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José F. Rodrı́gueza, Yeinzon Rodrı́gueza,b

aEscuela de Fı́sica, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga 680002, Colombia
bCentro de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Antonio Nariño, Cra 3 Este # 47A -15, Bogotá D.C. 110231, Colombia

Abstract

We analyze two possible vector-field models using the techniques of dynamical systems. The first model involves
a U(1)-vector field and the second a triad of SU(2)-vector fields. Both models include a gauge-fixing term and a
power-law potential. A dynamical system is formulated and it is found that one of the critical points, for each model,
corresponds to inflation, the origin of these critical points being the respective gauge-fixing terms. The conditions for
the existence of an inflationary era which lasts for at least 60 efolds are studied.
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1. Introduction

Scalar-field inflation provides a satisfactory solution
to the flatness, horizon and unwanted relics problems.
Furthermore, the quantum primordial fluctuations to-
gether with the expansion of the Universe generate the
observed large-scale structure. However, the observa-
tions of the Planck mission hint towards a privileged
direction in the cosmic microwave background fluctua-
tions [1]. One plausible scenario to explain such a priv-
ileged direction consists in adding vector fields to the
inflationary mechanism. Due to the nonlinearity of the
field equations, an analytical solution may be difficult,
if not impossible. In this work, we study two inflation
model candidates which involve vector fields together
with a gauge-fixing term. The analysis is done by us-
ing numerical methods and specially the techniques of
dynamical systems. We look for the attractors of the
models and other qualitative behaviours. The main pur-
pose of this proceedings contribution is to find whether
the attractors of the system correspond to an inflationary
period.
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2. Spacetime Geometry

To analyze the dynamics, we assume a homogeneous
but anisotropic spacetime. We choose a Bianchi-Type-I
metric expressed in the following way:

gtt = 1, gxx = gyy = −e2(α+σ), gzz = −e2α−4σ, (1)

where α and σ are functions of time. The dynamics
of the system can be expressed in terms of the follow-
ing kinematical quantities: the global Hubble parame-
ter which measures the volume expansion, H ≡ α̇, and
the cosmic shear which measures the anisotropic expan-
sion, Σ ≡ σ̇

α̇
. The dot above some quantities means

derivation with respect to the cosmic time.

3. U(1)-Vector-Field Model

The matter lagrangian density for the U(1)-vector
field Aμ is [2]:

LM = −1
4

FμνFμν +
ξ

2
(Aμ;μ)

2 − V, (2)

where Fμν = Aν,μ − Aμ,ν, V = λ(−AμAμ)n is the po-
tential with constant λ and n belonging to the natural
numbers, and ξ is the gauge-fixing constant. We as-
sume that the vector field is homogeneus and that the
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spatial components can be lined up along the z axis,
Aμ = (At(t), 0, 0, Az(t)). In order to formulate a dynami-
cal system, we define the following dimensionless vari-
ables:

x ≡
√

1
2 Ȧ2

t√
3mpH

, y ≡
√

V√
3mpH

,

z ≡
√
− 1

2 gzzȦ2
z√

3mpH
, w ≡

√
3ξ
2

At

mp
, t ≡

√−2gzzAz

mp
, (3)

where mp is the reduced Planck mass. The field equa-
tions are equivalent to the dynamical system:

Σ′ = −3Σ + Ξt2y2 + 2z2 + Σε, (4)

x′ = −1
2
Ξt2wy2 +

2Ξw3y2

ξ
− 3w3

2
− 3w2x +

3Σ2w
2

− 3wx2

2
− 2Ξwy2

ξ
− 3wy2

2
+

wz2

2
+

3w
2
+ xε − 3x,

(5)

y′ = −ΞΣt2y +
1
2
Ξt2y − √

3Ξtyz +
2Ξwxy
ξ
+ yε, (6)

w′ = 3x, (7)

z′ =
√

3Ξty2 − 2Σz + zε − 2z, (8)

t′ =
√

2Σt − t√
2
+
√

6z, (9)

1 = Σ2 + (x + w)2 + y2 + z2. (10)

The prime denotes differentiation with respect to the e-
fold number N = ln(a), ε = −Ḣ/H2, and Ξ = m2

pV,A2/V .

3.1. Critical Points and Stability for the U(1)-Vector-
Field Model

The first critical point is ζc = (Σc, xc, yc,wc, zc) =
(0, 0, 0,±1, 0) which implies ε = 0. Since inflation
is equivalent to ε < 1, this first critical point corre-
sponds to inflation. At this point, the energy densities
associated with the potential and the Yang-Mills terms
are subdominant compared with the energy associated
with the gauge-fixing term. The second critical point
is ζc = (Σc, xc, yc,wc, zc) = (±1, 0, 0, 0, 0) which corre-
sponds to an anisotropic state of the system. To analyze
the stability, we translate the critical point to the origin,
and then linearize the equations around zero. The sys-
tem of linear differential equations can be expressed as
x′ = Mx, where M is a matrix. The stability of the sys-
tem is determined by the sign of the eigenvalues of M.
If the real part of all the eigenvalues is negative, the crit-
ical point is stable. If the real part of all the eigenvalues

are positive, the critical point is unstable. If some eigen-
values have negative real part and the others have posi-
tive real part, the critical point is a saddle point and it is
unstable. When one or more eigenvalues have zero real
part, the critical point is nonhyperbolic and to analyze
the stability we are requiered to use the centre mani-
fold theorem [3]. This theorem guarantees the existence
of an invariant manifold which is tangent at the critical
point to the space generated by the eigenvectors with
zero-real-part eigenvalues. Analyzing the dynamics of
the system on the invariant manifold is easier since this
is lower dimensional.

The eigenvalues corresponding to the anisotropic crit-
ical point are (6, -3, -3, 3, 3, 3), hence it is unstable. The
eigenvalues corresponding to the inflation critical point
are (-3, -3, -3, -2, -1, 0), then it is nonhyperbolic. Using
the centre manifold theorem, we found that the dynam-
ics on the invariant manifold is locally governed by the
equation:

y′ = Ξy2/ξ + O(y5). (11)

For a power-law potential, Ξ/ξ > 0 when the vector
field is timelike. Since the temporal part of the field
dominates near the critical point, this is unstable. This
implies that inflation is a transient period.

On the other hand, assuming that the system is on the
centre manifold, ε=1 sets a limit for y, i.e. when the sys-
tem reaches this value of y, inflation ends. The system
must reach this point after at least 60 efolds in order to
solve the classical problems of the standard cosmology.
If the speed of the system is less than ymax/N, inflation
will not end before N efolds. We obtain the following
sufficient condition for inflation to last at least N efolds:

|ξ/λ| � 2nN2/3(−A0)2n−2/3H2|ζc . (12)

4. SU(2)-Vector-Field Model

The matter lagrangian density of this model is [4]:

Lm = −1
4

Fa
μνF

aμν +
ξ

2
(Aμ a

;μ )2 − V(MabAa
μA

bμ), (13)

where Fa
μν = Aa

ν,μ − Aa
μ,ν + gca

bcAb
μA

b
ν , ca

bc are the SU(2)-
group-structure constants, Mab is constant 3 × 3 matrix,
and a, b = 1, 2, 3. We study the dynamics on the invari-
ant set Aa

i = Ȧa
i = 0, with both Aa

t and Ȧa
t being different

from zero. The equations in this particular case can be
obtained from the following reduced lagrangian:

Lr = e3α
[
−3m2

p

(
α̇2 − σ̇2

)

+
ξ

2
(Ȧa

t + 3Aa
t α̇)2 −V(MabAa

t Ab
t )
]
. (14)
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If Mab is diagonal, the lagrangian (14) is invariant under
“rotations” on the (A1

t , A
2
t , A

3
t ) subspace. Therefore, we

change the coordinates on that subspace from cartesian
to polar-cylindrical coordinates r and θ. After obtaining
the equations from the lagrangian, we express the equa-
tions in terms of the following dimensionless variables:

x ≡
√

1
2ξṙ√

3mpH
, y ≡

√
V√

3mpH
,w ≡

√
3ξr√
2mp
, Θ ≡ θ̇

3H
.

(15)
The field equations are equivalent to the following dy-
namical system:

Σ′ = Σ (ε − 3) , (16)

x′ = −Θ
2w3

ξ
− 3w3

2
− 3w2x +

√
3
2
Λw2y2

+
2Θ2w
ξ
+

3Σ2w
2

− 3wx2

2
− 3wy2

2
+

3w
2

+ xε − 3x −
√

3
2
Λy2, (17)

y′ = y

⎛⎜⎜⎜⎜⎜⎝
√

3
2
Λx + ε

⎞⎟⎟⎟⎟⎟⎠ , (18)

w′ = 3x, (19)

Θ′ = Θ
(
ε − 3 − 6x

w

)
, (20)

1 = Σ2 + (x + w)2 + y2 + w2Θ2, (21)

and the parameter Λ = mpV,r/
√
ξV.

4.1. Inflation Critical Point and Stability
We find the critical point ζc = (Σc, xc, yc,wc,Θc) =

(0, 0, 0,±1, 0). The parameter ε evaluated at the critical
point is equal to 0; therefore, this point corresponds to
inflation. To analyze the stability, we follow the same
procedure described in the subsection 3.1. The eigen-
values associated with this point are (-3, -3, -3, -3, 0),
implying that it is nonhyperbolic. We are in the need,
again, to use the centre manifold theorem. The dynam-
ics on the centre manifold follows an equation similar
to the one in the abelian case:

y′ =
√

3Λy3/
√

2 + O(y5). (22)

For a potential of the form λr2n, we have Λ > 0, so the
point is a saddle point. Finally, analyzing the dynamics
on the centre manifold, we obtain the sufficient condi-
tion for inflation to last at least N efolds:

|√ξ/λ| � √
6mpnr2n−1N2/3|ζc . (23)
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Figure 1: Numerical plots of the normalized energy density of the
gauge-fixing term ρGF/3m2

pH2, and ε vs the e-fold number. The plots
show that, when ρGF/3m2

pH2 dominates, there is inflation, and as this
term begins to oscillate, inflation ends.

5. Numerical Solution for the SU(2)-Vector-Field
Model

The figure 1 shows the numerical solution for the
studied non-abelian case. The numerical analysis con-
firms that the number of efolds depends on the values
of ξ, λ, r and H. The dependence on the gauge-fixing
parameter itself is very weak.

6. Conclusions

The addition of the gauge-fixing term, for the two
models studied, implies the existence of an inflationary
period which is independent on the choice of the gauge.
The only constraint imposed to the choice of the gauge
is ξ > 0, so the fluid does not behave as a phantom.
For both models, the condition for the existence of in-
flation is V � 3m2

pH2. This means that the potential
must be negligible compared to 3m2

pH2 in contrast to
scalar-field inflation. The dynamics of the temporal part
of the fields shows that inflation is driven by the gauge-
fixing term and lasts long enough to solve the classical
problems of cosmology. The number of efolds depends
weakly on the choice of the gauge as was expected since
the physics must be gauge-independent.
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