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SUMMARY

The chromosome 9p21 amyotrophic lateral scle-
rosis-frontotemporal dementia (ALS-FTD) locus
contains one of the last major unidentified auto-
somal-dominant genes underlying these common
neurodegenerative diseases. We have previously
shown that a founder haplotype, covering the
MOBKL2b, IFNK, and C9ORF72 genes, is present in
the majority of cases linked to this region. Here we
show that there is a large hexanucleotide (GGGGCC)
repeat expansion in the first intron of C9ORF72 on
the affected haplotype. This repeat expansion segre-
gates perfectly with disease in the Finnish popula-
tion, underlying 46.0% of familial ALS and 21.1% of
sporadic ALS in that population. Taken together
with the D90A SOD1 mutation, 87% of familial ALS
in Finland is now explained by a simple monogenic
cause. The repeat expansion is also present in one-
third of familial ALS cases of outbred European
descent, making it the most common genetic cause
of these fatal neurodegenerative diseases identified
to date.

INTRODUCTION

Amyotrophic lateral sclerosis (ALS, OMIM #105400) is a fatal

neurodegenerative disease characterized clinically by progres-

sive paralysis leading to death from respiratory failure, typically

within two to three years of symptom onset (Rowland and

Shneider, 2001). ALS is the third most common neurodegenera-

tive disease in theWesternworld (Hirtz et al., 2007), and there are

currently no effective therapies. Approximately 5% of cases are

familial in nature, whereas the bulk of patients diagnosedwith the

disease are classified as sporadic as they appear to occur

randomly throughout the population (Chiò et al., 2008). There is

growing recognition, based on clinical, genetic, and epidemio-

logical data, that ALS and frontotemporal dementia (FTD,

OMIM #600274) represent an overlapping continuum of disease,

characterized pathologically by the presence of TDP-43 positive

inclusions throughout the central nervous system (Lillo and

Hodges, 2009; Neumann et al., 2006).

To date, a number of genes have been discovered as causa-

tive for classical familial ALS, namely SOD1, TARDBP, FUS,

OPTN, and VCP (Johnson et al., 2010; Kwiatkowski et al.,

2009; Maruyama et al., 2010; Rosen et al., 1993; Sreedharan

et al., 2008; Vance et al., 2009). These genes cumulatively

account for �25% of familial cases, indicating that other causa-
258 Neuron 72, 257–268, October 20, 2011 ª2011 Elsevier Inc.
tive genes remain to be identified. Each new gene implicated in

the etiology of ALS or FTD provides fundamental insights into the

cellular mechanisms underlying neuron degeneration, as well as

facilitating disease modeling and the design and testing of

targeted therapeutics; thus, the identification of new genes

that cause ALS or FTD is of great significance.

Linkage analysis of kindreds involving multiple cases of ALS,

FTD, and ALS-FTD had suggested that there was an important

locus for the disease on the short arm of chromosome 9 (Boxer

et al., 2011; Morita et al., 2006; Pearson et al., 2011; Vance et al.,

2006). Using a genome-wide association study (GWAS)

approach, we recently reported that this locus on chromosome

9p21 accounted for nearly half of familial ALS and nearly one-

quarter of all ALS cases in a cohort of 405 Finnish patients and

497 control samples (Laaksovirta et al., 2010). This association

signal had previously been reported by van Es and colleagues

(van Es et al., 2009), and a meta-analysis involving 4,312 cases

and 8,425 controls confirmed that chromosome 9p21 was the

major signal for ALS (Shatunov et al., 2010). A recent GWAS

for FTD also identified this locus (Van Deerlin et al., 2010). Anal-

ysis in the Finnish population narrowed the association to a 232

kilobase (kb) block of linkage disequilibrium and allowed the

identification of a founder haplotype that increased risk of

disease by over 20-fold. The associated haplotype appears to

be the same in all European-ancestry populations, and several

families previously shown to have genetic linkage to the chromo-

some 9p21 region also share this risk haplotype (Mok et al.,

2011).

We have previously identified an ALS-FTD family from the UK

and an apparently unrelated ALS-FTD family from the Nether-

lands that showed positive linkage to the chromosome 9p21

region (Mok et al., 2011; Pearson et al., 2011). Using these fami-

lies and the Finnish ALS cases that had previously been used to

identify the chromosome 9p21 association signal, we undertook

a methodical assessment of the region using next-generation

sequencing technology in an attempt to identify the genetic

lesion responsible for disease.

RESULTS

We undertook massively parallel, next-generation, deep rese-

quencing of the chromosome 9p21 region in (1) DNA that had

been flow-sorted enriched for chromosome 9 obtained from an

affected member of the GWENT#1 kindred (IV-3, Figure 1A;

Coriell ID ND06769) and from a neurologically normal control

(ND11463); and (2) DNA that had been enriched for the target

region using custom oligonucleotide baits obtained from three

cases and five unaffected members of the DUTCH#1 kindred

(V-1, V-3, and V-14, and V-2, V4, V5, VI-1, and spouse of V-1;

Figure 1B).
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Figure 1. Pedigrees of Patients Carrying the C9ORF72 GGGGCC Hexanucleotide Repeat Expansion

(A–E) Pedigrees of patients with the hexanucleotide repeat expansion. Mutant alleles are shown by mt, whereas wild-type alleles are indicated by wt. Inferred

genotypes are in brackets. Blue diamonds represent a diagnosis of ALS, orange diamonds represent FTD, and green diamonds represent ALS-FTD. Probands

are indicated by arrows. Sex of the pedigree members is obscured to protect privacy.
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Figure 2. GGGGCC Hexanucleotide Repeat Expansion in the First Intron and Promoter of C9ORF72

(A) Physical map of the chromosome 9p21 ALS/FTD locus showing the p values for SNPs genotyped in the previous GWAS (Laaksovirta et al., 2010), the location

of the GWAS association signal within a 232 kb block of linkage disequilibrium, theMOBKL2B, IFNK, and C9ORF72 genes within this region, and the position of

the GGGGCC hexanucleotide repeat expansion within the two main transcripts of C9ORF72 (RefSeq accession numbers NM_018325.2 and NM_145005.4, see

online http://www.ncbi.nlm.nih.gov/RefSeq/ for further details; GenBank accession numbers GI:209863035 and GI:209863036, see online http://www.ncbi.nlm.

nih.gov/genbank/ for further details).

(B) A graphical representation of primer binding for repeat-primed PCR analysis is shown in the upper panel. In the lower panel, capillary-based sequence traces

of the repeat-primed PCR are shown. Orange lines indicate the size markers, and the vertical axis represents fluorescence intensity. A typical saw tooth tail

pattern that extends beyond the 300 bp marker with a 6 bp periodicity is observed in the case carrying the GGGGCC repeat expansion.

(C) Detection of the repeat expansion in the lymphoblastoid cell line from the affected proband of the GWENT#1 kindred (ND06769) by FISH using Alexa Fluor

488-labeled oligonucleotide probe seen as a green fluorescence signal on one of the homologs of chromosome 9p (i) consistent with a repeat expansion size of
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Analysis of the GWENT#1 sequence data revealed eight novel

variants within the 232 kb block of linkage disequilibrium con-

taining the previously identified association signal that were

not described as polymorphisms in either the 1000 Genomes

(April 2009 release) or the dbSNP (build 132) online databases.

Six of these variants were located within a 30 base pair (bp)

region. When the individual sequence reads within this region

were examined and manually realigned, they indicated the

presence of a hexanucleotide repeat expansion GGGGCC

located 63 bp centromeric to the first exon of the long transcript

of C9ORF72 (RefSeq accession number = NM_018325.2;

GenBank accession number = GI:209863035) in the affected

cases that was not present in the control samples (see Figure S1

available online for individual reads). The repeat expansion

also lies within the first intron of the other major transcript

of C9ORF72 (RefSeq accession number = NM_145005.4;

GenBank accession number = GI:209863036; Figure 2A).

We next used a repeat-primed PCR method to screen case

and control samples for the presence of the GGGGCC hexanu-

cleotide repeat expansion (see Figure 2B and Experimental

Procedures for a detailed explanation) (Kobayashi et al., 2011;

Warner et al., 1996). The nature of the repeat-primed PCR assay

means that it can detect amaximumof�60 repeats, and thus the

repeat length in a sample carrying the expansion could be far

greater than the estimation provided by this technique. Despite

this, the assay is an accurate and rapid system that allows

samples to be categorized into those that carry a pathogenic

repeat expansion (greater than 30 repeats) and those that carry

only wild-type alleles (fewer than 20 repeats). The frequency

distribution of the GGGGCC hexanucleotide repeat expansion

lengths in ALS cases and control samples based on the

repeat-primed PCR assay is shown in Figure 3.

Using the repeat-primed PCR method, we confirmed that

the expanded hexanucleotide repeat was present in the affected

members of the GWENT#1 and DUTCH#1 kindreds (IV-3, IV-5,

IV-7, and IV-8 in GWENT#1 and V-1, V-3, V-14, V-15 in

DUTCH#1, Figures 1A and 1B) and that the expansion was

absent from asymptomatic family members (III-1, III-9, IV-1 in

GWENT#1 and V-2, V-8, V-9, and VI-1 in DUTCH#1).

In the Finnish cohort of 402 ALS cases and 478 controls,

repeat-primed PCR analysis showed the hexanucleotide repeat

to be expanded in 113 (28.1%) cases and 2 (0.4%) controls

(Fisher’s exact test p value for allelic association = 8.1 3

10�38; OR = 78.0, 95% CI = 19.2–316.8). Overall, 52 (46.4%) of

the Finnish familial ALS cases had the expansion (p value =

3.7 3 10�37; OR = 140.9, 95% CI = 34.0–583.9), and 61

(21.0%) of the sporadic cases had the expansion (p value =

1.7 3 10�24; OR = 56.1, 95% CI 13.6–230.2). The average

number of repeats detected by the PCR assay in the Finnish

cases carrying the expansion was 53 (range, 30 to 71) compared

to an average of 2 (range, 0 to 22) repeats observed in the 476

controls that did not carry the expansion, thereby allowing for

robust classification of samples (see Figures 3A and 3B).
more than 1.5 kb. DAPI-inverted image (ii and iv). No hybridization signal was dete

of control individual ND 11463 (iii) and five other normal control individuals (da

(DAPI, red color), 603 objective.
Of the 113 familial and sporadic Finnish cases that carried the

hexanucleotide repeat expansion, two-thirds (n = 76, 67.3%)

carried the previously identified chromosome 9p21 founder

risk haplotype (Laaksovirta et al., 2010). In contrast, only one

of the Finnish controls samples that carried the expansion also

carried the risk haplotype.

For confirmation of the repeat expansion and to estimate

its size, fluorescence in situ hybridization (FISH) was performed

in an affectedmember of the GWENT#1 kindred (IV-3, Figure 1A,

ND06769), in a case from the NINDS0760 pedigree (III-1, Fig-

ure 1E), and in neurologically normal controls (ND11463,

ND08559, ND03052, and ND03053). These experiments used

a fluorescently labeled oligonucleotide probe consisting of

three GGGGCC repeats (Haaf et al., 1996). All metaphases of

the cases showed a strong hybridization signal to a single chro-

mosome—9p21—consisting of a discrete dot on each sister

chromatid (Figure 2C). Fluorescence was not detected in any

metaphases of the control samples. These experiments indi-

cated that the expansion was at least 1.5 kb (representing

�250 GGGGCC repeats) in size, which is the minimum detect-

able size of a repeat using this technique (Liehr, 2009). Additional

experimental approaches, such as Southern blotting, will be

needed to determine the true repeat length with greater

precision.

Our data clearly showed the importance of the hexanucleotide

repeat expansion within the Finnish ALS population and in fami-

lies linked to the chromosome 9p21 region. To further determine

the frequency of the hexanucleotide expansion in outbred

European populations, we screened a cohort of 268 familial

ALS probands from North America (n = 198), Germany (n = 41),

and Italy (n = 29) using repeat-primed PCR. Of these cases,

102 (38.1%) carried the same hexanucleotide GGGGCC repeat

expansion within C9ORF72 (Figure 3C). Within this dataset, we

identified three additional multigenerational families where the

presence of the repeat expansion segregated perfectly with

disease within the kindred (Figures 1C–1E). In contrast, the

repeat expansion was not detected in 262 U.S. Caucasian

controls, 83 Italian controls, and 64 German controls (total

number of control chromosomes = 818, average number of

repeats = 3, range 0–18, Figure 3D). An additional series of 300

anonymous African and Asian samples that are part of the

Human Gene Diversity Panel (Cann et al., 2002) were included

in themutational analysis as controls to evaluate the genetic vari-

ability of the C9ORF72 hexanucleotide repeat expansion in non-

Caucasian populations. None of these samples carried more

than 15 GGGGCC repeats (average number of repeats = 3,

range = 0–15).

Given the genetic and clinical overlap between ALS and FTD,

as well as the co-occurrence of ALS and FTD within families

linked to the chromosome 9p21 locus, we tested the hypothesis

that the hexanucleotide repeat expansionmay underlie a propor-

tion of FTD cases by measuring its occurrence in a cohort of 75

Finnish FTD cases using the same repeat-primed PCR method.
cted on metaphase cells or interphase nuclei from the lymphoblastoid cell line

ta not shown). Cells were counterstained with 40,6-diamidino-2-phenylindole
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Figure 3. Repeat-Primed PCR Assay Distinguishes Samples Carrying a Pathogenic GGGGCC Hexanucleotide Repeat Expansion in the

C9ORF72 Gene from Wild-Type Samples

A bimodal distribution is evident with samples carrying the repeat expansion showing 30 or more repeats and control samples having fewer than 20 repeats. The

repeat-primed PCR assay determines whether or not a sample carries a large pathogenic expansion but does not measure the actual number of repeats in a large

pathogenic expansion.

(A) Histogram of repeat lengths based on the repeat-primed PCR assay observed in Finnish cases (n = 402).
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Figure 4. Expression Analysis of C9ORF72 RNA

Expression array analysis of C9ORF72 in various human

CNS regions obtained from neuropathologically normal

individuals (n = 137).
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The percentage of these FTD cases carrying the repeat expan-

sion was comparable to that of the Finnish ALS cohort (n = 22,

representing 29.3% of the cohort), and the GGGGCC repeat

expansion was highly associated with FTD in the Finnish popula-

tion (Fisher’s exact test p value based on 75 Finnish FTD cases

and 478 Finnish controls = 4.3 3 10�18; OR = 82.0, 95% CI

19.1–352.8). Six of the Finnish FTD cases carrying the repeat

expansion presented with progressive nonfluent aphasia, and

the remaining 16 patients had clinical features consistent with

behavioral-variant FTD. In addition, 8 (36.4%) of these Finnish

FTD patients had a personal or family history of ALS.
(B) Histogram of repeat lengths based on the repeat-primed PCR assay observed in Finnish control

(C) Histogram of repeat lengths based on the repeat-primed PCR assay in familial ALS cases of gen

(D) Histogram of repeat lengths based on the repeat-primed PCR assay in control samples of Euro

samples (n = 300).
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Using expression arrays, C9ORF72 RNA

was detected across multiple CNS tissues

obtained from neuropathologically normal

individuals including spinal cord, with the high-

est expression level observed within the cere-

bellum (Figure 4). Real-time RT-PCR analysis

of expression in frontal cortex tissue obtained

from patients and controls did not find any

conclusive change in RNA levels and produced

inconsistent results across different labs and

different samples (see Figure S2 available online

for preliminary data).

Immunocytochemistry using an antibody that

recognizes both human and mouse C9ORF72

(Santa Cruz Biotechnology) found the protein

to be predominantly localized within the nucleus

in human control fibroblast cell lines and in the

mouse motor neuron NSC-34 cell line (Figure 5).

Furthermore, C9ORF72 protein levels appeared

to be reduced in fibroblast cell lines derived from

ALS patients relative to controls, with relatively

more cytoplasmic staining in cases compared

to controls. However, these data must be

considered to be preliminary, as firm conclu-

sions cannot be drawn based on a small number

of samples. Furthermore, the Santa Cruz

C9ORF72 antibody used for these experiments

is largely uncharacterized: preliminary data

suggest that siRNA knockdown of C9ORF72

mRNA results in a mild reduction of C9ORF72

protein by western blot in H4 and T98G cells,

though a similar effect was also seen using

siRNA allstar control (see Figure S3 online). At

this stage, the question of whether the patho-

genic expansion is associated with a decrease
in protein expression remains unresolved. Future experiments

requiring generation of more specific antibodies and more quan-

titative approaches will be needed to definitively determine the

localization of the different C9ORF72 isoforms in different tissues

and at various stages of disease progression.

DISCUSSION

In this paper, we used next-generation sequencing technology

to identify a hexanucleotide repeat expansion within the

C9ORF72 gene as the cause of chromosome 9p21-linked
s (n = 478).

eral European (non-Finnish) descent (n = 268).

pean descent (n = 409) and Human Gene Diversity Panel
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Figure 5. Preliminary Analysis of C9ORF72 Protein Levels in Control Cell Lines and Cell Lines Derived from ALS Patients
(A) Immunocytochemistry of C9ORF72 protein in human-derived primary fibroblasts obtained from a healthy individual (Ctrl fibr.) and from ALS patients (ALS-75

and ALS-50). Green signals represent C9ORF72 (Santa Cruz antibody). Scale bars represent 20 mm.

(B) Nuclear staining pattern of C9ORF72 protein in control and ALS fibroblasts. Green signals represent C9ORF72 protein (Santa Cruz) and red signals represent

propidium iodide (PI) (nuclear stain). Scale bars represent 20 mm.

(C) Immunocytochemistry of C9ORF72 protein in mouse-derived NSC-34 motor neuron cell line. Green signals represent C9ORF72 protein (Santa Cruz), red

signals represent propidium iodide (PI) (nuclear stain), and blue signals represent wheat germ agglutinin (WGA) (membrane stain). Scale bar represents 20 mm.

(D) Nuclear staining pattern of C9ORF72 protein in NSC-34 mouse motor neuron cell line. Green signals represent C9ORF72 protein, and red signals represent

propidium iodide (PI) (nuclear stain). Scale bars represent 20 mm.
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ALS-FTD and subsequently confirmed the presence of this large

expansion in a substantial proportion of familial ALS and FTD

cases. Overall, the hexanucleotide repeat expansion was found

in nearly one-half of Finnish familial ALS cases and in more than

one-third of familial ALS cases of wider European ancestry. Our

data indicate that the repeat expansion is more than twice as

common as mutations in the SOD1 gene as a cause of familial

ALS (Chiò et al., 2008) and more than three times as common

as TARDBP, FUS, OPTN, and VCP mutations combined (John-

son et al., 2010; Mackenzie et al., 2010; Maruyama et al.,

2010). Taken together with the D90A SOD1 mutation, our data

show that nearly 90% of familial ALS in Finland is now explained

by a simple monogenic cause.
264 Neuron 72, 257–268, October 20, 2011 ª2011 Elsevier Inc.
We present five pieces of genetic data demonstrating that the

hexanucleotide repeat expansion is pathogenic for neurodegen-

eration. First, the hexanucleotide expansion segregated with

disease within two multigenerational kindreds that have been

convincingly linked to the region (Pearson et al., 2011). Second,

the hexanucleotide expansion was highly associated with

disease in the same cohort of ALS cases and controls that was

used to identify the chromosome 9p21 region within the Finnish

population. Furthermore, the association signal based on the

presence or absence of the expansion was many times greater

than that indicated by the surrounding SNPs (p value based on

expansion = 8.1 3 10�38 versus 9.11 3 10�11 based on the

most associated SNP rs3849942 in the initial Finnish ALS
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GWAS) (Laaksovirta et al., 2010). Third, the hexanucleotide

repeat expansion was not found in 409 population-matched

control subjects or in 300 diverse population samples screened

in our laboratory. Fourth, we found that a large proportion of

apparently unrelated familial ALS and FTD cases carried the

same hexanucleotide repeat expansion within C9ORF72. Within

this cohort of European-ancestry familial samples, we identified

three additional multigenerational families within which the

repeat expansion segregated perfectly with disease. Fifth,

FISH analysis demonstrated that the repeat expansion is large

in size (at least 1.5 kb to be visualized by this technique, Fig-

ure 2C), and such long expansions are typically pathogenic

(Kobayashi et al., 2011). Finally, another group independently

discovered the same genetic mutation to be the cause of chro-

mosome 9p21-linked FTD/ALS (DeJesus-Hernandez et al.,

2011).

Our data indicate that both ALS and FTD phenotypes are

associated with the C9ORF72 GGGGCC hexanucleotide repeat

expansion. Several members of the GWENT#1 and DUTCH#1

pedigrees manifested clinical signs of isolated motor neuron

dysfunction or isolated cognitive decline, whereas other affected

members developed mixed ALS-FTD symptomatology over the

course of their illness (Pearson et al., 2011). It is interesting to

note that the frequency of the repeat expansion was almost iden-

tical in our ALS and FTD case cohorts, suggesting that carriers of

themutant allele are equally at risk for both forms of neurodegen-

eration. Our data support the notion that the observed clinical

and pathological overlap between ALS and FTD forms of neuro-

degeneration may be driven in large part by the C9ORF72 hexa-

nucleotide repeat expansion.

The identification of the cause of chromosome 9p21-linked

neurodegeneration allows for future screening of population-

based cohorts to further unravel the overlap between ALS and

FTD and to identify additional genetic and environmental

factors that push an individual’s symptoms toward one end of

the ALS/FTD clinical spectrum. Some early observations may

already be made: among our Finnish FTD cohort, we identified

several patients carrying the pathogenic repeat expansion who

presented with nonfluent progressive aphasia. This suggests

that the difficulties with speech production that are commonly

observed in ALS patientsmay in some cases be partially attribut-

able to cortical degeneration in addition to tongue and bulbar

musculature weakness secondary to hypoglossal motor neuron

degeneration. It is also interesting to note that age of symptom

onset varied widely in patients carrying the pathogenic hexa-

nucleotide expansion, including some individuals who devel-

oped weakness in their ninth decade of life. The genetic and/or

environmental factors underlying this variability remain to be

determined.

Our development of a rapid, reliable method of screening indi-

viduals for the repeat expansion will have immediate clinical

utility by allowing early identification of ALS patients at increased

risk of cognitive impairment, and of FTD cases at increased risk

of progressive paralysis. In the longer term, the identification of

the genetic lesion underlying chromosome 9p21-linked ALS

and FTD, together with the observed high frequency in these

patient populations, makes it an ideal target for drug develop-

ment aimed at amelioration of the disease process.
Broadly speaking, pathogenic repeat expansions are thought

to cause disease through haploinsufficiency, in which expres-

sion or splicing of the target gene is perturbed, or through the

generation of abnormal amounts of toxic RNA that disrupt

normal cellular pathways. We favor the second as a mechanism

in chromosome 9 FTD/ALS, given the large size of the expansion

visualized by FISH and its noncoding localization within the

C9ORF72 gene. RNA generated from such pathogenic repeat

expansions are thought to disrupt transcription by sequestering

normal RNA and proteins involved in transcription regulation

(Wojciechowska and Krzyzosiak, 2011), and disruption of RNA

metabolism has already been implicated in the pathogenesis of

ALS associated with mutations in TDP-43 and FUS (Lagier-

Tourenne et al., 2010). Interestingly, an index family studied

previously demonstrating aberrant RNA metabolism of an astro-

glial gene, EAAT2, (Lin et al., 1998) is in fact a chromosome 9

hexanucloitude mutation carrier. This might provide early evi-

dence that aberrant RNA metabolism occurs as part of the path-

ogenicmechanism. However, knowing the pattern of distribution

of C9ORF72 expression is likely to be key in understanding cell

vulnerability and local expression of the hexanucleotide repeat

expansion, which is probably influenced by the promoter of the

C9ORF72 gene.Wedid not find consistent differences in expres-

sion between cases and controls. This may represent the true

biological effect of the GGGGCC hexanucleotide repeat expan-

sion on C9ORF72 expression, or alternatively it may reflect the

small number of samples analyzed or tissue-to-tissue variation

in expression of this gene. More definitive experimental testing

is required in the future to resolve the effect of the hexanucleo-

tide repeat expansion on C9ORF72 expression, as well as addi-

tional molecular biology investigation to understand the precise

mechanism by which the hexanucleotide repeat may disrupt

RNA metabolism.

An important aspect of understanding a pathogenic repeat

expansion focuses on its stability. Preliminary evidence sug-

gests that the C9ORF72 hexanucleotide repeat expansion may

be unstable. First, minor anticipation has been noted in pedi-

grees that originally identified the locus with earlier generations

being relatively unaffected by disease, perhaps reflecting

expanding repeat number over successive generations (Vance

et al., 2006). Interestingly, anticipation was not observed within

the five families in which we found the hexanucleotide repeat

expansion (see Figure 1). Second, although there was strong

concordance between the presence of the chromosome 9p21

founder risk haplotype and the presence of the hexanucleotide

expansion in an individual, the expansion was also present in

ALS cases that did not carry this haplotype. These data are

consistent with the expansion occurring on multiple occasions

on multiple haplotype backgrounds. Taken together, these

observations suggest that the C9ORF72 repeat region has

some degree of instability. This instability may be particularly

relevant for sporadic ALS, where the apparent random nature

of the disease in the community could be a consequence of

stochastic expansion in the number of repeats. It is noteworthy

that a sizeable proportion of the Finnish ALS cases that carried

the repeat expansion was clinically classified as sporadic.

In summary, our data demonstrate that a massive hexa-

nucleotide repeat expansion within C9ORF72 is the cause of
Neuron 72, 257–268, October 20, 2011 ª2011 Elsevier Inc. 265



Table 1. Demographic and Clinical Details of ALS Cases, FTD Cases, and Neurologically Normal Controls According to Geographical

Region of Origin and GGGGCC Hexanucleotide Repeat Expansion Carrier Status

European-Descent

Familial ALS Case

(n = 268)a
European-Descent

Controls (n = 409)b
Finnish FTD

Cases (n = 75)

Finnish ALS

Cases (n = 402)c
Finnish Controls

(n = 478)d

ALS Cases

with Expansion

(n = 215)e

Mean age (range) 56.5 (15–90) 44.1 (4–91) 58.4 (38–79) 56.8 (18–85) 88.6 (85–101) 56.6 (35–80)

Male (%) 144 (53.7%) 165 (40.4%) 34 (45.3%) 199 (49.5%) 96 (20.1%) 112 (52.1%)

Familial (%) 268 (100%) - 27 (36.0%) 112 (27.9%) - 154 (71.6%)

Site of Symptom Onset

Bulbar-onset (%) 53 (26.4%) - - 94 (27.8%) - 58 (32.6%)

Spinal-onset (%) 148 (73.6%) - - 244 (72.2%) - 120 (67.4%)

Behavior variant FTD (%) - - 48 (64.0%) - - -

Progressive nonfluent

aphasia (%)

- - 20 (26.7%) - - -

Semantic dementia (%) - - 7 (9.3%) - - -

Mean age represents age at symptom onset for cases and age at sample collection for controls.
a Data missing for age at onset (n = 12), and site of onset (n = 67).
b Data missing for age at sampling (n = 1) and gender (n = 1).
c Data missing for age at onset (n = 29), site of onset (n = 64) and familial status (n = 1).
d Data missing for age at collection (n = 6).
e Data missing for age at onset (n = 18) and site of onset (n = 37).
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chromosome 9p21-linked ALS, FTD, and ALS-FTD. Further-

more, this expansion accounts for an unprecedented propor-

tion of ALS cases in Finland and in familial ALS cases of

European ancestry, and it provides additional evidence support-

ing the role of disrupted RNA metabolism as a cause of

neurodegeneration.

EXPERIMENTAL PROCEDURES

Patients and Material

We studied a four-generation Welsh family (GWENT#1) in which 9 individuals

had been diagnosed with ALS and/or FTD and were known to share the chro-

mosome 9p21 risk haplotype. The pedigree of this family is shown in Figure 1A,

and the clinical features have been previously reported (Pearson et al., 2011).

DNA samples were available from four individuals of generation IV who had

been diagnosed with ALS and/or FTD. Flow-sorting of chromosome 9 was

performed on lymphoblastoid cell lines from an affected case ND06769

(IV-3, Figure 1A) and a neurologically normal population control ND11463 at

Chrombios GmbH (http://www.chrombios.com) using a FACS Vantage cell

sorter (BD Biosciences, Franklin Lakes, NJ, USA).

We also analyzed an apparently unrelated six-generation Dutch ALS/FTD

family (DUTCH#1, Figure 1B), in which linkage and haplotype analysis showed

significant linkage to a 61 Mb region on chromosome 9p21 spanning from

rs10732345 to rs7035160 and containing 524 genes and predicted transcripts.

Genomic regions from all exons and exon-intron boundaries, 50 UTRs, 30

UTRs, �650 bp of upstream promoter regions, sno/miRNA loci, and

conserved regions were captured using SureSelect target enrichment tech-

nology (Agilent, Santa Clara CA, USA). In total, 43,142 unique baits were

used for these experiments covering a total of 2.58 MB in the chromosome

9p FTD/ALS locus (c9FTD/ALS).

For subsequent mutational screening of the GGGGCC hexanucleotide

repeat expansion, we used DNA from 402 Finnish ALS cases and 478 Finnish

neurologically normal individuals that had previously been used to identify the

chromosome 9p21 association signal (Laaksovirta et al., 2010). An additional

268 DNA samples were obtained from affected probands in unrelated ALS

families (198 U.S. cases, 41 German cases, and 29 Italian cases) and from

75 Finnish individuals who had presented with isolated FTD. Control samples

consisted of 262 neurologically normal US individuals obtained from the
266 Neuron 72, 257–268, October 20, 2011 ª2011 Elsevier Inc.
NINDS repository at Coriell, 64 neurologically normal German individuals,

and 83 neurologically normal Italian individuals. An additional series of 300

anonymous African and Asian samples that are part of the Human Gene Diver-

sity Panel (Cann et al., 2002) were included in the mutational analysis as

controls to evaluate the genetic variability of the repeat expansion in non-

Caucasian populations. Demographics and clinical features of these samples

are summarized in Table 1. Appropriate institutional review boards approved

the study.

Next-Generation Sequencing

Paired-end sequencing was performed on a next-generation HiSeq2000

sequencer according to the manufacturer’s protocol (Illumina, San Diego,

CA, USA). This generated 56.7 gigabases of alignable sequence data for the

control sample ND11463 (mean read depth for the chromosome 9 region

27,367,278 to 27,599,746 bp = 42.2) and 114.4 gigabases for the case sample

ND06769 (mean read depth = 170.4). Sequence alignment and variant calling

were performed against the reference human genome (UCSC hg 18).

Sequencing reads were aligned using BWA (Li and Durbin, 2009). Sorting,

indexing, read duplicate removal, and merging of BAM files were preformed

with Picard (http://picard.sourceforge.net). The Genome Analysis Toolkit

was used to perform base quality score recalibration and to call variants

(McKenna et al., 2010). SNPs identified within CEU individuals from the

1000 Genomes project (April 2009 release, http://www.1000genomes.org)

or in dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/, Build 132) were

excluded. The remaining variants were annotated to RefSeq transcripts and

protein coding variants prioritized for examination.

Repeat-Primed PCR

Repeat-primed PCR was performed as follows: 100 ng of genomic DNA were

used as template in a final volume of 28 ml containing 14 ml of FastStart PCR

Master Mix (Roche Applied Science, Indianapolis, IN, USA), and a final

concentration of 0.18 mM 7-deaza-dGTP (New England Biolabs, Ipswich,

MA, USA), 13 Q-Solution (QIAGEN, Valencia, CA, USA), 7% DMSO (Sigma-

Aldrich), 0.9 mM MgCl2 (QIAGEN), 0.7 mM reverse primer consisting of �four

GGGGCC repeats with an anchor tail, 1.4 mM 6FAM-fluorescent labeled

forward primer located 280 bp telomeric to the repeat sequence, and

1.4 mM anchor primer corresponding to the anchor tail of the reverse primer

(sequences available online in Supplemental Experimental Procedures)

(Kobayashi et al., 2011; Warner et al., 1996). A touchdown PCR cycling

http://www.chrombios.com
http://picard.sourceforge.net
http://www.1000genomes.org
http://www.ncbi.nlm.nih.gov/projects/SNP/
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program was used where the annealing temperature was gradually lowered

from 70�C to 56�C in 2�C increments with a 3 min extension time for each

cycle.

The repeat-primed PCR is designed so that the reverse primer binds at

different points within the repeat expansion to produce multiple amplicons

of incrementally larger size. The lower concentration of this primer in the reac-

tion means that it is exhausted during the initial PCR cycles, after which the

anchor primer is preferentially used as the reverse primer. Fragment length

analysis was performed on an ABI 3730xl genetic analyzer (Applied Bio-

systems, Foster City, CA, USA), and data were analyzed using GeneScan soft-

ware (version 4, ABI). Repeat expansions produce a characteristic sawtooth

pattern with a 6 bp periodicity (Figure 2B).

Statistical Analysis

Our previous GWAS data suggested no significant population stratification

within the Finnish population (Laaksovirta et al., 2010). Therefore, association

testing was performed using the Fisher’s exact test as implemented within the

PLINK software toolkit (version 1.7) (Purcell et al., 2007).

FISH Analysis

Metaphase and interphase FISH analysis of lymphoblastoid cell lines ND06769

(case IV-3 from GWENT#1, Figure 1A), ND08554 (case II-2 from NINDS0760,

Figure 1E), ND11463 (control), ND11417 (control), ND08559 (unaffected

spouse II-3 from NINDS0760), ND03052 (unaffected relative IV-1 from

GWENT#1), and ND03053 (unaffected relative III-9 from GWENT#1), as well

as a fibroblast cell line (Finnish sample ALS50), was performed using Alexa

fluor 488-labeled GGCCCCGGCCCCGGCCCCGGCC oligonucleotide probe

(Eurofins MWG operon, Hunstville, AL, USA) designed against the repeat

expansion. The hybridization was performed in low-stringency conditions

with 50% Formamide/2xSSC/10% Dextran Sulfate codenaturation of the

slide/probe, 1 hr hybridization at 37�C, followed by a 2 min wash in

0.43SSC/0.3% Tween 20 at room temperature. Slides were counterstained

with DAPI. FISH signals were scored with a Zeiss epifluorescence microscope

Zeiss Axio Imager-2 (Carl Zeiss Microimaging LLC, Thornwood, NY, USA)

equipped with a DAPI/FITC/Rhodamine single band pass filters (Semrock,

Rochester, NY) using 40–603 objectives.

RNA Expression

Expression profiling on Affymetrix GeneChip Human Exon 1.0 ST Arrays

(Affymetrix, UK) was performed on CNS tissue obtained from 137 neurologi-

cally normal individuals at AROS Applied Biotechnology AS company labora-

tories (http://www.arosab.com/) (Trabzuni et al., 2011). Gene-level expression

was calculated for C9ORF72 based on the median signal of probe 3202421.

Date of array hybridization and brain bank were included as cofactors to elim-

inate batch effects.

For RT-PCR, RNA was extracted from brain tissue using Trizol (Invitrogen,

Paisley, UK), and first-strand cDNA was synthesized using random primers

using the Superscript II cDNA Synthesis Kit (Invitrogen). Real-time PCR anal-

yses for C9ORF72 and GAPDHwere performed using the ABI 7900 Sequence

Detection System instrument and software (Applied Biosystems). Samples

were amplified in quadruplicate in 10 ml volumes using the Power SYBR-green

master mix (Applied Biosystems), and 10 pM of each forward and reverse

primer (see Supplemental Experimental Procedures online for primer

sequences), using Applied Biosystems standard cycling conditions for real

time PCR (initial denaturation at 95�C for 10 min, followed by 40 cycles of

95�C for 15 s, 60�C for 1 min).

Immunocytochemistry

Cells were fixed with ice-cold methanol for 2 min and blocked with 10% FBS

for 30 min at 37�C. Primary antibody (anti-C9ORF72 antibody by Santa Cruz,

sc-138763, 1:30) and secondary antibody (Alexa488-conjugated anti-rabbit

antibody by Invitrogen, 1:200) were diluted in 5% FBS and incubated at

37�C for 3 hr or 30 min, respectively. The cells were then treated with 5 mg/

ml of Alexa633-conjugated wheat germ agglutinin (Invitrogen) in PBS for

10 min at room temperature (to detect cellular membranes), followed by incu-

bation with 2 mg/ml propidium iodide (Invitrogen) in PBS for 3 min (to stain the

nuclei). The cells were imaged with a TCS SP2 confocal microscope (Leica).
SUPPLEMENTAL INFORMATION
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