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Abstract

The cycling operation is a special kind of conjugation that can be applied to elements in Artin’s braid groups, in order to
reduce their length. It is a key ingredient of the usual solutions to the conjugacy problem in braid groups. In their seminal paper
on braid-cryptography, Ko, Lee et al. proposed the cycling problem as a hard problem in braid groups that could be interesting for
cryptography. In this paper we give a polynomial solution to that problem, mainly by showing that cycling is surjective, and using a
result by Maffre which shows that pre-images under cycling can be computed fast. This result also holds in every Artin–Tits group
of spherical type, endowed with the Artin Garside structure.

On the other hand, the conjugacy search problem in braid groups is usually solved by computing some finite sets called (left)
ultra summit sets (left-USSs), using left normal forms of braids. But one can equally use right normal forms and compute right-
USSs. Hard instances of the conjugacy search problem correspond to elements having big (left and right) USSs. One may think
that even if some element has a big left-USS, it could possibly have a small right-USS. We show that this is not the case in the
important particular case of rigid braids. More precisely, we show that the left-USS and the right-USS of a given rigid braid
determine isomorphic graphs, with the arrows reversed, the isomorphism being defined using iterated cycling. We conjecture that
the same is true for every element, not necessarily rigid, in braid groups and Artin–Tits groups of spherical type.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Braid groups [3] were related to cryptography in two independent seminal papers [2,21]. In both papers, the security
of the proposed cryptosystems relied on the presumed difficulty of some problems in non-commutative groups, namely
the conjugacy search problem (CSP) and the multiple simultaneous conjugacy problem (MSCP). The papers proposed
Artin braid groups as good candidates to implement these cryptosystems, and a lot of literature has been produced on
this subject since then; see for example [13] for a survey. The results in this paper refer to braid groups as the main
example, but some of them also hold in other instances of so-called Garside groups [11,12]. Garside groups are a
family of groups sharing some basic algebraic properties with braid groups, which in particular contains all Artin–Tits
groups of spherical type.
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It seems clear that the main objection to the above cryptosystems, either in braid groups or in other groups, is the
choice of keys. If one just chooses public and secret keys at random in a braid group, with given parameters such as
length or number of strands, none of the above cryptosystems can be considered to be secure. It is hence crucial to be
able to choose hard instances that resist all known attacks.

There are other presumably hard problems in braid groups that have been proposed as being possibly interesting
for cryptography. In [21], the cycling problem, among others, was suggested. It can be explained as follows. In braid
groups one has a well-known left normal form, that is, a unique way to write a braid on n strands x ∈ Bn as a product
x = ∆px1 · · · xr , where ∆ is the Garside element, the half-twist, and each xi is a simple braid. This normal form
will be explicitly defined later. If we define the initial factor of x as ιL(x) = ∆px1∆−p for r > 0, and ιL(x) = 1
for r = 0, then one has x = ιL(x)∆px2 · · · xr . The left cycling of x is defined to be the conjugate of x by its initial
factor. That is, cL(x) = ∆px2 · · · xr ιL(x). The same definition makes sense in every Garside group.

The cycling problem asks, given an element y and a positive integer t such that y is in the image of ct
L , to find an

element x such that ct
L(x) = y.

In this paper we will show that the cycling problem has a polynomial solution. Namely, it was shown in [24] that
the cycling problem for t = 1 has a very efficient solution. That is, if y is the cycling of some element, then one can
find x such that cL(x) = y very fast. In the first part of this paper we will show the following result, which holds for
all Garside groups satisfying some additional condition. In particular, it holds in every Artin–Tits group of spherical
type (which in particular includes the braid groups) endowed with the Artin Garside structure.

Theorem 1.1. If G is a Garside group which is atom-friendly (on the left), then cL : G → G is surjective.

As an immediate corollary, a solution to the cycling problem is just given by applying t times the algorithm in [24].
This clearly gives a polynomial solution to the cycling problem, since the algorithm for t = 1 given in [24] is
polynomial.

The proof of Theorem 1.1 makes use not only of left normal forms, but also of right normal forms of elements. We
shall see that, under certain conditions, a pre-image of x under cycling, defined using left normal forms, is precisely
the “cycling” of x defined using right normal forms. This shows that left and right cyclings, cL and cR , are closely
related.

In the context of the conjugacy problem in Bn , the cycling operation is mainly used to find simpler conjugates of
a braid, and also to compute finite sets which are invariants of conjugacy classes and allow us to solve the conjugacy
problem. One such set is the ultra summit set USS(x) of a given braid x . One usually defines this set by using left
normal forms, but it is equally possible to define it using right normal forms, hence one actually has two finite sets
associated to x , which we denote by USSL(x) and USSR(x).

The algorithmic solution to the conjugacy search problem in braid groups (and in any Garside group) developed
in [18] relies on computing ultra summit sets. Hence, braids having small ultra summit sets are not hard instances
for the conjugacy search problem. This means that if one wants to find a good key for a cryptographic protocol, one
needs to choose a braid with a large ultra summit set. But we have seen that there are two kinds of ultra summit sets,
USSL(x) and USSR(x), so the question arises of whether one of them can be large while the other one is small.

On the other hand, there are three geometric kinds of braids: periodic, reducible and pseudo-Anosov [10]. The
conjugacy search problem for periodic braids is solvable in polynomial time [8]. Reducible braids are those which can
be decomposed, in some sense, into braids with fewer strands. There are algorithms to find this decomposition [4],
see also [23], although they are not polynomial. Nevertheless, in most cases the decomposition can be found very fast,
and the conjugacy problem is split into several conjugacy problems on fewer strands. Hence, it would be desirable to
know pseudo-Anosov braids whose ultra summit sets are large.

One can solve the conjugacy search problem for pseudo-Anosov braids using rigid braids (these will be defined
later): It is shown in [19] that the conjugacy search problem for two pseudo-Anosov braids x and y is equivalent to the
same problem for xm and ym , for every non-zero integer m. Moreover, in [6] it is shown that every pseudo-Anosov
element which is contained in its ultra summit set, has a small power which is rigid (we will be more explicit in
the next section). Therefore, one just needs to care about rigid braids. So the above question is transformed into the
following: if x is a rigid braid, is it possible that USSL(x) is large and USSR(x) is small, or vice versa? The answer is
negative, and it is given by the following results.
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Theorem 1.2. Let x ∈ Bn such that y ∈ SSS(x) is a braid with canonical length `(y) > 1. Then x is conjugate to a
left rigid braid if and only if it is conjugate to a right rigid braid.

In the above case, we will show that we have #(USSL(x)) = #(USSR(x)). Moreover, if the canonical length of
y ∈ SSS(x) is equal to 1, we also have #(USSR(x)) = #(USSL(x)), since cycling of elements of canonical length 1
is trivial, whence USSL(x) = SSS(x) = USSR(x). (As y is assumed to be rigid, we have `(y) > 0 by definition.)
Therefore, if one is able to find a rigid braid x such that USSL(x) is large, the same is true for USSR(x), so the
conjugacy search problem will be equally difficult, regardless of whether one uses left or right normal forms.

Moreover, we will show that the relation between USSL(x) and USSR(x) is deeper than just both having the same
number of elements. In order to compute USSL(x) using the algorithm in [18], one actually computes a directed
graph, which we will denote by USGL(x) (left ultra summit graph of x). The vertices of USGL(x) correspond to the
elements of USSL(x) and the arrows are labelled by simple braids, in such a way that there is an arrow labelled by s
going from u to v, if and only if s−1us = v. In the same way, one can define USGR(x), where in this case the vertices
correspond to elements in USSR(x) and there is an arrow labelled by s going from u to v, if and only if sus−1

= v.
We will denote by USGR(x)op the directed graph which is isomorphic to USGR(x) as a (non-directed) graph, but with
the arrows reversed. The result that compares the graphs USGL(x) and USGR(x) is the following:

Theorem 1.3. Let x ∈ Bn be conjugate to a left rigid braid y with canonical length `(y) > 1. Then USGL(x) and
USGR(x)op are isomorphic directed graphs.

Remark 1.4. We recently learnt from Jean Michel, François Digne and David Bessis, that USGL(x) (and thus
USGR(x)) are Garside categories. In this context, the notation USGR(x)op makes sense, since it refers to the opposite
category. In this language Theorem 1.3 says that USGL(x) and USGR(x)op are isomorphic Garside categories. In
other words, there exists a contravariant isomorphism from USGL(x) to USGR(x).

This paper is structured as follows: In Section 2 some basic notions of braids and Garside theory are recalled.
Specialists in Garside theory may skip this section and go directly to Section 3, in which Theorem 1.1 is shown. The
proofs of Theorems 1.2 and 1.3 are given in Section 4.

2. Basic ingredients of Garside theory

In this section we will explain the notions and results that will be used throughout the rest of the paper. Namely,
we will briefly describe the basic ingredients of the Garside structure of braid groups. In general, a Garside group
is a group satisfying the structural properties defined in this section, and the main examples are braid groups and
Artin–Tits groups of spherical type. For a short introduction to Garside theory, with a precise definition of a Garside
group, see [6].

The braid group on n strands Bn can be defined by its well-known group presentation [3]:

Bn =

〈
σ1, . . . , σn−1

∣∣∣∣σiσ j = σ jσi , if | j − i | > 1
σiσ jσi = σ jσiσ j , if | j − i | = 1

〉
. (1)

If we consider the above as a monoid presentation, this defines the monoid B+n , called the monoid of positive braids.
Garside [17] showed that B+n embeds into Bn , so the elements of B+n can be seen as the braids in Bn that can be written
as a word which only contains positive powers of the generators. There is a special positive element, called half-twist
or Garside element, defined by ∆ = σ1(σ2σ1) · · · (σn−1 · · · σ1). Artin [3] showed that the centre of Bn is the cyclic
subgroup generated by ∆2. In general, every Garside group G has a distinguished monoid G+ of positive elements
which embeds into G, and a special Garside element, also denoted by ∆, which has a central power ∆e. Conjugation
by ∆ is an inner automorphism which preserves the set of positive elements; we denote this automorphism by τ .

In a Garside group G, for example G = Bn , one can define two partial orders, related to left and right divisibility,
respectively. Namely, given a, b ∈ G we say that a 4 b if a−1b ∈ G+, that is, if ap = b for some positive element
p. We then say that a is a left-divisor, or a prefix of b. Similarly, we say that a < b if ab−1

∈ G+, that is, if a = pb
for some positive element p. In this case we say that b is a right-divisor, or a suffix of a. In general, a 4 b does not
imply b < a or vice versa. But notice that G+ = {p ∈ G : 1 4 p} = {p ∈ G : p < 1}.
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Each of the above partial orders defines a lattice structure on G. This means that given two elements a, b ∈ G,
there exist a unique greatest common divisor (gcd) a ∧L b and a unique least common multiple (lcm) a ∨L b with
respect to the left divisibility relation 4, and also a unique gcd a ∧R b and a unique lcm a ∨R b with respect to the
right divisibility relation <.

In Bn , the generators σ1, . . . , σn−1 are called atoms. In general, in a Garside group, an atom is a non-trivial positive
element that cannot be decomposed as a product of two non-trivial positive elements. The set of atoms is preserved
by the inner automorphism τ . In the particular case of Bn and of Artin–Tits groups of spherical type in their Artin
Garside structure, the Garside element ∆ is the (left and right) least common multiple of all atoms. This is not true
in general for other Garside groups, and this is one of the reasons why the proof of Theorem 1.1 above cannot be
generalised to every Garside group.

Several normal forms for elements of braid groups or Garside groups have been defined. We will focus on
the one defined independently by Adyan [1], Deligne [14], Elrifai–Morton [15] and Thurston [16], which is an
improvement of the one used in the solution to the word problem in Bn given by Garside [17]. We say that an
element is simple if it is a positive prefix of the Garside element ∆. It is well known that this is the case if and
only if the element is a positive suffix of ∆. The set S of simple elements of a Garside group G is then given by
S = {s ∈ G : 1 4 s 4 ∆} = {s ∈ G : ∆ < s < 1}. The set of simple elements is preserved by the inner
automorphism τ .

Definition 2.1. Given two simple elements s, s′, we say that the decomposition ss′ is left-weighted if s is the maximal
simple prefix of ss′, that is, if s = (ss′)∧L ∆. Similarly, we say that ss′ is right-weighted if s′ is the maximal simple
suffix of ss′, that is, if s′ = (ss′)∧R ∆.

For a simple element s we call ∂(s) = s−1∆ the right complement of s. Note that as 1 4 s 4 ∆ and s ∂(s) = ∆,
the element ∂(s) is simple. Hence, this defines a map ∂ : S → S on the set S of simple elements. As we have
∂(∂(s)) = ∆−1s∆ = τ(s) for any simple element s, the map ∂ is a bijection on S which satisfies ∂2

= τ . We
similarly define the left complement of s as ∆s−1

= ∆∂(s)∆−1
= τ−1(∂(s)) = ∂−1(s).

The right (resp. left) complement of s is the maximal element with respect to 4 (resp. <) with which s can be
multiplied from the right (resp. left) such that the product remains simple. Observe that, given two simple elements s
and s′, the product ss′ is left-weighted if and only if there is no prefix t 4 s′ such that st is simple, or in other words,
such that t 4 ∂(s). Hence ss′ is left-weighted if and only if ∂(s)∧L s′ = 1. Similarly, ss′ is right-weighted if and only
if s ∧R ∂

−1(s′) = 1.

Definition 2.2. Given an element x of a Garside group G, its left normal form is the decomposition x = ∆px1 · · · xr ,
satisfying the following conditions:

(1) p ∈ Z is the maximal integer such that ∆−px is positive.
(2) xi = (xi · · · xr )∧L ∆ 6= 1 for i = 1, . . . , r .

In other words, each xi is a proper simple element (different from 1 and ∆), and it is the maximal (with respect
to 4) simple prefix of xi · · · xr . It is well known that left normal forms can be recognised ‘locally’. This means
that ∆px1 · · · xr is in left normal form if and only if each xi is a proper simple element and xi xi+1 is left-weighted
for i = 1, . . . , r − 1. The left normal form of x exists and it is unique. The integers p and r as above are then
uniquely determined by x , whence we can define the infimum, supremum and canonical length of x , respectively, by
inf(x) = p, sup(x) = p+r and `(x) = r . This terminology is explained by noticing that p and p+r are, respectively,
the biggest and the smallest integers such that ∆p 4 x 4 ∆p+r , which is usually written x ∈ [∆p,∆p+r

], or simply
x ∈ [p, p + r ]. The canonical length r is just the size of this interval, which corresponds to the number of non-∆
factors in the left normal form of x .

We note that one has the analogous definitions related to <:

Definition 2.3. Given an element x of a Garside group G, its right normal form is the decomposition x =
y1 · · · yr∆p, satisfying the following conditions:

(1) p ∈ Z is the maximal integer such that x∆−p is positive.
(2) yi = (y1 · · · yi )∧R ∆ 6= 1 for i = 1, . . . , r .
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Right normal forms also can be recognised locally (by checking that yi yi+1 is right-weighted for every i), and the
right normal form of x also exists and is unique. We remark that the integers p and r in this case are exactly the same
as those occurring in the left normal form of x . This means that inf(x) = p and sup(x) = p + r are, respectively, the
maximal and minimal integers such that ∆p+r < x < ∆p, whence inf(x), sup(x) and `(x) can equally be defined
using right normal forms instead of left normal forms.

Let now G be a Garside group. Recall that we defined the initial factor of a braid in the introduction. Since we are
using two distinct structures in G, we will define left and right versions of initial and final factors of x ∈ G as follows.
Given x = ∆px1 · · · xr in left normal form with r > 0, we define its left initial factor as ιL(x) = τ−p(x1), and its left
final factor by ϕL(x) = xr . If r = 0, we define ιL(x) = 1 and ϕL(x) = ∆. In the same way, given x = y1 · · · yr∆p

in right normal form with r > 0, we define its right initial factor by ιR(x) = τ p(yr ), and its right final factor by
ϕR(x) = y1. If r = 0, we define ιR(x) = 1 and ϕR(x) = ∆.

There are special maps from G to itself that consist of conjugating each element by its initial or final factors.
These operations, called (left or right) cycling and decycling, are key ingredients in most of the known solutions to
the conjugacy problem in braid groups and Garside groups in general. The precise definition is as follows; we write
the conjugate of x by a conjugating element c as xc

= c−1xc.

Definition 2.4. The following maps, from G to itself, are defined for each x ∈ G as follows:

(1) Left cycling: cL(x) = ιL(x)−1
· x · ιL(x) = x ιL (x)

(2) Left decycling: dL(x) = ϕL(x) · x · ϕL(x)−1
= xϕL (x)−1

(3) Right cycling: cR(x) = ιR(x) · x · ιR(x)−1
= x ιR(x)

−1

(4) Right decycling: dR(x) = ϕR(x)−1
· x · ϕR(x) = xϕR(x).

In other words, if x = ∆px1 · · · xr is in left normal form, then

cL(x) = ∆px2 · · · xrτ
−p(x1), dL(x) = xr∆px1 · · · xr−1,

and if x = y1 · · · yr∆p is in right normal form, then

cR(x) = τ
p(yr )y1 · · · yr−1∆p, dR(x) = y2 · · · yr∆p y1.

We note that there is an involution of the braid group, rev : Bn → Bn , which sends every braid x = σ e1
i1
· · · σ

em
im

to its reverse rev(x) = ←−x = σ
em
im
· · · σ

e1
i1

, that is, the same word read backwards. Observe that the map rev is well
defined, as the relations of Bn are invariant under rev. The map rev is an anti-isomorphism. For a general Garside
group, one can similarly define an anti-isomorphism rev : G →

←−
G whose image

←−
G can be seen to be also a Garside

group. (If G = Bn , we have
←−
G = G, but this need not be the case in general.) One can easily check that the left

normal form of x (in G) is mapped by rev to the right normal form of←−x (in
←−
G ), and vice versa. Also

←−−−
ιR(x) = ιL(

←−x ),
←−−−
ϕR(x) = ϕL(

←−x ), and hence
←−−−
cR(x) = cL(

←−x ) and
←−−−
dR(x) = dL(

←−x ). This means that applying cR and dR to an element
x corresponds to applying the usual (left) cycling and decycling operations, cL and dL , to its reverse←−x . This implies
that all results which are usually shown using left normal forms, cL and dL , also hold using right normal forms, cR
and dR , by symmetry.

Cyclings and decyclings have been used to define suitable finite subsets of conjugacy classes of elements, which
allow us to solve the conjugacy decision problem and the conjugacy search problem. For instance, the super summit
set [15] of an element x , denoted by SSS(x), is defined as follows. If we denote the conjugacy class of x by C(x),
then

SSS(x) = {y ∈ C(x) : `(y) is minimal among all elements of C(x)}.

Notice that this set does not depend on whether left or right normal forms are used to define `(y). A subset of SSS(x)
is the ultra summit set of x [18]. In this case, since USS(x) is defined using cyclings, one needs to distinguish between
the left ultra summit set of x ,

USSL(x) = {y ∈ SSS(x) : ∃ t ≥ 1, ct
L(y) = y},

and the right ultra summit set of x ,

USSR(x) = {y ∈ SSS(x) : ∃ t ≥ 1, ct
R(y) = y}.
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Both SSS(x), USSL(x) and USSR(x) are, by definition, invariants of the conjugacy class of x and they are non-
empty subsets of C(x). Hence one can determine whether two elements x and y are conjugate by computing, say,
USSL(x) and USSL(y) and checking whether these sets are equal. Actually, it suffices to compute USSL(x) and one
element y′ ∈ USSL(y) and to check whether y′ ∈ USSL(x). In [15] it is shown how to compute SSS(x), and [18]
gives an algorithm to compute USSL(x) (which can also be used to compute USSR(x)). More precisely, the algorithm
computes a directed graph whose set of vertices is USSL(x). We will define such a graph as follows.

Definition 2.5. Given x ∈ G, we define the left ultra summit graph of x , denoted by USGL(x), as the directed graph
whose set of vertices is USSL(x) and whose arrows are labelled by simple elements, in such a way that there is an
arrow labelled by s, starting at u and ending at v, if s−1us = v.

In the same way, we define the right ultra summit graph of x , denoted by USGR(x), as the directed graph whose
set of vertices is USSR(x) and whose arrows are labelled by simple elements, in such a way that there is an arrow
labelled by s, starting at u and ending at v, if sus−1

= v.

We remark that the graph computed in [18] is not precisely USGL(x), but one with fewer arrows:

Definition 2.6. Given x ∈ G, we define the graph minUSGL(x) to be the subgraph of USGL(x) with the same set of
vertices, but only with minimal arrows. An arrow labelled by s and starting at u is said to be minimal if it cannot be
decomposed as a product of arrows, that is, if there is no directed path in USGL(x) starting at u, with labels s1, . . . , sk ,
such that s = s1 · · · sk .

In the same way, we define the graph minUSGR(x) to be the subgraph of USGR(x) with the same set of vertices,
but only with minimal arrows.

It is known that all the above graphs are connected. The arrows in these graphs indicate how to connect, by
conjugations, x to any element in USSL(x) and y to any element in USSL(y). Hence, the above procedure also
solves the conjugacy search problem in any Garside group G (and hence in particular the conjugacy search problem
in the braid group Bn), that is, it finds a conjugating element from x to y provided such an element exists.

In [6] is the description of a project to find a polynomial solution to the conjugacy search problem in braid groups.
One of the crucial open problems in this project concerns rigid braids. We can define rigid elements for every Garside
group G. As above, since we are using two different structures on G, we will define left rigid and right rigid elements.
We say that an element x whose left normal form is x = ∆pu1 · · · ur with r > 0 is left rigid, if ∆pu1 · · · ur ιL(x)
is in left normal form as written. In the same way, we will say that x is right rigid, if its right normal form is
x = v1 · · · vr∆p with r > 0 and ιR(x)v1 · · · vr∆p is in right normal form as written, or equivalently, if←−x is left rigid.
Rigid elements have the best possible behaviour with respect to cyclings and decyclings, since in this case iterated
cyclings or decyclings just correspond to cyclic permutations of the factors. For nonrigid elements this is not the case,
since one has to compute the left normal form of cL(x) in order to be able to apply cL again, which modifies some of
the original factors of x .

There are some interesting results concerning rigid elements in general and rigid braids in particular:

Theorem 2.7 ([6]). If G is a Garside group and x ∈ G is left (resp. right) rigid then x ∈ USSL(x) (resp. x ∈
USSR(x)). Moreover, if `(x) > 1 then USSL(x) (resp. USSR(x)) is precisely the set of left (resp. right) rigid
conjugates of x.

Theorem 2.8 ([6]). If x ∈ Bn is a pseudo-Anosov braid, and x ∈ USSL(x) (resp. x ∈ USSR(x)), then xm is left
(resp. right) rigid for some m < (

n(n−1)
2 )3.

Since pseudo-Anosov braids seem to be generic in Bn , and the conjugacy search problem for pseudo-Anosov braids
x and y can be solved just by solving it for xm and ym for any m 6= 0 [19], the rigid case turns out to be probably the
most important case for solving the conjugacy search problem in Bn .

As was noticed in [18], if the canonical length of a random braid x is big enough, then USSL(x) consists of exactly
2`(x) elements in 100% of the tested cases, meaning that the probability of getting a larger USSL(x) seems to tend
to zero very rapidly as `(x) grows. Moreover, in these ‘generic’ cases the braids in USSL(x) are pseudo-Anosov and
left rigid. We remark that the algorithm in [18] is a deterministic solution to the conjugacy problem and the conjugacy
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search problem that seems to be ‘generically’ polynomial, although there is no written proof, to our knowledge, that
either pseudo-Anosov braids or braids conjugate to a rigid element are generic in Bn .

There are, however, instances of left rigid braids whose ultra summit set is much larger than expected. For instance,
as is noticed in [6], the braid in B12

E = (σ2σ1σ7σ6σ5σ4σ3σ8σ7σ11σ10) · (σ1σ2σ3σ2σ1σ4σ3σ10)

· (σ1σ3σ4σ10) · (σ1σ10) · (σ1σ10σ9σ8σ7σ11) · (σ1σ2σ7σ11)

is a pseudo-Anosov, left rigid braid with canonical length `(E) = 6, and we find #(USSL(E)) = 264 = 44 ·6, instead
of the expected value of 12 = 2 · 6. Also, the braid in B12

F = (σ3σ2σ1σ4σ6σ8σ7σ6σ9σ10σ11σ10) · (σ1σ2σ4σ3σ2σ1σ5σ7σ10σ11σ10)

· (σ3σ5σ7σ10σ11σ10) · (σ3σ5σ7σ6σ8σ10σ11)

is pseudo-Anosov and left rigid, with canonical length `(F) = 4 and we find #(USSL(F)) = 232 = 58 · 4, instead
of the expected value of 8 = 2 · 4. The reason why these special examples of rigid braids exist, and how one can
construct them, is still a mystery. Solving this problem would be an important step towards finding secure keys for
cryptographic protocols with braid groups.

Now recall that we have two distinct structures on Bn . It could be possible, a priori, that USSR(E) or USSR(F) are
much smaller than USSL(E) or USSL(F), respectively. However, Theorem 1.3 tells us that this is not the case, since
#(USSR(x)) = #(USSL(x)) for every rigid braid x of canonical length greater than 1.

3. Cycling is surjective

In this section we will show Theorem 1.1, that is, we will show that cL (and thus cR) is a surjective map.
First recall the definition of the right complement ∂(s) of a simple element s from Definition 2.1. A product ss′ of

two simple elements s and s′ is left-weighted if and only if ∂(s)∧L s′ = 1.
It was shown by Maffre [24] that the pre-image of an element x of a Garside group under cL can be computed fast,

provided that x is in the image of cL . More precisely, he shows the following:

Theorem 3.1 ([24, Proposition 7.2.10]). Let G be a Garside group and let x be an element of G with inf(x) = p.
Then

(1) cL(y) = x for some element y ∈ G with inf(y) = p − 1, if and only if cL(τ
−1(a−1xa)) = x for some atom a.

(2) cL(y) = x for some element y ∈ G with inf(y) = p, if and only if cL(cR(x)) = x.

It is clear by definition that cycling cannot decrease the infimum of an element, and it is well known that it may
increase it by at most one. Hence, the above result shows how to compute a pre-image of an element under left cycling,
provided such a pre-image exists. Notice in particular that in order to find a pre-image, one just needs to check the
candidates given by Theorem 3.1, that is, at most t + 1 elements, where t is the number of atoms in G. If we denote
the complexity of computing a left normal form by L , then the complexity of computing a pre-image of x under
left cycling is O(t L), since conjugating by an atom, applying τ−1, computing a right normal form or applying a left
or right cycling, are all computations that have at most the same complexity as computing a left normal form. For
instance, in the braid group Bn with the Artin structure, one has t = n−1 and L = r2n log n, where r is the canonical
length of x . Hence, computing a pre-image of x ∈ Bn under left cycling, provided a pre-image exists, has complexity
O(r2n2 log n).

Theorem 1.1 states that for some Garside groups, which we call atom-friendly, at least one of the two cases in
Theorem 3.1 always occurs. In order to show this, we will not focus on the infimum of a possible pre-image of x ,
but on the behaviour of the atoms with respect to the left normal form of x . The first case, given by the following
result, holds for every Garside group G, not necessarily atom-friendly. It is implicitly contained in Section 7.2 of [24],
although we will give an alternative proof to make this paper self-contained.

Proposition 3.2 ([24]). Let G be a Garside group, let x be an element of G, and let x = ∆px1 · · · xr be written in
left normal form. If there is an atom a such that τ p(a) 64 x1 · · · xr a, then cL(τ

−1(a−1xa)) = x.
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Proof. Define z = a−1xa = ∂(a)∆p−1x1 · · · xr a = ∆p−1∂2p−1(a)x1 · · · xr a. Notice that ∂(∂2p−1(a)) = ∂2p(a) =
τ p(a) 64 x1 · · · xr a. As τ transforms atoms into atoms, τ p(a) is an atom. This means that τ p(a) 64 x1 · · · xr a is
equivalent to τ p(a)∧L x1 · · · xr a = 1, since an atom has no non-trivial prefixes.

Notice that ∆ 64 x1 · · · xr a, otherwise τ p(a) 4 ∆ 4 x1 · · · xr a. Hence, the left normal form of x1 · · · xr a is of the
form z2 · · · zk and, moreover, we have ∂(∂2p−1(a))∧L z2 = τ p(a)∧L z2 = τ p(a)∧L x1 · · · xr a ∧L ∆ = 1, that is,
∂2p−1(a)z2 is left-weighted. This implies that ∂2p−1(a)z2 · · · zk is the left normal form of ∂2p−1(a)x1 · · · xr a. Hence,
ιL(z) = τ−p+1(∂2p−1(a)) = ∂−2p+2(∂2p−1(a)) = ∂(a).

If we apply left-cycling to z, we then obtain

cL(z) = z∂(a) = ∆p−1x1 · · · xr a∂(a) = ∆p−1x1 · · · xr∆ = τ(x).

It is well known (and can be derived from the definitions and from the fact that τ is a bijection of S) that τ sends
left (resp. right) normal forms to left (resp. right) normal forms. Hence τ commutes with cL (resp. cR). Therefore
cL(τ

−1(z)) = τ−1(cL(z)) = τ−1(τ (x)) = x , as we wanted to show. �

We will now see that, if the hypothesis of Proposition 3.2 is not satisfied, the second case in Theorem 3.1 occurs,
that is, a pre-image of x under cL is just given by cR(x). However, this time our proof does not work for every Garside
group, but we need some special property to be satisfied. Given a Garside group G, we denote the set of atoms by A.
Given a simple element s ∈ G, we define the starting set of s as S(s) = {a ∈ A : a 4 s}.

Definition 3.3. Given a Garside group G, we say that G is atom-friendly (on the left) if

(1) lcmL(A) = ∆.
(2) S(lcmL(B)) = B for every B ⊂ A.

Example 3.4. We give a simple example of a Garside group which is not atom-friendly. It is well known [9] that braid
groups, apart from the Garside structure induced by presentation (1) which was discussed in Section 2, admit another
Garside structure, the so-called dual Garside structure. The latter is induced by the presentation with the generators
{at,s for n ≥ t > s ≥ 1} subject to the relations{

at,sar,q = ar,qat,s, if (t − r)(t − q)(s − r)(s − q) > 0, at,sas,r = at,r at,s = as,r at,r , if t > s > r
}
.

Its atoms are precisely the generators at,s and its Garside element is given by δ = an,n−1an−1,n−2 · · · a2,1. In terms of
presentation (1), the generators at,s can be expressed as at,s = (σt−1 · · · σs+1)σs(σ

−1
s+1 · · · σ

−1
t−1).

It is easy to see that even for n = 3 this Garside structure is not atom-friendly: For B = {a3,1, a3,2} one has
lcmL(B) = δ = a3,1a3,2 = a3,2a2,1 = a2,1a3,1, whence S(lcmL(B)) = A 6= B.

Remark 3.5. We remark that the terminology atom-friendly is new. To our knowledge, no common name has been
given to those Garside groups satisfying the above two conditions. It is nevertheless well known [25] that the Artin
Garside structures of braid groups, and more generally of Artin–Tits groups of spherical type, are atom-friendly (on
the left and on the right). Hence the following result holds in all Artin–Tits groups of spherical type endowed with the
Artin Garside structure.

Note, however, that each Artin–Tits group of spherical type also admits a different Garside structure, the dual
Garside structure [5]. The latter is not atom-friendly in general, as we saw in Example 3.4 for the case of the braid
group on three strands.

Proposition 3.6. Let G be a Garside group which is atom-friendly (on the left). Let x = ∆px1 · · · xr ∈ G be written
in left normal form. If for every atom a one has τ p(a) 4 x1 · · · xr a, then cL(cR(x)) = x.

Proof. Let us define D to be the set of atoms a such that τ p(a) 64 x1. That is D = A \ S(τ−p(x1)) = A \ S(ιL(x)).
Moreover, we define the simple element D = lcmL(D). Let us show that ∆ 4 x1 · · · xr D. Indeed, for every atom
a 6∈ D one has τ p(a) 4 x1 4 x1 · · · xr D, and for every atom a ∈ D one has a 4 D, so using the hypothesis it
follows that τ p(a) 4 x1 · · · xr a 4 x1 · · · xr D. Therefore τ p(a) 4 x1 · · · xr D for every atom a. Since τ p induces
a permutation on the set of atoms, this means that a 4 x1 · · · xr D for every atom a. But since G is atom-friendly,
∆ = lcm(A), hence we finally obtain that ∆ 4 x1 · · · xr D.
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Now let z1 · · · zr be the right normal form of x1 · · · xr . We just showed that ∆ 4 z1 · · · zr D, but this is equivalent
to z1 · · · zr D < ∆. Since z1 · · · zr is in right normal form, this implies that zr D < ∆, which is equivalent to ∆ 4 zr D
or, in other words, ∂(zr ) 4 D.

Now we use again that G is atom-friendly, so S(D) = D. AsD = A\S(ιL(x)), one has that S(D)∩S(ιL(x)) = ∅.
Hence, D∧L τ

−p(x1) = D∧L ιL(x) = 1, which is equivalent to τ p(D)∧L x1 = 1.
Finally, consider y = cR(x) = x z−1

r = ∆pτ p(zr )z1 · · · zr−1. We will show that cL(y) = x . Recall that
∂(zr ) 4 D, hence ∂(τ p(zr )) 4 τ p(D). On the other hand, z1 · · · zr−1 4 z1 · · · zr = x1 · · · xr . Hence, if we define
α = ∆∧L z1 · · · zr−1, we have α 4 ∆∧L z1 · · · zr = ∆∧L x1 · · · xr = x1. But since τ p(D)∧L x1 = 1, and we are
considering left divisors ∂(τ p(zr )) 4 τ p(D) and α 4 x1, it follows that ∂(τ p(zr ))∧L α = 1. In other words, τ p(zr )α

is left-weighted as written, whence τ p(zr ) is the first factor in the left normal form of τ p(zr )z1 · · · zr−1. Therefore,
cL(y) = yzr = x , as we wanted to show. �

We have thus shown Theorem 1.1, since Propositions 3.2 and 3.6 run over all possibilities.

4. Rigid ultra summit sets

4.1. Left rigid and right rigid elements

In this section we will show Theorem 1.2. Let x ∈ Bn , and recall the definitions of USSL(x) and USSR(x) given
in Section 2. Since the statement of Theorem 1.2 refers to the conjugacy class of x , and not to x itself, we can assume
that x ∈ SSS(x), that is, x has maximal infimum and minimal supremum in its conjugacy class. We will see how one
can determine if x is conjugate to a rigid braid by looking at its powers. First we will see that if x is conjugate to a
rigid element, then the infimum and supremum of its powers behave as one should expect.

Definition 4.1. An element x of a Garside group is called periodically geodesic if inf(xm) = m inf(x) and
sup(xm) = m sup(x) for every m ≥ 1.

The two following Lemmas are known. However, as their proofs are simple, we include them for convenience.

Lemma 4.2 ([22]). Let x be an element of a Garside group. If x ∈ SSS(x) and x is conjugate to a (left or right) rigid
element, then x is periodically geodesic.

Proof. Let p = inf(x), q = sup(x) and let y be a left rigid conjugate of x . Then y is periodically geodesic and
ym
∈ USS(xm) ⊂ SSS(xm) for any m ∈ Z. In particular, inf(ym) = m inf(y) = mp and sup(ym) = m sup(y) = mq.

As super summit elements have maximal infimum and minimal supremum in their conjugacy class, we obtain
mp = m inf(x) ≤ inf(xm) ≤ inf(ym) = mp and mq = m sup(x) ≥ sup(xm) ≥ sup(ym) = mq , which shows
that x is periodically geodesic.

The right rigid case is analogous. �

The above result is not the only one relating periodically geodesic and rigid elements.

Lemma 4.3 ([20]). Let x be an element in a Garside group G. If x is periodically geodesic and xm is left (resp. right)
rigid for some m ≥ 1, then x is left (resp. right) rigid.

Proof. We assume that xm is left rigid; the right rigid case is analogous. Let ∆px1 · · · xr be the left normal form of x .
Since x is periodically geodesic, the left normal form of xm is ∆mpz1 · · · zrm , where

z1 · · · zrm = τ
(m−1)p(x1 · · · xr )τ

(m−2)p(x1 · · · xr ) · · · τ
p(x1 · · · xr )(x1 · · · xr ).

This means that τ (m−1)p(x1) 4 z1 · · · zrm , which implies that τ (m−1)p(x1) 4 z1, as z1 · · · zrm is in left normal form.
Then, ιL(x) = τ−p(x1) 4 τ−mp(z1) = ιL(xm).

In the same way, since the last simple factor in the above decomposition of z1 · · · zrm is xr , and the number of
factors is precisely rm, it follows that xr < zrm . In other words, ϕL(x) < ϕL(xm).

Finally, recall that xm is left rigid, which means that ϕL(xm)ιL(xm) is left-weighted as written, that is, we have
∂(ϕL(xm))∧L ιL(xm) = 1. Since the condition ϕL(x) < ϕL(xm) is equivalent to ∂(ϕL(x)) 4 ∂(ϕL(xm)), we obtain
that ∂(ϕL(x))∧L ιL(x) 4 ∂(ϕL(xm))∧L ιL(xm) = 1. That is, ϕL(x)ιL(x) is left-weighted as written, whence x is
left rigid. �
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Corollary 4.4. Let G be a Garside group and let x ∈ G such that x ∈ SSS(x). If x has a left rigid power and x is
conjugate to a right rigid element, then x is left rigid. Also, if x has a right rigid power and x is conjugate to a left
rigid element, then x is right rigid.

Proof. This is a direct consequence of Lemmas 4.2 and 4.3. �

After this result, in order to show that every left rigid element is conjugate to a right rigid element, and vice versa,
we must show that every left rigid element has a conjugate which has a right rigid power. In braid groups, this holds
for pseudo-Anosov braids, since one has the following result.

Theorem 4.5 ([6, Theorem 3.23]). Let x ∈ Bn be a pseudo-Anosov braid. If x ∈ USSL(x) and `(x) > 1, then x has
a left rigid power. In the same way, if x ∈ USSR(x) and `(x) > 1, then x has a right rigid power.

Corollary 4.6. If x ∈ Bn is a left (resp. right) rigid, pseudo-Anosov braid, and `(x) > 1, then x is conjugate to a
right (resp. left) rigid braid.

Proof. Suppose that x is left rigid, and consider y ∈ USSR(x). By Theorem 4.5, the braid y has a right rigid power,
hence y itself must be right rigid by Corollary 4.4. If x is right rigid, the proof follows the same reasoning. �

But there are two more kinds of braids, namely periodic and reducible ones. Does the above result hold for these
ones? The answer is positive, as we shall see. We recall that a braid x ∈ Bn is called periodic if xm

= ∆t for some
non-zero integers m and t . The above result holds trivially for periodic braids, due to the following lemma.

Lemma 4.7. A left or right rigid braid can never be periodic.

Proof. By definition, if x ∈ Bn is (left or right) rigid then `(x) > 0. Also, by Lemma 4.2, x is periodically geodesic.
Hence `(xm) = |m|`(x) > 0 for every non-zero integer m. Thus, no power of x can be a power of ∆, since `(∆t ) = 0
for every t . �

It just remains to show the case of reducible braids. A braid x ∈ Bn is said to be reducible if, regarding x as
a homeomorphism of the n-times punctured disc, it preserves a family of disjoint, closed, essential curves, up to
isotopy [10]. This can be expressed in other terms: A non-trivial coherent tape structure [4] for a braid x ∈ Bn
is a proper composition T of n (that is, T = (k1, . . . , km) where k1 + · · · + km = n, 1 < m < n and ki ≥ 1 for
all i) such that x can be obtained from a braid xT ∈ Bm by replacing, for each i = 1, . . . ,m, the i th strand of xT
by a braid x[i] ∈ Bki . One can think that the i th strand of xT becomes a tube, and that x[i] lies inside that tube. One
further requirement is that the m-tuple T = (k1, . . . , km) is coherent with the permutation induced by xT , that is, if
the i th strand of xT ends at position j , then ki = k j . The braid xT is called the tubular or external braid of this
decomposition of x , while each x[i] is called the i th internal braid. A braid is then reducible if and only if one of its
conjugates admits a non-trivial coherent tape structure.

We can now extend the result of Corollary 4.6 to all braids, that is, we can show the following result, which is
equivalent to Theorem 1.2.

Theorem 4.8. If x ∈ Bn is a left (resp. right) rigid braid, and `(x) > 1, then x is conjugate to a right (resp. left)
rigid braid.

Proof. Suppose that x is left rigid; the proof for the other direction is analogous. We will show the result by induction
on n. If n = 1, then x is trivial and there is nothing to show. If n = 2, then x is either trivial or periodic and hence
cannot be rigid by Lemma 4.7. So suppose that n > 2 and that the result holds for braids with less than n strands.

If x is pseudo-Anosov, the result is given by Corollary 4.6. On the other hand, x cannot be periodic by Lemma 4.7.
We hence can assume that x is reducible.

In [4] it was shown that if a braid α admits a non-trivial coherent tape structure, so do cL(α) and dL(α). This implies
that for every reducible braid, there is some element in its left ultra summit set that admits a non-trivial coherent tape
structure. Since we are assuming that x is left rigid and `(x) > 1, Theorem 2.7 yields that USSL(x) is the set of
left rigid conjugates of x , whence there is a conjugate of x which is left rigid and admits a non-trivial coherent tape
structure. We can thus assume that x itself admits a non-trivial coherent tape structure T = (k1, . . . , km).
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Now consider the external and internal braids [4] of x with respect to T ; let xT ∈ Bm be the external braid and let
x[i] ∈ Bki for i = 1, . . . ,m (where k1 + · · · + km = n) be the internal braids. Observe that T is a non-trivial coherent
tape structure for every power x j of x and that the external braid of x j with respect to T is (xT ) j .

Let y = cK
R (x) ∈ USSR(x), obtained from x by a finite number of applications of cR . By Corollary 4.4, we just

need to show that y has a right rigid power. In order to simplify the notation, we will replace x by a power x j such
that the permutation induced by (xT ) j is trivial (that is, (xT ) j is a pure braid). Notice that x j is also left rigid and if
we show that y j has a right rigid power, this will also be true for y. We can hence assume that xT is a pure braid.

By the arguments in [4] applied to right normal forms, y = cK
R (x) admits a non-trivial coherent tape structure T ′,

such that the internal components of y with respect to T ′ canonically correspond to those of x with respect to T ,
with the correspondence given by the action of the element conjugating x to y. We label the internal braids of y by
y[i] ∈ Bki in accordance with this correspondence and denote the external braid of y by yT ′ ∈ Bm . It can, moreover,
be seen from [4] that yT ′ is a conjugate of xT , whence yT ′ is also a pure braid, as the pure braid group is normal in
Bm .

Let p = inf(x) and q = sup(x) > p + 1. Let ϕL(x)T be the external component and ϕL(x)[i] the i th internal
component of ϕL(x) with respect to the decomposition of x by T . In the same way, define ιL(x)T , ιL(x)[i], ϕR(x)T ,
ϕR(x)[i], ιR(x)T and ιR(x)[i]. Analogously, using T ′, define ϕR(y)T ′ , ϕR(y)[i], ιR(y)T ′ and ιR(y)[i]. As x is left
rigid, we have ∂(ϕL(x))∧L ιL(x) = 1. Decomposed into the individual components with respect to T , this yields
∂(ϕL(x)T )∧L ιL(x)T = 1 and ∂(ϕL(x)[i])∧L ιL(x)[i] = 1 for i = 1, . . . ,m.

One has inf(x) = p = min{inf(xT ), inf(x[1]), . . . , inf(x[m])} and, similarly, sup(x) = q = max{sup(xT ),
sup(x[1]), . . . , sup(x[m])} [4,23]. Moreover, the components of ιL(x) and ϕL(x) are as follows.

ιL(x)T =

{
ιL(xT ); inf(xT ) = p
∆m ∈ Bm; inf(xT ) > p

ιL(x)[i] =

{
ιL(x[i]); inf(x[i]) = p
∆ki ∈ Bki ; inf(x[i]) > p

ϕL(x)T =

{
ϕL(xT ); sup(xT ) = q
1; sup(xT ) < q

ϕL(x)[i] =

{
ϕL(x[i]); sup(x[i]) = q
1; sup(x[i]) < q.

Now consider the external component and recall that ∂(ϕL(x)T )∧L ιL(x)T = 1. If inf(xT ) > p, that is, ιL(x)T =
∆m , this implies ϕL(x)T = ∆m , that is, xT = ∆q

m . Similarly, if sup(xT ) < q, that is, ϕL(x)T = 1, we obtain
ιL(x)T = 1, that is, xT = ∆p

m . Hence, xT is either ∆p
m , or it is ∆q

m , or it is left rigid with infimum p and supremum
q. Observe that in the first case we have ιR(x)T = 1, in the second case we have ιR(x)T = ∆m , and in the third case

we have ιR(x)T = ιR(xT ). Hence, in any case x
ιR(x)

−1
T

T = cR(xT ), that is, right cycling of x induces right cycling of
xT . Similarly, left cycling of x induces left cycling of xT and left (resp. right) decycling of x induces left (resp. right)
decycling of xT . Applying this argument repeatedly, we see that y ∈ USSR(x) implies yT ′ ∈ USSR(xT ).

Moreover, if xT = ∆p
m or xT = ∆q

m then yT ′ = cK
R (xT ) = xT and we have ∂−1(ϕR(y)T ′)∧R ιR(y)T ′ = 1.

Otherwise, xT is left rigid with `(xT ) > 1 and hence (as xT has fewer strands than x) by induction conjugate to a
right rigid braid. By Theorem 2.7 this implies that yT ′ ∈ USSR(xT ) is right rigid. Hence, in each of the possible cases
we have ∂−1(ϕR(y)T ′)∧R ιR(y)T ′ = 1.

Following an identical argument for each of the internal components, we obtain ∂−1(ϕR(y)[i])∧R ιR(y)[i] = 1 for
i = 1, . . . ,m. Together this implies ∂−1(ϕR(y))∧R ιR(y) = 1, that is, y is right rigid as we wanted to show. �

4.2. Left and right ultra summit graphs are isomorphic

We will now show that given a left rigid braid x ∈ USSL(x) with `(x) > 1, the directed graphs USGL(x)
and USGR(x) are isomorphic, with the arrows reversed, that is, we will show Theorem 1.3. We need to define an
isomorphism of directed graphs (in other words, an invertible functor from the category USGL(x) to the category
USGR(x)op). The isomorphism is very easy to define at the level of vertices (objects), that is, the elements of the ultra
summit sets.

Definition 4.9. Let x ∈ Bn be a left rigid braid, with `(x) = r > 1. We define Φ(x) = c2r t
R (x), where t is any

non-negative integer such that c2r t
R (x) is right rigid.

Notice that Φ is well defined: Since x is left rigid, x ∈ SSS(x), so one can go from x to USSR(x) by iterated right
cycling. Since `(x) > 1, Theorem 4.8 tells us that x is conjugate to a right rigid element, hence USSR(x) consists
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of right rigid elements, and one obtains a right rigid element by applying iterated right cycling to x . Also, for every
right rigid element z with `(z) = r , one has c2r

R (z) = z. Hence, if t is an integer such that c2r t
R (x) is right rigid, then

c2r t
R (x) = c2r

R (c
2r t
R (x)) = c2r(t+1)

R (x). This implies that if c2r t
R (x) and c2r t ′

R (x) are both right rigid, they are equal.
Hence Φ is well defined.

We will show below that Φ is a bijective map from USSL(x) to USSR(x). But we also want to show that USGL(x)
is isomorphic to USGR(x)op. We already know a map Φ that sends vertices (objects) of USGL(x) to vertices (objects)
of USGR(x)op. Let us see how Φ is defined on the arrows (morphisms) of USGL(x). In order to do this, we recall the
definition of the transport map. This map is defined in [18] using left normal forms, but, by symmetry, it can equally
be defined using right normal forms.

Definition 4.10 ([18]). Given an element x of a Garside group G such that x ∈ SSS(x) and an element u ∈ G such
that u−1xu = y ∈ SSS(x), one defines the left transport of u as:

u(1)L = ιL(x)
−1
· u · ιL(y).

The iterated left transports of u are defined recursively, for every i > 1, by

u(i)L =

(
u(i−1)

L

)(1)
L
.

Notice that, since u−1xu = y, one has
(

u(i)L

)−1
ci

L(x) u(i)L = ci
L(y). In other words, since u conjugates (on the

right) x to y, the i th left transport of u conjugates (on the right) the i th left cycling of x to the i th left cycling of y.

Definition 4.11 ([18]). Given an element x of a Garside group G such that x ∈ SSS(x) and an element v ∈ G such
that vxv−1

= z ∈ SSS(x), one defines the right transport of v as:

v
(1)
R = ιR(z) · v · ιR(x)

−1.

The iterated right transports of v are defined recursively, for every i > 1, by

v
(i)
R =

(
v
(i−1)
R

)(1)
R
.

As vxv−1
= z, we have in this case v(i)R ci

R(x)
(
v
(i)
R

)−1
= ci

R(z). In other words, since v conjugates (on the left) x

to z, the i th right transport of v conjugates (on the left) the i th right cycling of x to the i th right cycling of z.

Theorem 4.12 ([18]). With the above conditions, one has the following properties, for every i ≥ 1:

(1) If u1 4 u2then(u1)
(i)
L 4 (u2)

(i)
L . Ifv1 < v2then(v1)

(i)
R < (v2)

(i)
R .

(2) (u1 ∧L u2)
(i)
L = (u1)

(i)
L ∧L(u2)

(i)
L . (v1 ∧R v2)

(i)
R = (v1)

(i)
R ∧R(v2)

(i)
R .

(3) ∆(i)
L = ∆, 1(i)L = 1. ∆(i)

R = ∆, 1(i)R = 1.
(4) If u is simple, u(i)L is simple. Ifv is simple, v(i)R is simple.
(5) (u1u2)

(i)
L = (u1)

(i)
L (u2)

(i)
L . (v1v2)

(i)
R = (v1)

(i)
R (v2)

(i)
R .

Let us then define Φ on the arrows of USGL(x).

Definition 4.13. Let x, y ∈ USSL(x) ⊂ Bn be left rigid braids with `(x) > 1, and let t be a non-negative integer
such that Φ(x) = c2r t

R (x) and Φ(y) = c2r t
R (y). Given u ∈ Bn such that u−1xu = y, so that uyu−1

= x , we define

Φ(u) = u(2r t)
R .

Proposition 4.14. Φ is a well-defined map of directed graphs (a well-defined functor) from USGL(x) to USGR(x)op.
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Proof. We already know that Φ(y) ∈ USSR(x) for every y ∈ USSL(x), hence Φ sends vertices of USGL(x) to
vertices of USGR(x)op. Now consider an arrow s going from x to y in USGL(x), let p = inf(x) = inf(y) and let
r = `(x) = `(y). Since s−1xs = y, one has sys−1

= x . Hence, if we define s0 = s(2r t)
R , where t is an integer such

that Φ(x) = c2r t
R (x) and Φ(y) = c2r t

R (y), we have s0 c2r t
R (y) s−1

0 = c2r t
R (x), that is, s0 Φ(y) s−1

0 = Φ(x), where Φ(y)
and Φ(x) are right rigid.

In order to be able to define Φ(s) = s0, we need to show that s0 does not depend on the choice of the integer
t . As Φ(y) is right rigid and has canonical length r , we have c2r

R (Φ(y)) = Φ(y) and the product of the (left)
conjugating elements for 2r -fold right cycling of Φ(y) is ∆−2pΦ(y)2. In the same way, c2r

R (Φ(x)) = Φ(x) and
the product of the (left) conjugating elements for 2r -fold right cycling of Φ(x) is ∆−2pΦ(x)2. So, the 2r th iterated
right transport of s0 is (s0)

(2r)
R = ∆−2pΦ(x)2s0Φ(y)−2∆2p

= Φ(x)2s0Φ(y)−2
= Φ(x)s0Φ(y)−1

= s0, which means

that s(2r t ′)
R = s(2r t)

R = s0 for every t ′ ≥ t . Hence Φ(s) = s0 is a well-defined simple element which is, by the above
argument, an arrow in USGR(x) going from Φ(y) to Φ(x), hence an arrow in USGR(x)op going from Φ(x) to Φ(y).
�

It remains to show that Φ is invertible. In order to do this, we start by recalling a result from [6] that relates cyclings
and powers. Given x in a Garside group G, let Ci = ιL(ci−1

L (x)) for every i ≥ 1. That is, Ci is the conjugating element
from ci−1

L (x) to ci
L(x), and xC1···Ci = ci

L(x). Then one has:

Lemma 4.15 ([6, Lemma 2.4]). Let G be a Garside group and let x ∈ G such that x ∈ SSS(x) and `(x) > 1. Let
p = inf(x). Then, for every m ≥ 1,

xm∆−mp
= C1 · · ·CmRm,

where

(1) sup(C1 · · ·Cm) = m and ϕL(C1 · · ·Cm) < ϕL(cm
L (x)).

(2) inf(Rm) = 0 and ιL(Rm) 4 Cm+1 = ιL(cm
L (x)).

This result can be improved if x is conjugate to a left rigid element.

Lemma 4.16. Let G be a Garside group and let x ∈ G such that x ∈ SSS(x) and `(x) > 1. Let p = inf(x). Suppose
that x is conjugate to a left rigid element and let m be such that y = cm

L (x) is left rigid. Then

C1 · · ·Cm = (x
m∆−mp)∧L ∆m,

where inf(C1 · · ·Cm) = 0 and sup(C1 · · ·Cm) = m.

Proof. By the above lemma, C1 · · ·Cm 4 xm∆−mp. But since x is conjugate to a rigid element, Lemma 4.2 implies
that inf(xm) = mp, so inf(xm∆−mp) = 0, that is, inf(C1 · · ·Cm) = 0.

Also, xm∆−pm
= C1 · · ·CmRm , where ϕL(C1 · · ·Cm) < ϕL(cm(x)) = ϕL(y) and ιL(Rm) 4 ιL(cm(x)) = ιL(y).

Since y is left rigid, the decomposition ϕL(y)ιL(y) is left-weighted. Hence, if z1 · · · zm is the left normal form of
C1 · · ·Cm , this means that z1 · · · zm ιL(Rm) is in left normal form as written. In other words, the first m factors of the
left normal form of xm∆−mp are precisely z1 · · · zm = C1 · · ·Cm . That is, C1 · · ·Cm = (xm∆−mp)∧L ∆m , as we
wanted to show. �

This allows us to determine very precisely the left normal form of xm , for m big enough, when x is conjugate to
a left rigid element. In order to avoid confusing notation produced by the powers of ∆ in the normal forms, we will
introduce the following notions:

Definition 4.17. Let G be a Garside group. Given an element z ∈ G, whose left normal form is ∆pz1 · · · zr and whose
right normal form is z′1 · · · z

′
r∆

p, we define the left interior of z as

z◦L = z∆−p
= τ−p(z1) · · · τ

−p(zr ) = z′1 · · · z
′
r ,

and the right interior of z as

z◦R = ∆−pz = z1 · · · zr = τ
p(z′1) · · · τ

p(z′r ).
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Notice that the above factorisations are, respectively, the left and right normal forms of z◦L and of z◦R . Notice also
that if y = ∆p y1 · · · yr is left rigid and in left normal form as written, then

(ym)◦L = ym∆−pm
=

(
τ−p(y1) · · · τ

−p(yr )
)
·

(
τ−2p(y1) · · · τ

−2p(yr )
)
· · ·

(
τ−mp(y1) · · · τ

−mp(yr )
)
,

and the latter expression is in left normal form as written. Moreover, in this case (ym)◦L is precisely the conjugating
element that takes y to crm

L (y). Similarly, if y = y1 · · · yr∆p is right rigid and in right normal form as written, then

(ym)◦R = ∆−pm ym
=

(
τmp(y1) · · · τ

mp(yr )
)
· · ·

(
τ 2p(y1) · · · τ

2p(yr )
)
·
(
τ p(y1) · · · τ

p(yr )
)
,

and the latter expression is in right normal form as written. Moreover, in this case (ym)◦R is precisely the (left)
conjugating element that takes y to crm

R (y).

Lemma 4.18. Let G be a Garside group and let x ∈ G such that x ∈ SSS(x) and `(x) = r > 1. Let p = inf(x).
Suppose that x is conjugate to a left rigid element and let N be such that y = cN

L (x) is left rigid. Then the following
hold:

(1) For any integer M ≥ N, one has
(
yM

)◦
R < C1 · · ·CN .

(2) Let M be an integer satisfying the condition
(
yM

)◦
R < C1 · · ·CN . If z1 · · · zN is the left normal form of C1 · · ·CN ,

and z′1 · · · z
′
s is the left normal form of

(
yM

)◦
R (C1 · · ·CN )

−1, then for every m ≥ M, the left normal form of (xm)◦L
is

(xm)◦L = (z1 · · · zN ) ·
(

ym−M
)◦

L
·
(
τ−pm(z′1) · · · τ

−pm(z′s)
)
,

where the middle factor is assumed to be written in left normal form. Moreover, N + s = Mr.

Proof. Recall that xC1···CN = cN
L (x) = y, so

(
x N

)C1···CN
= yN . Recall also that by Lemma 4.16 one has

C1 · · ·CN 4 x N ∆−pN
=

(
x N

)◦
L . This means that α = (C1 · · ·CN )

−1
(
x N

)◦
L is a positive braid. Now,

yN
= (C1 · · ·CN )

−1x N (C1 · · ·CN )

= α∆pN C1 · · ·CN = ∆pN τ pN (α)C1 · · ·CN ,

and thus
(
yM

)◦
R <

(
yN

)◦
R = ∆−pN yN

= τ pN (α)C1 · · ·CN < C1 · · ·CN . Hence the first claim is shown.
Now let M , m, z1 · · · zN and z′1 · · · z

′
s be defined as in claim (2). Notice that since m ≥ M , one has (ym)◦R =

∆−pm ym < ∆−pM yM < C1 · · ·CN . That is, there exists a positive braid β such that ym
= ∆mpβC1 · · ·CN . By

Lemma 4.15, ϕL(C1 · · ·CN ) < ϕL(cN
L (x)) = ϕL(y). Also, ιL(τ−mp(β)) 4 ιL(ym) = ιL(y), where the last equality

follows from the rigidity of y. As ϕL(y)ιL(y) is left-weighted, this implies that zN ιL(τ
−mp(β)) is also left-weighted.

Observe that

xm
= (C1 · · ·CN ) · y

m
· (C1 · · ·CN )

−1

= C1 · · ·CN ∆mpβ = C1 · · ·CN τ
−mp(β)∆mp,

whence (xm)◦L = C1 · · ·CN τ
−mp(β) = z1 · · · zN τ

−mp(β). Since zN ιL(τ
−mp(β)) is left-weighted, it follows that the

first N factors in the left normal form of (xm)◦L are precisely z1 · · · zN .
Now recall that z′1 · · · z

′
s is the left normal form of ∆−pM yM (C1 · · ·CN )

−1. Hence

ym
= ym−M yM

=

(
ym−M

)◦
L
∆p(m−M)∆pM z′1 · · · z

′
sC1 · · ·CN

=

(
ym−M

)◦
L
∆pm z′1 · · · z

′
sC1 · · ·CN

=

(
ym−M

)◦
L

(
τ−pm(z′1) · · · τ

−pm(z′s)
)
∆pmC1 · · ·CN .

Conjugating by (C1 · · ·CN )
−1, one obtains

xm
= (C1 · · ·CN )

(
ym−M

)◦
L

(
τ−pm(z′1) · · · τ

−pm(z′s)
)
∆pm,
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hence

(xm)◦L = (z1 · · · zN ) ·
(

ym−M
)◦

L
·
(
τ−pm(z′1) · · · τ

−pm(z′s)
)
.

This is written in left normal form, as ϕL
((

ym−M
)◦

L

)
τ−pm(z′1) is left-weighted. The latter can be seen by noticing that

ϕL
((

ym−M
)◦

L

)
= ϕL

(
τ−p(m−M)(y)

)
and that moreover z′1 = ιL

(
∆−pM yM (C1 · · ·CN )

−1
)
4 ιL

(
τ pM (y)

)
, whence

τ−pm(z′1) 4 ιL
(
τ−p(m−M)(y)

)
.

Finally, the left rigidity of y implies that x is periodically geodesic, whence `(xm) = `
(
(xm)◦L

)
= mr . But we just

computed the left normal form of (xm)◦L , which has N + (m − M)r + s factors. Therefore N + (m − M)r + s = mr ,
so N + s = Mr , as we wanted to show. �

By symmetry, one has the analogous result for conjugates of right rigid braids, but we will perform a slight
modification:

Lemma 4.19. Let G be a Garside group and let x ∈ G such that x ∈ SSS(x) and `(x) = r > 1. Let p = inf(x).
Suppose that x is conjugate to a right rigid element and let N be such that y = cN

R (x) is right rigid. Let C ′1, . . . ,C ′N
be the (left) conjugating elements for the N iterated right cyclings of y, that is, (C ′N · · ·C

′

1) x (C ′N · · ·C
′

1)
−1
= y.

Then the following hold:

(1) For any integer M ≥ N, one has C ′N · · ·C
′

1 4
(
yM

)◦
L .

(2) Let e be a positive integer such that ∆e is central in G and let M be a multiple of e, such that C ′N · · ·C
′

1 4
(
yM

)◦
L .

In this case, if z′N · · · z
′

1 is the right normal form of C ′N · · ·C
′

1 and zs · · · z1 is the right normal form of
(C ′N · · ·C

′

1)
−1

(
yM

)◦
L , then for every m ≥ M, the right normal form of (xm)◦L is

(xm)◦L = (zs · · · z1) ·
(

ym−M
)◦

L
·
(
τ−pm(z′N ) · · · τ

−pm(z′1)
)
,

where the middle factor is assumed to be written in right normal form. Moreover, N + s = Mr.

Proof. If one follows the argument of Lemma 4.18 for right normal forms, one obtains that the right normal form of
(xm)◦R is

(xm)◦R =
(
τ pm(zs) · · · τ

pm(z1)
)
·

(
ym−M

)◦
R
·
(
z′N · · · z

′

1

)
,

and now one just has to notice that (xm)◦L = τ
−mp

(
(xm)◦R

)
and that, since M is a multiple of e and hence τM is the

identity,

τ−pm
((

ym−M
)◦

R

)
= τ−p(m−M)

((
ym−M

)◦
R

)
=

(
ym−M

)◦
L
. �

We can now show that Φ is a bijective map on the vertices.

Proposition 4.20. Let x ∈ Bn be a left rigid braid with `(x) > 1. The map Φ : USSL(x)→ USSR(x) defined above
is bijective.

Proof. Recall the involutory anti-isomorphism rev : Bn → Bn introduced in Section 2, which sends a braid
x = σ e1

i1
· · · σ

em
im

to its reverse rev(x) = ←−x = σ em
im
· · · σ

e1
i1

. We define a map Ψ : USSR(x)→ USSL(x) as symmetric

analogue of Φ under rev, that is, Ψ(z) =
←−−−
Φ(←−z ). We will show that Ψ is the inverse of Φ.

Let ∆px1 · · · xr be the left normal form of x . Recall that Φ(x) = c2r t
R (x) for some integer t , and that

Φ(x) = c2r t ′
R (x) for every t ′ ≥ t . Similarly, we have Ψ(Φ(x)) = c2rs

L (Φ(x)) for some integer s, and then
Ψ(Φ(x)) = c2rs′

L (Φ(x)) for every s′ ≥ s. Hence, defining N = 2r max(t, s), we have Φ(x) = cN
R (x) and

Ψ(Φ(x)) = cN
L (Φ(x)) = cN

L (c
N
R (x)). We must then show that cN

L (c
N
R (x)) = x .

In order to do this, we will study some decompositions of xm , for m big enough. For simplicity, we will consider
m to be even. First, since x is left rigid, the left normal form of (xm)◦L for every even m is precisely:(

xm)◦
L =

(
τ−p(x1) · · · τ

−p(xr )
)
·

(
τ−2p(x1) · · · τ

−2p(xr )
)
· · ·

(
τ−mp(x1) · · · τ

−mp(xr )
)

=
(
τ−p(x1) · · · τ

−p(xr )x1 · · · xr
)m/2
=

((
x2

)◦
L

)m/2
.
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Notice that if p is even, the above expression is just (x1 · · · xr )
m , but if p is odd this does not happen in general.

Now x is conjugate to a right rigid braid, y = Φ(x). We can then apply Lemma 4.19 to x . We fix M as in
Lemma 4.19, where we can assume that M is even (otherwise, take M + 1). We take m big enough, so that m > 2M
and m is even. We then obtain that the right normal form of (xm)◦L is:(

xm)◦
L = (zs · · · z1) ·

(
ym−M

)◦
L
·
(
τ−pm(z′N ) · · · τ

−pm(z′1)
)

= (zs · · · z1) ·
(

ym−M
)◦

L
·
(
z′N · · · z

′

1

)
.

By definition, (z′N · · · z
′

1)(zs · · · z1) = (yM )◦L = yM∆−pM . Also by definition, z′N · · · z
′

1 = C ′N · · ·C
′

1 is the (left)
conjugating element for N -fold iterated right cycling of x , that is, (z′N · · · z

′

1) x (z′N · · · z
′

1)
−1
= cN

R (x) = y. Hence we
have

(
x M

)◦
L = x M∆−pM

= (z′N · · · z
′

1)
−1 yM∆−pM (z′N · · · z

′

1) = (zs · · · z1)(z′N · · · z
′

1). Note that we used that M is
even, by assuming ∆pM to be central.

As x is left rigid and both m and M are even, we then obtain the following decomposition:

(xm)◦L = (x
M )◦L(x

m−2M )◦L(x
M )◦L

= (zs · · · z1)
(
z′N · · · z

′

1

)
·

(
xm−2M

)◦
L
· (zs · · · z1)

(
z′N · · · z

′

1

)
,

whence(
ym−M

)◦
L
=

(
z′N · · · z

′

1

)
·

(
xm−2M

)◦
L
· (zs · · · z1) .

Let us write the above factors in left normal form: Letw1 · · ·wN be the left normal form of z′N · · · z
′

1, and letw′1 · · ·w
′
s

be the left normal form of zs · · · z1. Then(
ym−M

)◦
L
= (w1 · · ·wN ) ·

(
xm−2M

)◦
L
·
(
w′1 · · ·w

′
s

)
.

We will now show that this decomposition is precisely the left normal form of
(
ym−M

)◦
L . Indeed, as

(
x M

)◦
L =

(zs · · · z1)(z′N · · · z
′

1) =
(
w′1 · · ·w

′
s

)
(w1 · · ·wN ) and s + N = Mr by Lemma 4.19, it follows that the final factor of

the left normal form of
(
x M

)◦
L is a suffix of wN . That is, wN < xr . Since x is left rigid, this implies that wN · τ

−p(x1)

is left-weighted, where the second factor in this expression is the initial factor in the left normal form of
(
xm−2M

)◦
L .

Moreover, w′1 must be a prefix of the initial factor of
(
x M

)◦
L , that is, w′1 4 τ−p(x1). This implies that xr · w

′

1 is
left-weighted, where xr is the final factor in the left normal form of

(
xm−2M

)◦
L . Hence, the above expression is the

left normal form of
(
ym−M

)◦
L , for even m with m > 2M .

Choose now m such that m − M is a multiple of 2r and m − M ≥ N and consider the product P of the first
m − M factors in the left normal form of

(
ym−M

)◦
L . By the above argument we have P = w1 · · ·wN

(
x2k

)◦
L , where

k = (m−M)−N
2r . (Note that N is a multiple of 2r , so k is an integer.) However, as cm−M

L (y) is left rigid, P is the
conjugating element for (m − M)-fold left cycling of y by Lemma 4.16, and as

(
x2k

)◦
L = x2k∆−2kp commutes with

x , we obtain

cm−M
L (y) = y P

=

((
x2k

)◦
L

)−1
· (w1 · · ·wN )

−1
· y · (w1 · · ·wN ) ·

(
x2k

)◦
L

=

((
x2k

)◦
L

)−1
· x ·

(
x2k

)◦
L
= x .

We finally obtain Ψ(Φ(x)) = Ψ(y) = cm−M
L (y) = x , as we wanted to show. �

In order to finish the proof of Theorem 1.3, it just remains to show that the map Ψ can be extended to the arrows
of USGR(x), so that Ψ ◦ Φ = idUSGL (x). We will use the following result:

Lemma 4.21. Let x ∈ Bn be left rigid with `(x) = r > 1. Let T = 2r t be such that Φ(x) = cT
R(x) and

Ψ(Φ(x)) = cT
L (Φ(x)). Let C ′T , . . . ,C ′1 be the (left) conjugating elements for the iterated right cyclings of x, and

let C1, . . . ,CT be the conjugating elements for the iterated left cyclings of Φ(x). That is,

Φ(x) = (C ′1 · · ·C
′

T ) x (C ′1 · · ·C
′

T )
−1
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and

Ψ(Φ(x)) = (C1 · · ·CT )
−1 Φ(x) (C1 · · ·CT ).

Then, C1 · · ·CT = C ′1 · · ·C
′

T .

Proof. Using the notation in the proof of Proposition 4.20, we notice that the left normal form of C1 · · ·CT is
(w1 · · ·wN )(x2k)◦L , where k = T−N

2r . Similarly, using the symmetry under rev, the right normal form of C ′1 · · ·C
′

T
is (y2k)◦R(z

′

N · · · z
′

1) = (y
2k)◦L(z

′

N · · · z
′

1) for the same value of k. (Note that sup(C1 · · ·CT ) = T = sup(C ′1 · · ·C
′

T )

and that τ 2kp is trivial.) As, moreover, (y2k)◦L(z
′

N · · · z
′

1) = (z
′

N · · · z
′

1)(x
2k)◦L = (w1 · · ·wN )(x2k)◦L , by definition of

z′N , . . . , z′1 and w1, . . . , wN , respectively, the result follows. �

Proof of Theorem 1.3. We define Ψ : USGR(x)op
→ USGL(x) in the natural way. For every element u ∈ USSR(x),

we define Ψ(u) as above, in the same way as Φ but using right normal forms, that is, Ψ(u) =
←−−−
Φ(←−u ). In the case

of the arrows of USGR(x)op, we proceed exactly the same way. If s is a simple element such that sus−1
= v with

u, v ∈ USSR(x), that is, if s is an arrow in USGR(x)op going from v to u, we define Ψ(s) =
←−−−
Φ(←−s ), where ←−s

corresponds to an arrow in USGL(
←−x ) going from←−u to←−v .

Let us show that, if s is an arrow in USGL(x) going from x to y, then Ψ(Φ(s)) = s. First, by construction, Ψ(Φ(s))
is a simple element conjugating Ψ(Φ(x)) = x to Ψ(Φ(y)) = y, hence Ψ(Φ(s)) is an arrow in USGL(x) going from
x to y. We just need to show that s and Ψ(Φ(s)) are the same simple elements.

Let N = 2r t be big enough, so that we have Φ(x) = cN
R (x), Φ(y) = cN

R (y), Ψ(Φ(x)) = cN
L (Φ(x)) and

Ψ(Φ(y)) = cN
L (Φ(y)). By Lemma 4.21, the product of the conjugating elements (on the left) leading from x to

Φ(x) equals the product of the conjugating elements (on the right) leading from Φ(x) to Ψ(Φ(x)) = x ; we denote
this product by α. The same situation occurs for y and Φ(y); we denote the corresponding product by β. Finally, we
obtain Ψ(Φ(s)) = Ψ(s(N )R ) = Ψ(αsβ−1) = α−1(αsβ−1)β = s as claimed. �

We remark that, since the left (resp. right) transport preserves left (resp. right) gcds by Theorem 4.12, Φ sends
minimal arrows of USGL(x) to minimal arrows of USGR(x)op and Ψ sends minimal arrows in USGR(x)op to minimal
arrows of USGL(x). Therefore, we have:

Corollary 4.22. Let x ∈ Bn be left rigid with canonical length `(x) > 1. The restriction of Φ to minUSGL(x) is an
isomorphism of directed graphs: Φ : minUSGL(x)→ minUSGR(x)op.

4.2.1. Φ respects the structure of ultra summit graphs
It was shown in [7] that the arrows of minUSGL(x), and similarly those of minUSGR(x), can be grouped naturally

into two classes, namely partial cycling and partial twisted decycling components. In this subsection we show that
the isomorphism Φ is natural in the sense that it preserves this decomposition of ultra summit graphs.

Proposition 4.23 ([7]). Let x be an element of a Garside group with `(x) > 0 and let s be an arrow in min USGL(x)
going from x to x s

= s−1xs. Then at least one of the following conditions holds:

(1) s 4 ιL(x)
(2) s 4 ιL(x−1).

If x is left rigid, then exactly one of the above conditions holds.

Notice that ιL(x−1) = ∂(ϕL(x)).

Definition 4.24 ([7]). Let x be an element of a Garside group with `(x) > 0 and let s be an arrow in USGL(x)
going from x to x s

= s−1xs. If s 4 ιL(x), we call s a partial left cycling of x and say that the arrow s is black. If
s 4 ιL(x−1) = ∂(ϕL(x)), we call s a partial twisted left decycling of x and say that the arrow s is grey.

By symmetry we have:

Proposition 4.25 ([7]). Let x be an element of a Garside group with `(x) > 0 and let s be an arrow in min USGR(x)
going from x to sxs−1. Then at least one of the following conditions holds:
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(1) ιR(x) < s
(2) ιR(x−1) < s.

If x is right rigid, then exactly one of the above conditions holds.

Notice that ιR(x−1) = ∂−1(ϕR(x)).

Definition 4.26 ([7]). Let x be an element of a Garside group with `(x) > 0 and let s be an arrow in USGR(x)
going from x to sxs−1. If ιR(x) < s, we call s a partial right cycling of x and say that the arrow s is black. If
∂−1(ϕR(x)) = ιR(x−1) < s, we call s a partial twisted right decycling of x and say that the arrow s is grey.

Note that the intuitive meaning of “cycling” (respectively “decycling”) is to move the first simple factor to the end
(respectively, the last simple factor to the front) with respect to the normal form under consideration. Note, moreover,
that τ ◦ dL(x) = τ(xϕL (x)−1

) = τ(x ιL (x
−1)∆−1

) = x ιL (x
−1) and that, analogously, τ−1

◦ dR(x) = τ−1(xϕR(x)) =

τ−1(x ιR(x
−1)−1∆) = x ιR(x

−1)−1
. Hence, the definitions of “partial cycling” and “partial twisted decycling” are natural:

a partial cycling or decycling corresponds to moving a prefix or a suffix of the first or last simple factor; “twisting”
refers to composition with τ .

Partial cyclings and partial twisted decyclings are preserved by the graph isomorphism Φ according to the following
results.

Proposition 4.27. Let x ∈ Bn be a left rigid braid with `(x) = r > 1 and let s be an arrow from x to y in USGL(x)
such that s 4 ιL(x). Then, Φ(s) is an arrow from Φ(y) to Φ(x) in USGR(x) such that ιR(Φ(y)) < Φ(s).

Proof. We know that Φ(s) is an arrow from Φ(y) to Φ(x), so what we still need to prove is ιR(Φ(y)) < Φ(s). As
ιR(Φ(y)) = Φ(y)◦R ∧R ∆ and Φ(s) is simple, it is sufficient to show that Φ(y)◦R < Φ(s).

Recall that Φ is defined via iterated right cycling (for vertices), respectively iterated right transport (for arrows).
Let N be an integer sufficiently large so that Φ(x) = c2r N

R (x) and Φ(s) = s(2r N )
R . Denoting by C the (left)

conjugating element for 2r N -fold right cycling of x , we observe that, by the definition of the right transport, we
have Φ(x) = c2r N

R (x) = CxC−1
= x (2r N )

R .
Let p = inf(x). Since we are assuming s 4 ιL(x) 4 x◦L , there is a positive braid α, such that x = sα∆p, and as the

right transport respects products by Theorem 4.12, we obtain Φ(x) = x (2r N )
R = s(2r N )

R α
(2r N )
R ∆p

= Φ(s)α(2r N )
R ∆p,

where α(2r N )
R is positive. Hence, Φ(s) 4 Φ(x)∆−p, that is, Φ(s)−1Φ(x)∆−p is positive, which implies that

∆−pΦ(s)−1Φ(x) is positive, too. We finally obtain Φ(y)◦R = ∆−pΦ(y) = ∆−pΦ(s)−1Φ(x)Φ(s) < Φ(s) completing
the proof. �

Corollary 4.28. Let x ∈ Bn be a left rigid braid with `(x) > 1. Then, Φ and Ψ as defined above are isomorphisms
of the directed graphs USGL(x) and USGR(x)op preserving the colours of arrows.

Proof. We know that Φ and Ψ are isomorphisms of directed graphs by Theorem 1.3; it remains to be shown that they
preserve the colours of arrows.

By Proposition 4.27, the image of a black arrow under Φ is a black arrow. Applying Proposition 4.27 to x−1, which
is also a rigid braid with `(x−1) > 1, it follows that the image of a grey arrow under Φ is a grey arrow. The analogous
result holds for Ψ by symmetry. �
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[6] J. Birman, V. Gebhardt, J. González-Meneses, Conjugacy in Garside groups I: Cycling, Powers and Rigidity, Groups Geom. Dynam. 1 (2007)

221–279.
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