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ABSTRACT 

We describe the structure of nonnegative matrices dominated by a nonnegative 
idempotent matrix under the minus order. 0 Elsevier Science Inc., 1997 

1. INTRODUCTION 

Matrix partial orders have been an area of intense research in the past few 
years. The minus partial order is one of the important partial orders for 
matrices, and it is related to several other concepts such as rank additivity, 
shorted operators, and the parallel sum [4]. It is well known that idempotent 
matrices play an important role in the theory of generalized inverses. In 
particular, the structure of idempotent matrices that are entrywise nonnega- 
tive is well understood, and it is a natural problem to investigate how the 
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minus partial order behaves with reference to nonnegative idempotent matri- 
ces. The purpose of this paper is to describe the structure of nonnegative 
matrices which are dominated by a given nonnegative idempotent matrix 
under the minus partial order. In Section 2 we introduce some definitions 
and prove some preliminary results. The main result is proved in Section 3. 

2. DEFINITIONS AND PRELIMINARY RESULTS 

We consider only real matrices. A matrix A = [u,~] is nonnegative if 
aij > 0 for all i, j, in which case we write A 3 0. Similarly, A is positive 
if aij > 0 for all i, j, denoted A > 0. The square matrix A is idempotent if 
A2 = A. The transpose of A is denoted by AT, and the identity matrix of the 
appropriate order is denoted by 1. 

If A is an m X n matrix, then an n X m matrix G is a generalized 
inverse (or a g-inverse) of A if AGA = A. We denote an arbitrary g-inverse 
of A by A-. 

A matrix J is a direct sum of matrices ]i, . . . , J,., denoted by J = Ji 
@ a** B)J,, if 

If A, B are m x n matrices, then we say that A is dominated by B in the 
minus order, denoted by A <- B, if rank B = rank A + rank(B - A). 

It is well known that the minus order is a partial order, and several 
characterizations of it are available in the literature (for example, see [3]). In 
particular, we note the following result which will be used. 

THEOREM 1. Let A, B by m X n matrices. Then the following conditions 
are equivalent: 

(i) A <- B. 
(ii) There exists a g-inverse A- of A such that (B - A)A-= 0 and 

A-(B - A) = 0. 
(iii) Every g-inverse of B is a g-inverse of A. 
(iv) Eve y g-inverse B - of B satisfies AB-(B - A) = 0 and 

(B - A)B-A = 0. 
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We remark that (iv) can be interpreted as saying the “parallel sum” of A 
and B - A is zero. 

We will need the following characterization of nonnegative idempotent 
matrices due to Flor [2] (also see Theorem 3.1, p. 65 in [l]). 

THEOREM 2. Zf E is a nonnegative idempotent matrix of rank r, then 
there exists a permutation matrix P such that 

0 0 0 0 

where all the diagonal blocks are square; J is a direcf sum of matrices xi y:, 
xi > 0, yi > 0, and y,?xi = 1, i = 1,2,. . . , r; and C, D are nonnegative 
matrices of suitable sizes. 

It follows from Theorem 2 that if E is a positive idempotent matrix, then 
E must be of rank one. 

The main purpose of this paper is to describe nonnegative matrices 
dominated by a given nonnegative idempotent matrix under the minus order. 
We first prove some preliminary results which are needed for such a 
description. 

LEMMA 3. Let A, E be n X n matrices .such that E’ = E, and suppose 
that A < -E. Then A is idempotent and AE = A = EA. 

Proof. Since E * = E, the n X n identity matrix I is a g-inverse of E. 
Since A <- E, by Theorem l(iii) Z must be a g-inverse of A and therefore 
A” = A. Also, by Theorem l(iv), AZ( E - A) = (E - A)ZA = 0, and this 
completes the proof. ??

LEMMA 4. Let X, ] be n X n nonnegative matrices such that JX = X = 
XJ and suppose J = J1 @ -1. @ lr, where Ji = xi y:, xi > 0, yi > 0, with 
yTxi = 1, i = 1,2,. . . , r. Let X = [ Xij] be the r X r block partitioning of X 
in conformity with that of 1. Then for each i, j. either Xi j = 0 or Xij is a 
positive matrix of rank 1. 
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Proof. Let i, j be fured, 1 < i, j < r. Since ]X = X = XJ, we have 

Ji Xij = xij = X,,J,. (1) 

Therefore rank Xii < rank Ii = 1. If rank Xij = 0 then Xij = 0. Suppose 
rank Xij = 1, and let Xij = uvT be a nonnegative rank factorization. Then 
from (1) 

pd = uv= = UV’TJj. (2) 

Since u, v must be nonzero vectors, it follows from (2) that Jiu = u and 
vT = v’Ji. Since Ji, Jj are positive matrices, u, v must be positive vectors. 
Thus Xij = ~vr is positive and the proof is complete. ??

3.. THE MAIN RESULT 

THEOREM 5. Let A, E be n X n nonnegative matrices such that E2 = E, 
and suppose A <- E. Then there exists a permutation matrix P such that 

and PAP* = 

where 

U= 

j fii 0 0 
0 0 00 

ej eji? 0 _ 0 
,o 0 00 

u UD 0 0 
0 0 00 

CU CUD 0 0 I ’ 
0 0 00 

J and JA tre direct sums of positive io?empotent matrices of rank 1, and 
C, D, C, D are nonnegative matrices of the appropriate sizes. 

Proof. Since E > 0 and E2 = E, by Theorem 2 there exists a permuta- 
tion matrix R such that 

0 0 00 

(3) 
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where J = Ji @ *** @ J,., Ji = xi yT, xi, yi are positive vectors, and y,rxi = 1, 
i = 1,2,. . . , r. For convenience we assume that E itself is of the form given 
in (3), as this will not affect the conclusion of the theorem. Let 

[ Yll y12 y13 y14 
y y22 yz.3 y?_4 A= ‘l 
y 31 y32 1733 y34 

1 y 41 y42 y43 y44 

be the corresponding partitioning of A. Since A <- E, by Lemma 3 we have 
AE = A = EA, and from these equations it follows that 

The equation AE = A now gives 

Thus Y,, = Y,,J: Y - Y,#,and hence yLz = Y,,6. Similarly, from A = 
EA we conclude t&--Y il = Jy,,, Y,, = CJY,,, and hence Ysl = CY,,. It 
follows that Ya2 = Y,,@ = c”Y,,I6 = dY,,6. Therefore, setting X = Y,,, 
we have 

We now take a closer look at the equation XT = X = IX. Let 

j= 

Jl 0 *-* 0 

0 Jz **- 0 
. . . . . . . 

(j (j ..: j, 

x11 Xl, **- Xl, 

x21 x22 ... x2, 

’ :I- x= . . . . 

xi1 x;, 11.. x;, 



148 R. B. BAPAT, S. K. JAIN, AND L. E. SNYDER 

be conformal partitions. By Lemma 4, each Xlj is either zero or a positive, 
rank one matrix. We also note from the equation A2 = A that X2 = X. 
Construct the r X r matrix 2 = [zij] by setting zij = y,TXijxj, 1 Q i,j Q r-. 
We claim that 2 is idempotent. This is seen as follows. For any i, k E 
U,% *. . , r}, we have 

i ZijZjk = i y’xijxjy;xjkxk 
j=l j=l 

(since XjYj’ =Jj) 

(since XijJj = Xii) 

= y;xikxk (since X2 = X) 

and therefore the claim is proved. 
Since 2 is a nonnegative idempotent matrix, by Theorem 2 there exists a 

permutation matrix Qr such that 

where Jr is a direct sum of positive idempotent matrices, each of rank one. 
Let Q be the permutation matrix obtained from Qr by replacing the 1 in the 
ith column by the identity matrix of the same order as Xii, i = 1,2, . . . , T, 
and replacing each zero by a zero matrix of appropriate size. Then by block 
matrix multiplication it can be seen that QXQr permutes the blocks Xij of X 
in the same way as Q,ZQr permutes the entries zij of Z. Therefore, keeping 
in mind that each Xij is either zero or positive, we have 



NONNEGATIVE IDEMPOTENT MATRICES 149 

,. A ,. ,. 

where J is a direct sum of positive matrices and D, C, M are nonnegative 
matrices. 

Tk eqytt@ (QXQr)” = QXQ’ now leads to p = f, 6 = J%, c^ = 6: 
and M = CJD. It follows that J must be a direct sum of positive idempotent 
matrices of rank 1 and we have 

Set 

0 0 0 I 

where the partitioning is conformal with that of A and E. Then 

QjQ' Qj6 0 0 QXQ' QXfi 0 0 

PEP?’ 0 0 0 0 PAPT i ’ 0 0 0 1 = = 

tijQT 6j6 ’ 0 0 
0 0 0 0 10 0 001 

I i?XQ' 6x6 0 0 . I 

The construction of Q and the structure of f (as a block sum) show that 
QTQ’ is also a direct sum of positive, rank one idempotent matrices. In fact if 
Q1 corresponds to the permutation cr, then 

J a(l) 

0 
QjQ'= . 

i 
0 

0 

J W) 

0 

0 

0 I . . 

/’ u(r) 

Finally, set U = QXQT, C = 6Q’, D = Q6, and J = QjQ’ to get forms of 
PEPT and PAPT as asserted. That completes the proof. ??
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COROLLARY 6. Let A, E be n X n nonnegative matrices with no zero row 
or column. Suppose E2 = E and A <- E. Then the following assertions hold. 

(i) There exists a permutation matrix P such that PEPT and PAPT are 
both direct sums of positive idempotent matrices of rank 1. 

(ii) For any i, j if eij > 0 then aij > 0, where A = [aij] and E = [eij]. 
(iii) Let {1,2, . . . , n} = S, U -*a U S, be the partition of {1,2, . . . , n) 

induced by the direct sum representation of PEPT, and let {1,2, . . . , n) = 

TI ” *** U Tk be the partition induced by the direct sum representation of 
PAPT. Then the former partition is a refinement of the latter, and $ Si = ?; 
for some i, j then the corresponding blocks in the direct sum representations 
are identical. 

The proof of Corollary 6 is essentially contained in the proof of Theorem 
5. Statement (ii) of the corollary follows from AE = A = EA together with 
the fact that the diagonal of A is positive, and statement (iii) follows from (ii). 

The next example shows that in the case of Theorem 5, the natural 
converse implication is not true. 

EXAMPLE 7. Let 

Then A, E are both nonnegative idempotent matrices. Also the condition in 
Theorem 5 is trivially satisfied. However, A is not dominated by E in the 
minus order, since rank E = 2, which does not equal rank A + rank( E - A), 
which is 3. 

The following example illustrates the structure described in Corollary 6. 

EXAMPLE 8. Let 

E= 

1-0000~0 2 

0~00~00 

0 0 + 4 0 0 0 

0 0 $ ; 0 0 0 

o$oo~oo 

1 
5 0 0 0 0 ; 0 

0000001 

and 
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1 L a $ 4 4 0 0 0 

1 1 
a a 0 0 + f 0 

0 0 ; + 0 0 0 

A= 0 i $ 0 0 0. 0 

‘+o()“o 4 4 4 

Then it can be verified that the hypotheses in Corollary 6 are satisfied. Also, 
if P is the permutation matrix 

0100000 
0000000 
1000000 

P= 0 0 0 0 0 10 
0010000 
0001000 
0000001 

then 

PAPT = 

r 
2 ~00000 

1 
~00000 

:&$o + + 0 0 0 

8- 0 + $ 0 0 0 

oooo~$o 

0 0 0 0 + + 0 

0000001 

1 L 1 1 
4 4 4 4 0 0 0 

1 1 1 1 
4 ;i 4 4 0 0 0 

1 1 1 1 
4 -i a z 0 0 0 

1 L 1 I 
4 4 4 4 0 0 0 

0000~~0 

0000~~0 

0000001 

and 

which are in the form asserted in Corollary 6. 
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In the remainder of the paper we show that the set of nonnegative 
matrices dominated in the minus order by a given nonnegative idempotent 
matrix of rank r can be “identified’ with the set of r X r nonnegative 
idempotent matrices. This jibes well with the simple observation that the set 
of nonnegative matrices dominated by the r X r identity matrix is precisely 
the set of all r X r nonnegative idempotent matrices. 

We now introduce some notation. Let E be an n X n nonnegative 
idempotent matrix of rank T. Let As = {A : A 2 0, A Q- E), and let < be 
the set of r X r nonnegative idempotent matrices. With this notation we 
have the following result. 

THEOREM 9. Let E be a nonnegative idempotent matrix of rank r. Then 
there exists a map 4 : dE + -U; satisfying the following properties: 

(i) 4 is one-to-one. 
(ii) 4 is onto. 

(iii) Zf A, B E_&~ and AB = BA = 0, then A + B E.&~, r#~( A + B) = 
+(A) + 4(B), and $(Ah#dB) = 0. 

Proof. We first describe the construction of the map 4. Let A EAT. By 
the proof of Theorem 5 we may write, without loss of generality, that 

positive matrix of rank 1. Since JX = X = Xl, we have 

JiXij = xij = Xii],. (5) 

We define 4(A) = 2, where Z = [ zij] = [ yFXtj xj] is the matrix constructed 
in the proof of Theorem 5. As observed in that proof, Z is idempotent and 
thus 4 is clearly a map from _&s into -Ur,. 

6): Suppose A, B EM, and 4(A) = 4(B). As in the proof of Theorem 
5, we conclude that 

XD 0 0 
Ooo 

CX CXD 0 0 
0 0 00 1. B= 
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Let X = [ Xij], Y = [Yij] be block partitionings of X, Y in conformity with 
that of J. Since 4(A) = c$( B), we have, in view of the definition of 4, that 

Y'XijXj = y:‘Y,,x,, 1 f i,.j =G r. 

Thus, 

xi Y’XjjXj yJ’ = xi yp‘yijxj yJ’, 16 i,j < r, 

and, hence JiXijJj = JiYijJj, 1 < i, j < r. It follows from (5) and a similar 
equation for Yjj that Xij = Yij, 1 < i, j < F. Thus X = Y and hence A = B. 
Therefore 4 is one-to-one. 

(ii): To show that 4 is onto, let L = [Zij] be a nonnegative idempotent 
r X r matrix. Let Xi 
partitioned matrix, an d 

= lijxi yIr, i, j = 1,2,. . . , r. Set X = [Xi]], a block 
let 

X XD 0 0 
AZ0 o O” I I CX CXD 0 0 ’ 

0 0 0 0 

Then it can be verified that X2 = X and ]X = X = X]. Thus A E.N~. Also, 
+(A) = L, and therefore 4 is onto. 

(iii): Suppose A, B EJ~ and AB = BA = 0. Then clearly A + B is 
idempotent and [E - (A + B)](A + B) = (A + B)[E - (A + B)] = 0. 
thus A + B E Ms. We assume, without loss of generality, that E, A, B have 
the form given in (4) and (6). Th en AB = BA = 0 leads to XI’ = YX = 0. 
Furthermore, X + Y is idempotent. Let X = [ Xij], Y = [Yjj] be the block 
partitioning of X, Y, compatible with that of J, and let 

zij = y;x,jx,, wij = y*TY,i xj 

for all i, j. Then 

+(A + B) = [zij + wij] = [zij] + [wij] = +(A) + 4(B). 

Since XY = 0, it is easy to verify that +( A)c$(B) = 0, completing the proof. 
??
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led to a better presentation. 
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