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Defective repair of cisplatin-induced DNA damage caused by
reduced XPA protein in testicular germ cell tumours
Beate Köberle*†, John R.W. Masters†, John A. Hartley‡ and Richard D. Wood*

Metastatic cancer in adults usually has a fatal outcome.
In contrast, advanced testicular germ cell tumours are
cured in over 80% of patients using cisplatin-based
combination chemotherapy [1]. An understanding of
why these cells are sensitive to chemotherapeutic drugs
is likely to have implications for the treatment of other
types of cancer. Earlier measurements indicate that
testis tumour cells are hypersensitive to cisplatin and
have a low capacity to remove cisplatin-induced DNA
damage from the genome [2,3]. We have investigated
the nucleotide excision repair (NER) capacity of extracts
from the well-defined 833K and GCT27 human testis
tumour cell lines. Both had a reduced ability to carry out
the incision steps of NER in comparison with extracts
from known repair-proficient cells. Immunoblotting
revealed that the testis tumour cells had normal
amounts of most NER proteins, but low levels of the
xeroderma pigmentosum group A protein (XPA) and
the ERCC1–XPF endonuclease complex. Addition of
XPA specifically conferred full NER capacity on the
testis tumour extracts. These results show that a low
XPA level in the testis tumour cell lines is sufficient to
explain their poor ability to remove cisplatin adducts
from DNA and might be a major reason for the high
cisplatin sensitivity of testis tumours. Targeted
inhibition of XPA could sensitise other types of cells
and tumours to cisplatin and broaden the usefulness of
this chemotherapeutic agent.
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Results and discussion
Low levels of NER by extracts from testis tumour cell lines
The only known mechanism by which cisplatin lesions are
removed from DNA in mammalian cells is by NER. This
involves steps of damage recognition, opening of DNA,

and incision on both sides of a lesion. The core reaction
requires the proteins XPA, RPA, XPC–hHR23B, TFIIH,
ERCC1–XPF and XPG [4,5]. To analyse the NER capac-
ity of cisplatin-hypersensitive human testis tumour cell
lines, we measured the ability of cell extracts to form dual
incisions flanking an adduct. A plasmid was used contain-
ing a single 1,3-intrastrand d(GpTpG) cisplatin cross-link
(Pt-GTG), which is repaired efficiently by the mammalian
NER system [6]. The 24–32 nucleotide products pro-
duced by dual incision are detected by end-labelling with
the aid of a complementary oligonucleotide [7], separated
on a denaturing polyacrylamide gel and quantified.

Incubation with HeLa cell extract produced the character-
istic pattern of dual incision products (Figure 1a, lanes 1,2).
No incision was detected with a non-adducted plasmid
(Figure 1a, lane 3). Similarly, cell extracts from the human
bladder tumour line MGH-U1 were proficient in NER,
showing about 50% of the activity of HeLa extract when
40 µg protein was used (Figure 1a, lanes 13–15). In con-
trast, 40 µg protein from extracts of the testis tumour cell
lines 833K and GCT27 gave a weak pattern of dual inci-
sion (Figure 1a, lanes 5,8), with products at about 10% of
the level obtained with MGH-U1 or with extracts from
other repair-proficient cell lines. Extracts from the com-
pletely XPG-defective cell line AG08802 yielded no dual
incision products (Figure 1a, lanes 10,11). All findings were
reproduced in additional experiments using at least four
independent extracts from each tumour cell line. The
results show that the testis tumour cell lines have unusu-
ally low constitutive levels of NER. This is consistent with
observations that these cells have a low capacity to remove
cisplatin adducts [2,3].

Reduced amounts of XPA protein and ERCC1–XPF
complex in the testis tumour cells
Our hypothesis was that the low NER capacity of the
testis tumour cells might be caused by a reduced level of
one or more core repair factors. Levels of NER proteins
were measured by immunoblotting a panel of cells includ-
ing the two testis tumour cell lines 833K and GCT27, the
bladder tumour line MGH-U1, HeLa cells and a normal
lymphoblastoid cell line 705ori. In testis tumour cell lines,
most of the repair proteins were present at levels equiva-
lent to or even greater than the other cell lines, as shown
for the RPA p34 subunit (Figure 2a), XPG and subunits of
TFIIH (Figure 2b) and XPC protein (Figure 2c). The
RPA and TFIIH subunits can be regarded as internal con-
trols for the amount of nuclear protein added, as they are
housekeeping proteins necessary for DNA replication and



transcription, respectively. Two factors were consistently
found in reduced amounts in testis tumour cells. The

amount of XPA protein was reduced to 25% or less in
833K and GCT27 compared with MGH-U1, HeLa and
705ori cells (Figure 2d). In addition, the amounts of
ERCC1–XPF factor were reduced in 833K and GCT27
cells compared with the other three cell lines (Figure 2e).

Restoration of testis tumour cell extract NER with purified
XPA protein
To determine whether the NER deficiency of the testis
tumour cell extracts could be restored, extracts were sup-
plemented with the proteins that were present in low
amounts, XPA and ERCC1–XPF. Addition of 10 ng XPA
markedly stimulated the dual incision activity of the testis
tumour cell extracts (Figure 3a, lanes 7,8 and lanes 13,14),
with little effect on the bladder tumour MGH-U1 cell
extract (lanes 1,2). Quantification showed an approxi-
mately fourfold stimulation by 10 ng XPA in the testis
tumour cell extracts. As a control, XPA protein conferred
repair capacity on completely NER-defective XP group A
extract (lanes 19,20). Addition of ERCC1–XPF complex
also stimulated repair by extracts from the cell lines, but
the effect was less marked. Supplementation with purified
ERCC1–XPF resulted in twofold stimulation of 833K
extract repair activity (Figure 3b, lanes 5–8), as well as a
nearly twofold stimulation of MGH-U1 extract repair
(Figure 3b, lanes 1–4). As a control, ERCC1–XPF fully
restored repair to ERCC1-defective control cell extracts
(Figure 3b, lanes 9–12). ERCC1–XPF had a modest effect
on GCT27 cell extract (Figure 3c, compare lanes 3,5).
Quantitative immunoblotting, using purified proteins as
standards, showed that 40 µg MGH-U1 protein extract
contained about 10 ng of XPA and about 20 ng of
ERCC1–XPF and so the amounts of proteins added in
Figure 3 are in the physiological range.

Experiments with combinations of factors showed that
XPA had by far the most pronounced effect on repair by
the testis tumour cell extracts. For example, addition of
40 ng XPA protein increased the dual incision activity of
GCT27 extract by 6-fold, with a 1.8-fold further enhance-
ment given by combination with ERCC1–XPF complex
(Figure 3c, compare lanes 3,4,6). The reaction was specific
and repair was not enhanced significantly by other NER
proteins. Addition of XPG protein did not influence the
dual incision activity of GCT27 or 833K extracts
(Figure 3c, compare lanes 3,7 and 9,13). Similarly, addi-
tion of XPC or XPC–hHR23B complex did not stimulate
repair by 833K and GCT27 extracts (data not shown).

Implications for tumour sensitivity and chemotherapy
These results show that the low amount of XPA protein in
the testis tumour cell lines is a sufficient explanation for
their low NER capacity and indicate that this is a major
factor determining their drug sensitivity. Consistent with
this, XPA-defective cells are hypersensitive to killing by
cisplatin–DNA lesions [8,9]. The XPA protein is at the
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Figure 1

(a) Autoradiograph showing repair of a cisplatin adduct after incubation
with extract protein (20 or 40 µg at 2 or 4 mg/ml) from HeLa cells, the
bladder cancer cell line MGH-U1, the testis tumour lines 833K and
GCT27 and the NER-defective XP group G AG08802 cell line. Reaction
mixtures contained either 50 ng of a duplex plasmid with the Pt-GTG
adduct (+) or 50 ng control DNA synthesised without the adduct (–).
Dual incision products were detected by direct labelling as described [7]
and are indicated by the bracket on the left. Arrows point to the bands
arising from cleavage at the three most frequent 5′ incision sites in HeLa
cells to yield fragments 26, 29 and 30 nt long. (b) The data from (a)
quantified by measuring the labelled dual incision products.
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core of the NER machinery and interacts with damaged
DNA as well as with the other NER factors RPA, TFIIH
and ERCC1 [4,5]. Human cells with inactivating muta-
tions in the XPA gene [10] or knockout mice with disrup-
tions in XPA [11,12] have absolutely no capacity for NER
and are defective in removing cisplatin lesions from their
genomes [9,13]. Coupled with other data indicating that
the amount of XPA protein expressed in fibroblasts is a
limiting factor for NER capacity [14–16], it is reasonable
to expect that the amount of XPA in testis tumour cells
significantly influences cisplatin sensitivity.

Cell lines derived from human testicular germ cell tumours
retain their sensitivity to many different chemotherapeutic
drugs and to radiation, reflecting the clinical response [17].
Many potential sensitising mechanisms have been investi-
gated. For cisplatin these include not only DNA repair but
intrinsic permeability to the drug, levels of intracellular
scavengers, and pathways which promote apoptosis. For
example, testis tumour cells (including those used in this
study) contain high levels of non-mutated p53 and it has
been suggested that the sensitivity to a broad range of drugs

and radiation is largely due to a propensity to undergo apop-
tosis after DNA damage [18,19]. Other studies have con-
cluded that there is no correlation between cisplatin
sensitivity and p53 status of testis tumour cells [20,21].
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Figure 2

NER protein subunits in extracts from HeLa, MGH-U1, 833K, GCT27
and 705ori cell lines. For each cell line 10, 20, 40 and 60 µg protein
extract were separated by SDS–PAGE and immunoblotted for (a) RPA
p34 subunit, (b) XPG protein and TFIIH subunits XPB and p62,
(c) XPC protein, (d) XPA protein, or (e) XPF and ERCC1 proteins.
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Figure 3

(a) Addition of purified XPA protein to dual incision reactions
containing 50 ng DNA with the Pt-GTG adduct and 40 µg cell extract
protein. Purified XPA (10–160 ng) was added where indicated to
protein extracts from MGH-U1, 833K, GCT27 and control XPA-
defective GM2345 cells. Extracts were incubated with Pt-GTG (50 ng)
in the absence or presence of XPA protein as indicated. The region of
the gel with the dual incision products is shown. (b) Addition of purified
ERCC1–XPF complex to dual incision reactions containing 50 ng DNA
with Pt-GTG adduct and 40 µg protein extract. Purified ERCC1–XPF
complex (5–20 ng) was added to MGH-U1 and 833K extracts, or to
control extracts from ERCC1-defective 43-3B cells. (c) NER dual
incision by testis tumour cell extracts after addition of combinations of
XPA, ERCC1–XPF and XPG proteins. Reaction mixtures included
40 µg HeLa (H), MGH-U1 (M), GCT27 or 833K cell extract protein and
50 ng DNA containing the Pt-GTG adduct, supplemented with XPA
protein (40 ng), ERCC1–XPF complex (8 ng) or XPG protein (42 ng)
as indicated (+). See Supplementary material published with this paper
on the internet for quantification of these data. 
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Although the XPA protein is present in reduced amounts
in the testis tumour cell lines, the level at which this is
controlled is not known. Tissue-specific variations in XPA
mRNA levels may exist and it has been reported that
expression of XPA mRNA in normal mammalian testis
tissue is relatively low [22], raising the possibility that even
normal testis tissue has a low level of XPA protein and
hypersensitivity to cisplatin. This requires further investi-
gation with additional testis tumour cell lines and normal
tissues. Overexpression of the relevant genes in testis
tumour cell lines will give a fuller understanding of the
involvement of NER factors in cellular hypersensitivity.

These observations further suggest that specific inhibition
of XPA could sensitise other types of tumours to cisplatin
and thereby broaden the usefulness of its class of
chemotherapeutic agents. XPA is a unique potential target
for chemotherapy amongst the core NER factors because it
has no known involvement in other cellular pathways. XPA
knockout mice, for example, are only distinguishable from
normal mice by their sensitivity to UV light and chemical
carcinogens [11,12]. This apparently unique role of XPA is
in sharp contrast to the components RPA, TFIIH, XPG and
ERCC1–XPF, each of which has some other function in a
separate process of DNA replication, transcription, recombi-
nation, or another repair pathway [5,23]. Cellular reduction
of XPA protein levels should therefore specifically reduce
NER without affecting other aspects of DNA metabolism.
Targeted inhibition of the activity of XPA in repair might
be achieved, for example, by using a short peptide or small
molecule inhibitor to disrupt either the critical XPA–RPA
interaction or the binding of XPA to damaged DNA.

Supplementary material
Quantification of the data from Figure 3 and additional methodological
details are published with this paper on the internet.
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Supplementary materials and methods
Cells and cell extracts
The human testis germ cell tumour lines GCT27 (testis primary, embry-
onal carcinoma) and 833K (testis abdominal metastasis, embryonal car-
cinoma, teratoma) and the bladder cancer cell line MGH-U1
(transitional-cell carcinoma) were described previously [S1]. Both testis
tumour cell lines have high levels of functional p53 [S2] as well as
levels of the mismatch repair proteins MSH2, MLH1 and PMS2 that are
in the normal range (P. Maisuria and B.K., unpublished data). These cell
lines and the ERCC1-defective cell line 43-3B [S3] were grown as
monolayers in 175 cm2 tissue culture flasks in RPMI 1640 medium sup-
plemented with 10% heat-inactivated fetal calf serum. The lymphoblas-
toid cell line 705ori was from a repair-proficient donor [S4]. Repair
properties of the lymphoblastoid GM2345 cell line from the XPA-defec-
tive patient XP2OS, and the lymphoblastoid AG08802 cell line from the
XPG-defective patient XP20BE have been described [S5,S6]. These

cell lines were grown in suspension in RPMI 1640 medium with 10%
fetal calf serum. HeLa cells were grown in suspension in RPMI 1640
medium with 5% fetal calf serum. Whole cell extracts were prepared as
described [S7]. Care was taken to insure that cells were in the logarith-
mic growth phase at the time of harvesting.

Nucleotide excision repair in vitro
Covalently closed circular DNA (Figure S1a) containing a single 1,3-
intrastrand d(GpTpG) cisplatin crosslink (Pt-GTG) or lacking damage (Con-
GTG) was produced as described, using M13mp18GTGx bacteriophage

Supplementary material

Table S1

Quantification of data.*

Quantification of data from Figure 3a

XPA protein (ng) MGH-U1 833K GCT27

– 1.0 1.0 1.0
10 1.0 4.1 3.3
20 1.1 3.5 2.8
40 1.4 4.8 3.8
80 1.5 4.5 2.8

160 1.5 4.8 2.8

Quantification of data from Figure 3b

ERCC1–XPF
complex (ng) MGH-U1 833K 43-3B†

– 1.0 1.0 (1.0)
5 1.5 1.8 4.6

10 1.7 2.5 6.4
20 1.7 2.5 12.1

Quantification of data from Figure 3c

Purified protein GCT27 833K‡

– 1.0 1.0
XPA 6.0 2.3
ERCC1–XPF 1.8 1.0
XPA, ERCC1–XPF 8.8 3.7
XPG 1.4 1.0
XPA, ERCC1–XPF, XPG 11.1 4.3

*Intensities of dual incision products were measured from
autoradiographs using ImageQuant software. The values are the 
fold-stimulation of repair by addition of protein, after correction for 
local background. †Relative to background level. ‡Values in this column
are underestimates of the stimulation because of the high background
in lane 9.

Figure S1

(a) Closed circular M13mp18GTGx DNA duplex containing a single
1,3-intrastrand d(GpTpG) cisplatin cross-link within the sequence
context shown. (b) To measure the dual incision reaction of NER, the
DNA (or control duplex without an adduct) is incubated with cell
extract for 30 min. As indicated by the arrows, the major 3′ incision
sites are 8 and 9 phosphodiester bonds from the 3′ side of this adduct
and 16, 19 and 20 phosphodiester bonds on the 5′ side. The excision
products are annealed to a complementary oligonucleotide with a 3′
phosphate and additional G residues on the 5′ end, and directly
labeled with [α-32P]dCTP by DNA polymerase. The excision products
are measured after separation on a DNA sequencing gel. Arrows in
Figure 1a point to the position of the bands arising from cleavage at
the three major 5′ incision sites, which are the major products in HeLa
cells. There are several reasons for a more complex pattern of bands
spanning the region from 24–32 nt, as found for other adducts. There
is a limited shortening of primary incision products in the extracts, the
detection method involves end-filling by dCTP which may not always
give full length products and could in theory give rise to three shorter
bands for each primary product, and there are probably some minor 5′
incision sites. The results are quantified as the sum of the entire band
pattern, which takes into account all of these factors.

GTCGACCAGGCCTCTTCTTCTGTGCACTCTTCTTCTCCCCAGG
CAGCTGGTCCGGAGAAGAAGACACGTGAGAAGAAGAGGGGTCC

M13mp18
GTGx

(7059 bp)

(a)

(b)

Pt

NH3H3N

Pt

NH3H3N

5’-CGACCAGGCCTCTTCTTCTGTGCACTCTTC
 p-GCTGGTCCGGAGAAGAAGACACGTGAGAAGGGGG-5’
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DNA [S8]. Repair was carried out in 10 µl reaction mixtures with whole
cell extract protein as indicated in a buffer containing 45 mM Hepes-
KOH (pH 7.8), 70 mM KCl, 7.5 mM MgCl2, 0.9 mM DTT, 0.4 mM
EDTA, 2 mM ATP, 40 mM phosphocreatine (di-Tris salt), 0.5 µg crea-
tine kinase, 3.4% glycerol and 3.3 µg BSA. Following preincubation for
5 min at 30°C, 50 ng of Pt-GTG DNA or Con-GTG DNA was added
and incubation continued for 30 min at 30°C. The reaction was
stopped by rapid freezing, and 6 ng of a 34-mer oligonucleotide com-
plementary to the excised DNA with extra G residues at the 5′ end
was added (Figure S1b). The excision products were radiolabelled with
0.13 units Sequenase v2.0 DNA polymerase and 2 µCi [α-32P]dCTP,
separated on a denaturing 14% polyacrylamide gel and visualized by
autoradiography as described [S9]. Results were quantified with a
phosphorimager or by densitometry.

SDS–PAGE and immunoblots
Protein extracts were prepared by lysing 5 × 106 cells on ice in 40 µl of
buffer containing 50 mM Tris-HCl pH 7.5, 250 mM NaCl, 1 mM EDTA,
0.1% Triton X-100 (1% Triton X-100 for XPC), 2 µg/ml aprotinin, 2 µg/ml
leupeptin, 1 µg/ml pepstatin and 97 µg/ml PMSF. After 30 min incubation
the cells were centrifuged at 14,000 × g for 20 min at 4°C, the super-
natant was recovered and protein content determined by the Bradford
method. For immunoblotting, protein extracts were separated on SDS
10% polyacrylamide gels and transferred to Immobilon P membranes.
Primary rabbit polyclonal or mouse monoclonal antibodies were as
follows: XPA, 1/10,000 dilution of polyclonal antibody CJ1, raised against
recombinant human XPA protein (C.J. Jones, unpublished). XPC, 1/2,000
dilution of polyclonal antibody RW028 raised against residues 96–299 of
human XPC protein (D. Batty, unpublished). XPG, 1/500 dilution of mon-
oclonal antibody 8H7 (E. Evans and J. Steel, unpublished). XPB 1/1,000
dilution of monoclonal antibody 2G12 and p62, 1/10,000 of monoclonal
antibody 3C9, both provided by J-M. Egly. RPA p34 subunit, 1/1,000
dilution of monoclonal antibody 34A [S10]. XPF, 1/5,000 dilution of poly-
clonal antibody RA1 raised against residues 571–905 of human XPF
protein (L. Fullerton and R. Ariza, unpublished). ERCC1, 1/1,500 dilution
of polyclonal antibody RW017 [S11]. The membranes were incubated
with the primary antibody for 1 h, followed by incubation for 1 h with either
1/25,000 dilution of peroxidase-labelled anti-mouse IgG or 1/25,000 dilu-
tion of peroxidase-labelled anti-rabbit IgG (both from Sigma). For detec-
tion of XPC protein the secondary antibody was diluted to 1/75,000.
Bands were revealed with an ECL chemiluminescence kit (Amersham).
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