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1. INTRODUCTION 

In this paper we will assume the following framework. There is a finite 
state set I, with i E Z as its generic member, 1 < i < m. For each ie Z, there 
is a finite action set K(i), with k E K(i) as its generic member. For each i E Z, 
k E K(i), there is a transition probability, p(i, j, k), that if at a decision 
epoch the state is i E Z, and if action k E K(i) is taken, then the state will be 
Jo Z at the next decision epoch, and there is an immediate reward, r(i, k), 
with 0 < r(i, k) < M < co, there is a discount factor r in the interval [0, p], 
for some fixed p < 1. We will be interested in values of z within this range, 
and we will parameterize r by a parameter t E [0, 11, so that r = TV. The 
actual values of t to be studied will depend upon the questions we may 
wish to answer and how these might efficiently be answered. 

A pure Markov decision rule is a function 6: I+ K = lJie, K(i), where if 
i E Z then 6(i) E K(i). We will be concerned with maximizing the infinite 
horizon discounted rewards, and we do not need to consider either time 
dependent decision rules, or those which are a function of the complete 
history of the process up to a specified decision epoch or decision rules 
which select an action with a specified probability (see van der Wal [4]). 
A general policy n is an infinite sequence of decision rules which determine 
an action at each decision epoch, as a function of the past history, with 
some probability. In the light of the previous remark we need only consider 
policies of the form 7c = (~5)~, where 6 E A, the set of pure Markov decision 
rules, and (~3)~ simply means the application of 6 an infinite number of 
times. 

If o,(i) is the maximum infinite horizon expected discounted reward, with 
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discount factor r = tp, beginning in state i E I, then u, : I+ R is a unique 
solution to the following functional optimality equation (see White [7]), 

where 

CT,u,l(i) = k;;;j CT;ku,l(i) 

CT:yl(i) = 46 k) + Q c Ai, A k) y(j) 
jel 

for all y: I + R. 
We write the above optimality equation in the following form 

u, = T,u, = yEa; [ Tfu,] = 7:; [rs + tpP%,]. 

In addition, all optimal pure Markov policies rc are of the form x = (~5)~ 
where 

6(i) E arg max [ [ Tfv,](i)], 
6EA 

where, in the case of multiple arg max solutions any arg max solution may 
be chosen. 

The motivation for this paper comes, to some extent, from the paper by 
Smallwood [3]. In that paper a method is given for finding optimal 
policies for the whole range of r values in the set [0, 11. Broadly speaking 
that paper proceeds by finding critical r values where there is a change in 
optimal policy for some state ie I. Policies will be optimal for a set of (not 
necessarily adjacent) closed intervals of [O, 11, and Smallwood’s procedure 
generates these closed intervals. 

In this paper we will adopt a different, exploratory approach which 
relates u, to u,+,, where (T may take any value in [0, 1 - t), but where the 
computational schemes may be more profitably used if CJ is small. 

We emphasize the exploratory nature of the paper since, although 
algorithms are specified, and their properties examined, it is by no means 
conclusive that the procedures suggested will turn out to be efficient. 
Nonetheless it does present ideas which might profitably be explored in 
more detail at a later stage. 

In the next section we will present various algorithms and their 
convergence properties. There are two objectives in mind, viz, 

(a) to find approximations for Y[ over the range [0, 11; 
(b) to find approximations for u,+, when u, is given. 
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In the analysis (T may take any value in the range [0, 1 - t) (for t + a) 
and we may also consider all values of ta for 0 6 t 6 l/a. When CJ is small 
then we will get better approximation results. 

Algorithms Al, A2 will be aimed at objective (a), and algorithms Bl-B3 
will be aimed at objective (b). 

2. ALGORITHMS 

First of all we present an elementary result which will be required for 
some of the future analysis. Throughout this paper IIxII, for x E R”, will be 
the maximum norm. 

R.l. O<a<l-t: O<u,+,-o,<(op/(t-(t+a)p)) IIu,ll. 

Proof Let 6, arg maxdsd [T’o,]. Then 

U 1+0- u,= T f”;v,+,- Tf’vl 

2 T;!+,u,+,- Tf’ut 

= cI.pP%l,+~ + tpPaqvl+g - v,). 

Hence 

V *+~-V,~ap(l,-tpP6’)-’ P%I+,>o 

when Z, is the mth order identity matrix. Also 

Hence 

V t+Cl = v, < T:;;u,+ ~ - Tfr+w, 

= apP 6t+“v,+ (t +a) pP;;‘;(v,+.-v,). 

V ,+,-u,+Jp(zm-(t+a)pP6”~)-’ P6t+vI. 

The requisite result now follows. 1 

Let us now consider our algorithms, noting that Algorithms A. 1 and A.2 
are aimed at objective (a) of Section 1. 

ALGORITHM A.1 

(i) Set t=O, w,=v,; 
(ii) Stop if t = 1, and otherwise go to (iii); 
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(iii) Find 

z ,+2=-gmax CTB+PJ; 
664 

(iv) Solve the following equation for IV,+,: 

wt+n= T:;‘;w,+,; 

(v) go to (ii). 

We then have the following result. 

R.A.l. (i) 0 < u,+.--ww,+, s (t+fJ)p II(u,--w,)II + ((t+a)/(l- 
(t+a)p) Ibtll,for OGt<l--o; 

(ii) O<u-~~(p~M/(l--p)~)(l-p~)/~ where u=ul, w=wl, 
s = l/a; 

(iii) O<u *+I3 -w ,+,~(p(t+a)/(l-p(t+o))) lIw,+,--,I1 for OG 
t<l-0. 

ProoJ: For 0 <g < 1 - t we have the following: 

By definition 

Clearly we have 

Hence 

Hence 

W t+CT- w, = T:;+;w,+, - T;‘w, 

= (T:;‘;w,+,- T;‘;;w,) 

+ ( T:;‘;wt - T;;,w,) 

+ (T:; gwt - T;‘w! 

=A+B+C,say. 

B= T:;‘;w,- T:;,w, 

= T,+,w,- T:;,w,>O. 

c = opP’w, 2 0. 

W 1+LT- w, 2 T:;+;w,+, - T;T;w,. 

=(t+d)pPr’+qW,+o-w,). 

(Z, - (t + a) pPr’+o)(wt+n- w,) 20. 
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Hence 

Let us now consider u, + Q - w,+ ,,. We have 

V I+0 -wt+o = T,+,v,+,- F’+“wr+o t+0 

= (T,+,v,- T,+,w,) 

+ (Tt+st+,- Tt+ouO 

+ (T;;C;w,- T:;+;w,+,) 

=A+B+C,say, 

after noting that Tt+c w, = T:;‘;wt by definition. 
Since w,+ ~ , > wr, we see that Cd 0. Then using result R.l we obtain the 

following, after noting that, clearly, v, + D 2 w, + U : 

ut+lJ -w,+,~((t+a)~)(max,.,Cp~(v,- W,)l +maxgEd[PG(vt+~--,)l. 

The requisite result (i) follows from this and result R.l. 
For part (ii) of the result, we note that, since 0 < t + G d 1, we have the 

following: 

Then, if t = SG’, we obtain the following: 

O~u,-w,d(p2M/(l -p)3)(1 -p”)/s. 

This is the requisite result (ii). 
For result (iii) we slightly change the approach in (i). We have the 

following: 

O~v,+,--w,+,=T,+,v,+,-Tl+,w,+, 

6 Tt+ov,+,- Tt+,w, (since w ,+,72w,) 

= T,+,v,+,- T,+,w,+,+ T,+ovt+a- T,+,wt 

6 (t+cr)p(~~a~CP6(u,+D-~1+0)1 +yf; CP6(w,+m-wJ1. 

Hence 

<p(t+a)max [(Z,-(t+o)pP-‘max [P’(w,+,-w,)]]. 
bEA ?EA 

This gives the requisite result (iii). 1 
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It is to be noted that the error bound in (ii) is a “prior” bound, 
calculated in advance of the actual results, whereas (iii) is a “posterior” 
bound, calculated as the actual results are obtained. 

Algorithm A.l. has a “policy space” component in step (iv). The next 
algorithm is a form of the “successive approximations” algorithm and 
contains no policy space iteration. 

ALGORITHM A.2 

(i) Set t=O, and u,=u,; 
(ii) stop if t = 1, and otherwise go to (iii); 

(iii) find 
24 t+o= T,+,u,; 

(iv) go to (ii). 

We then have the following result. 

R.A.2. (i) O<u,+,-u ,+,~((t+o)pl(l-(t+a)p)) IJut+.--u,II for 
O<t<l-a; 

(ii) 0 < u - 2.4 d (s!(p/s)‘+ ‘/( 1 - p))(C”,;A (s - z)(p/s)-‘/z!) M, where 
u=u1, u=u1, s= l/C 

Proof: For t + c < 1 we have the following. Let h+,E 
arg maxbEd [ Tf+,u,]. Then 

V I+0 -U f+o~(f+~)PPll’+O(vt+,-u*) 

3 (t + ~)pP~'+"(v,- u,) 

since, clearly, 0, + d 3 u,. Repeating the argument, and since v,, = u,,, we see 
that 

v, 2 u, for all t. 

We now obtain the reverse inequality as follows. Let 

6 ,+.=witmax CC+.v,+J. 
6EA 

Then 

u,+o -u t+~~(t+~)pPSf+‘(ut+~--,) 

=(t+~)PP6,+.(u,+,-U,+o) 

+(t+o)pP6'+'(ut+o-uUr). 
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Hence 

V 1+0 -u r+aG(f+a)P Ilu,+,-u,lll(l-(t+a)P). 

Thus result (i) is established. 
Now 

U,+,-uU,~(t+a)pP~‘U,-tpP~‘u,+. 

2 appyu, - u, - ,). 

Repeating the process, since pLo > pO, for all t we see that U, + LI 2 u,. We 
may now obtain a reverse inquality as follows: 

UI+,-u,~(t+a)pP~~+~ut-ftpP~‘u,-d 

= tpP-(#,- u,-,) + apP~‘+“u,. 

Hence 

Putting t = sa, we have the following: 

lb r+a-d G.4 (wY+’ C ,I, 5 Il%coll. 

Now 

II~kaII < IMI +kv lIq~~)~ll. 

Repeating this process we obtain the following: 

Ihll dk! (ffi) Iboll. 

Hence 

IIU t+o-u,lI Qs! tap)“+’ 

Hence, with t = sa, we obtain the following: 

Ilo 
((s+l)! (ap)“+2 

(s+ lb -“(s+l)oll’ (I-(s+l)ap) “uo”* 
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. 

This gives the requisite result (ii) when u = l/s. 1 

The bound given in (ii) is quite complicated, and it is also difficult to see 
how it varies as s increases (a decreases). At the very least, it should tend 
to zero as s tends to infinity. 

From the analysis, an upper bound is as follows: 

o<v-u<((t+a)pj(l-(t+a)p)s! (p/s)“+’ kco W-*lk!) IIvIL 

We may use Stirling’s formula (see Feller [ 1, p. 50]), 

s! = (1 + .s(s))(27r)“’ ss+ 1’2e-s, 

where E(S) tends to zero as s tends to infinity. Then we have the following: 

O,<u--u< (2~)“~ ((t+a) p’/(l -(t +a) p)) ljvjl s-1’2eCses(l +E(s)) 

=(2n)“2((f++?/(1-(t+.)p)(l-p))M(1+&(S))S~1’2. 

The right hand side of this inequality tends to zero as s tends to co. For 
sa 10 (see Feller [l, p. SO]), Is(s)1 < 8 x 10e3. 

The error bound in (i) is a “posterior” bound and that in (ii) is a “prior” 
bound. 

It is natural to examine whether or not U, is greater than or equal to v,. 
The following result holds. 

R.A.112. 0 < t < 1: w, 2 u,. 

ProoJ We have the following for 0 < t < 1 -CT, 

u,+,= Tt+,ur 
W 1+0= Trf+nw,+,, *+0 
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where r ,+aEarg maxsGA [Pw,]. Then 

wt+, -u,+,=T:‘:~w,+.-TI+.ut 

3 T:‘::w,- Tr+st 

= Tt+.w,- Tt+uut 

>Oifw,>,u,. 

Since w0 = uO, the requisite result follows. 1 

We now deal with algorithms for objective (b) in Section 1. The first one 
is the standard successive approximations algorithm (e.g., see White [7]). 

ALGORITHM B.l 

(i) let n = 0 and u,,~+~ = II,; 
(ii) if n = N, stop, and otherwise go to (iii); 
(iii) find 

V n+l,r+a= Tt+oc,,r+,. 

We then have the following result. 

R.B.l. n > 1: 

0) O~~VL+~-~n,t+a <((t+a)pl(l-(t+a)p)) Il~“,r+o-L1,t+oll~ 
(ii) O<u *+0 --v .,,+,~((t+a)p)“Opl(l-(t+a)p)) Ilutll. 

Proof We have the following. l<n<N. Let Y~+~ E 
argmax,.. CT~+,~n,,+,l. Then 

vt+, -v .,t+c,a T;+P,+,- Ty~+o~,-~,,+o 

=(f+(T)pPY’+u(~r+o-~n~l,r+a). 

Now 

U1,1+0 -~o,r+o=T,+.u,-0, 

3 T,v, - II, = 0. 

Hence 

v ,-co av?l,,+,. 
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Similarly we have the following, Let 61+o E arg max [ Tf+,o,+ ,I. 
dEA 

Then 

v I+0 -v n,f+o < T;;‘;v,,, - T61+av t+o n-l,f+o 

=(t+a)P (p61+u(v1+,--U,,t+,)+P6f+“(vn,1+~-V,-l,r+a)). 

Hence 

This gives result (i). 
Using a similar analysis we have the following: 

o<v,+,-v “,r+~~(t+~)PPG~+u(v,+~-v,-l,r+~). 

Also 

v1,t+o - Vo,t+o - - Tt+,v,-0, 

Q rspP6"+"vr. 

Result (ii) then follows. 1 

Error bound (i) is a “posterior” bound and error bound (ii) is a “prior” 
bound. 

The next two algorithms contain a policy space step which is similar to, 
but not identical with, that in White et al. [S]. There is also a similarity to 
the successive over relaxation method, which is policy space oriented (see 
White [9]). 

ALGORITHM B.2 

(i) Setn=Oandv’ t+CI= v,; 
(ii) if n = N stop, and otherwise go to (iii); 

(iii) solve the following equation for vale : 

where 
for y:Z+R” 

CT,,, rl(4 = max Cd& k) + v$+, + WI 
ksK(i) 
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which may be written as 

Tr,n y = max [r’ + 6pu;+, + tpy]; 
664 

(iv) go to (ii). 
We then have the following result. 

R.B.2. n 3 1. 

0) OGu,+,--v:+, ~(a(t+a)p2/(1-(t+o)p)) II~:+cT-~:~~II; 
(ii) O<u,+,-u;+. d (w/(1 - WI)” (f-v/(1 - (t+ a) p)) IIv,II. 

Proof. Let d,+oEarg maxgEA [rt,P,u:+,]. Then 

U lfC7 -v:+,~Tflc+~v,+o-T~,f’lu:+, 

=apP”‘+$l,+,-v;;J)+ tpP~‘+“(v,+O-v;+o). 

Hence 

V I+0 -u:+CJ 0 >up(l,- tpP~f+y P”““(U,+,-fly;;). 

Now 

0 f+O -vs)+o=v,+o-vI~o. 

Hence, repeating the above procedure we obtain 

U *+02c+,. 

With a similar analysis we may obtain reverse inequalities as follows: 

Hence 

O~v,+.-u~+,~op(l,-tpP6’+“)-’ Pst+c(v,+a-V:+o). 

Repeating this analysis we obtain the following: 

OGv,+,-vu:+, 6 (w/(1 -w))” IIvf+cT- v,ll 

< (v/(1 - tp))” (Ml - (t + 0) P)) Ilutll. 

This is result (ii). 
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We similarly have the following: 

Hence 

O~v,+,-vu:+, < (t + a) p(Z, - (t + a) pP6’+y1 (apP6”c(v:+c- v:;;,,. 
Repeating this analysis gives results (i). 1 

The error bounds given in (i) are “posterior” bounds and those in (ii) are 
“prior” bounds. 

Algorithm B.3. reverses the roles of t and CJ and the results are similar. 

ALGORITHM B.3 

As for Algorithm B.2, but replacing Tkn by Ttn where 

T,,, y = max [r” + tpP%:+ ~ + opPsy]. 
bEA 

The sequence {v: } will be replaced by (0”: }. 
The following result is obtained by an automatic application of result 

R.B.2. 

R.B.3. n 2 1: 

(i) 0 Go,+, -v”:+. ~(t(t+P)P2/(1-(f+.)P)) IF:+.-v”:;bII; 
(ii) O<v,+,-u”;,, G (w/(1 - w))” (v/(1 - (t + 0) PI) llvtll. 

The significance of the difference between Algorithms B.2 and B.3 lies in 
the use of these when g is small with respect to t and the convergence rates 
are different. However, the policy space phases (iii) also have different 
effective discount factors. We will return to these later on. 

Finally let us derive some results comparing { v,,~+~}, (II:+,}, and 
{C:+ ,}. These are as follows. 

R.B.11213. 1 <n <N: 

6) V:+,~V,,,+,; 

(ii) C,, 2 v,,,+,; 
(iii) v:+ ~ > v”;, ~ if and only if t 2 c. 
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Proof: (i) l,Bn<N-1: 

Now 

V 
n+l 
1+0 -V n+ l,t+a = Tt,nv::b - T,+ovv+o 

a T,,.v:+,- Tt+ovw+o 

2 (t+4 P min Cp6(v:+~-~n,,+J1. 
6tA 

vy+,=v o,t+a = 0,. 

Hence the requisite result (i) follows by induction. 
(ii) This follows in the same way as for (i). 
(iii) We see that the following is true. 

v:+ CT = yl:; [(Z, - appy (r6 + apv:;;)] 

-n 
V ,+o=yEa; [(Z,-apP6)p1 (r’+fpC:+~)], 

Now v~)+~=v;+~= v,. Let t B a. Assume that v:;b > 6:;:. Then 

= $; [ f. (adtp)” - @(ap)“)(P6Y fi:‘;i] 

=rm; 
[ 

at f ,‘+‘(t’~l-a’~l)(Pa)Sv:r~ 
s=O 1 

Hence the requisite result (iii) follows, noting that if t 6 a a similar 
analysis will apply. 1 

3. DISCUSSION OF ALGORITHMS 

It should be emphasized that this is an exploratory paper whose purpose 
is to examine the properties of various algorithms for solving infinite 
horizon discounted Markov decision process problems for specified sets of 
discount factors. A more detailed consideration of the computational com- 
plication will be necessary before the effectiveness of any can be established. 

The same theme governing all the algorithms is that of being able to use 
computational information from the approximate solution to a problem 

409/141/2-2 
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with discount factor TV to facilitate the computation of an approximate 
solution to a problem with discount factors (t + C) p. In some cases c may 
be small with respect to t, and one would expect good approximations. In 
others rr may not be small with respect to t, but the separation of (t + 0) p 
into tp and op produces two smaller discount factors, which may lead to 
faster convergence rates of the algorithms. 

Algorithms Al and A2 give schemes for solving problems over a whole 
interval [0, p] of discount factors, with p being specified in advance. The 
schemes are clearly extendable to a more general range [p, p] if required. 

Algorithm Al might be of some use for actually solving a problem with 
discount factor p by a series of successive approximations, but with the 
succession being along the discount factor scale. The standard successive 
approximation algorithm (see White [7]) has an error bound proportional 
to pS (for s iterations); whereas the Algorithm Al has an error bound 
proportionai to l/s. For some cases Al will be better, but this is likely to 
be for small s values. It is to be noted that the bound in (ii) of result R.A.l 
is a crude bound, and a better bound is obtainable by a more detailed 
evaluation of results R.A. 1 (i). 

Result R.A.l(iii) allows us to stop calculations at any stage when the 
current value of IIw,+, - w,I] is small enough. 

For Algorithm Al there is the “policy space” step (iii). This requires 
more time than a standard successive approximation step, which may make 
the algorithm unattractive for solving a specific problem with discount 
factor p. 

Algorithm A2 is clearly of little use to solve a specific problem with dis- 
count factor p, since the standard successive approximation procedure, for 
the same number of iterations, will always produce higher value functions. 
For the purpose of approximating the solution to all problems with 
discount factors in the range [0, p], for the same number of iterations, as 
for Algorithm Al, each iteration is easier, but this may be offset by the fact 
that Algorithm Al produces a dominating sequence of value functions (see 
Result R.A.1/2). Also, as explained after the proof of Result R.A.2, for large 
s values the approximate asymptotic bound calculated for Algorithm A2 is 
inversely proportional to C2, and not to s as is the case with Algo- 
rithm Al. 

Result R.A.2(i) allows us to stop calculations at any stage when the 
current values of IIu~+~ - u,(] are small enough. 

Algorithm Bl-B3 are aimed at approximating u~+~, given u,. The con- 
vergence rates for these algorithms are, respectively, (t + a) p, op/( 1 - tp), 
tp/( 1 - ap). If c is small enough then Algorithm B2 has the faster 
convergence rates, and its value function sequence dominates those of 
Algorithms Bl and B3 (see Result R.B.l/2/3(i), (iii)). However, the policy 
space step (iii) can be time consuming, and some attention to finding 
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suitable approximation schemes for the step is required. The effective 
discount factor (ap) for Algorithm B3 at the policy space step is, for small 
cr, lower than that for Algorithm B2 (tp) and this may lead to easier 
approximation schemes, based, perhaps, on successive approximations. 

Even when 0 is not small with respect to t there may be some advantage 
in using Algorithms B2 or B3. For example, if o = t = 1, then the con- 
vergence rates of the algorithms (at each iteration) Bl-B3 became respec- 
tively p, $/( 1 - ip), fp/( 1 - $p), and the latter two are always faster. The 
policy space steps of Algorithms B2 and B3 still pose problems, but again 
their effective discount factors (for the policy space step) are tp and ap, 
respectively. 

Finally, the sequences {u,} (Algorithm A2), { u,,~) (Algorithm Bl) do 
not, except perhaps accidentally, correspond to the value functions for 
a policy. However, these may be used to generate approximate value 
functions which do; e.g., see Porteus [2] and White [6, 83, where, in the 
case of White [6], errors in discount factors are studied. 
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