] and the projectable Hořava–Lifshitz gravity
[28] without taking the ansatz like (3.5).2

2 It has been shown that they are in the same universality class [28].
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4. Summary and discussions

In Section 2, we firstly have examined the minimal canonical
tensor model with N = 1 and obtained the effective action (2.23)
described by two functions of time, L(t) and N(t). Secondly in Sec-
tion 3, we have confirmed that the effective action (2.23) coincides
with the special case of minisuperspace action of general relativity
in arbitrary dimensions (3.6) if the overall sign of (2.23) is properly
chosen.

Let us closely look at the coincidence. In the canonical tensor
model, we have set all the tensor slots to 1; as a consequence, the
generator of the orthogonal group transformation, J[ab] , vanishes.
Therefore, it can be considered that the spatial “diffeomorphism”
(orthogonal group transformation) is gauged via the manipulation,
which is consistent with philosophy of our anzatz (3.5) in general
relativity.
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