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It is an elementary fact that given any continuous real function f on 10, 1 1 
and any n + 1 points on its graph, there exists a unique polynomial p, of 
degree <n that passes through those points. It is natural to ask whether, if f 
is non-negative, one may choose the n t 1 points on the graph of f so that 
the interpolating polynomial p, is also non-negative. We prove here that this 
is indeed the case. (This problem was posed to us by Charles Chui.) Our 
proof is entirely elementary. The reader is urged to draw his own pictures to 
bring out the simple geometric nature of the proof. 

For applications to approximation by splines, it would be useful, in the 
problem we do solve here, to make sure that the two endpoints of the interval 
are among the points of interpolation. But our method of proof is actually 
destructive of this goal-see for example the proof of Case D near the end of 
the paper. (See also the final remark of our paper.) 

THEOREM. Lel f be a continuous and non-negative real function on the 
closed interual [0, 11. For each n = 0, 1, 2,..., there exist n + 1 points 
0 < x0 < x, < ... < x, < 1 and a polynomial p, of degree <n that is also non- 
negatice on (0, 1 1, ‘so that pn(xk) = f(xk) for k = 0, I...., II. 

Remark. The corresponding theorem for periodic functions f‘ and 
trigonometric polynomials p, is also true. The proof is along the same lines. 
but is somewhat easier because of the absence of endpoint effects. 

DEFINITION. Let f be continuous and real on 10, I j and let p be a 
polynomial such that f -p has only finitely many zeros. Let f E 10. 1 I. and 
write A = f -p. Then 
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(a) t is called an intersection value of (f,p) if d(t) = 0. 

(b) 1 is called a crossover value of (f,p) if d(x) is strictly positive in 
It - h, t) and strictly negative in (t, t + h], or vice versa, for some number 
h > 0. 

(c) t is called a kiss value of (f,p) if d(t) = 0 and d(x) > 0 (or 
d(x) < 0) for all x in [t - h, t + h ] for some number h > 0. 

(d) t is called an end intersection value of (f,p) if d(t) = 0 and either 
t-Oorr-I. 

(e) t is called a good intersection value if it is either a crossover or an 
end intersection value. 

Note. Once and for all, we exclude the case where f(x) -p(x) has 
infinitely many intersection values, for in that case, we may trivially choose 
p, =p for all n > degp. 

LEMMA 1 (Obvious). The intersection values of (Ap) are of precisely 
three kinds: (1) crossover, (2) kiss, and (3) end. 

LEMMA 2. If t is a crossover value of (Ap) and a positive number E is 
given, then for every suflciently small 6 > 0, the following implication holds 
for all polynomials q. If) p(x) - q(x)] < 6 for all x E [0, 11, then (A q) has af 
least one crossover value t’ in [I - E, t + E]. We call this value t’ a crossover 
value of (f, q) that corresponds to t. No confusion can arise if E is small 
enough. 

ProoJ Suppose, say, that 0 < h < E and that p(t - h) < f(t - h) - 26 
and that p(t + h) > f(t + h) + 26. Then we would have q(t - h) < 
f(t - h) - 6 and q(t + h) > f(t + h) + 6, so that there must exist a crossover 
of (A q) in [t - h, t + h]. 

Proof of the Theorem 

We shall suppose that f has only finitely many zeros, since we could 
otherwise take p,(x) = 0 for ail n. We shall construct p, inductively so that 

(1) p,(x)>0 for all xE [0, I] 

(2) deg P,(X) < n 
(3 ) there are at least n + 1 good intersection values of (f,p,) in [ 0, 1 ] 

(4) p,(x) is strictly positive for each x E (0, 1). 

It is easy to start the induction. Let 
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Further let 
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provided that f(0) and f( 1) are not both 0. Otherwise let 

It is easy to see that p0 and p, satisfy our conditions (lt(4). Now 
suppose that p, has been constructed and that n > 1. 

If (A p,) has at least n + 2 good intersection values, then we let p,, _ , = p,, . 
Otherwise, there are exactly n f 1 good intersection values xi with 0 < ,K” < 
.Y, < . . . < X, ,< 1. Since there are no extra cross-over values, then surely 
f-p, is alternately non-negative and non-positive in the successive open 
intervals between the xi, where we adjoin the intervals (0, x,,) and (x,, 1) if 
they are non-empty. 

We now let 

rn+ ,(x) = (x - x0)(x - x, ) . . . (x ~ x,,). 

and choose the polynomial s,+ , = * r,,+ 1 so that s,+ , and J -p,, have the 
same sign away from their zeros, i.e., 

If(x) -P,(X) I s, + 1 (xl 2 0 for all x E 10, 11. 

We further define 

rlnt ,(x3 El =Pn(x) + ES,,, ,(x) 

and we let 

a = sup k 2 0: If(x) - 9,+ ,(x3 &)I s, + I(X) z 0 
for all x E 10. 1 I}. 

It is possible that a = 0. The idea is that we are shifting p, fowards f‘ until 
either a new good intersection value is created or is about to be created in 
the sense that for E slightly larger than cz, (f(x), q,,+ ,(x, E)) will have at least 
one more good intersection value than (Lp,) does. We let 

qn+ I(X) =P,(x) + as,+ l(X) = 4,(-~, a). 

It is clear that deg q,,+, < n + 1. 

LEMMA 3. q,+,(x)>OforalixE IO.11 
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ProoJ It will be enough to prove that p,, + ES, ~, > 0 whenever 
0 ,< E < a. We write 

I PAX) t ES, t I (XII = IfCx> - (P”(X) f Q,t I(X))1 ~ J-(-x) 

G If(-y) - (P,(X) + ES, + ,(x)1 I. 

If now s,.+ i(x) < 0, then this last expression is negative. so p,(x) + 
ES,, ,(x) > 0. If, on the other hand. s, + ,(x) > 0, then p,,(x) + cs,, + ,(x) > 
P,,b) 2 0. 

LEMMA 4. If xj is a good intersection value of (A p,), then it is a good 
intersection value of (& q,,, ,). 

ProoJ We need only suppose that xj is a crossover value of (Jp,,), 
because the end intersection case is trivial. If a = 0, there is nothing 
to prove. If c1 > 0 and if xj is a crossover value of (f,p,). then choose 
0 < E < a so that [f(x) - (p,(x) t ES, + ,(x))] < 0 when xjm, < x < xj and 
IfCv) - (P”(X) + &Snt 1 (x))] > 0 when xi < x < xj+ , , or vice versa. (If j = 0, 
we let x-, = 0 and ifj= 17, we let x,+, = 1, as a convention.) Now on letting 
F + a-. we have the result, since we may choose yjP, and 4;+, so that 

s -4,+, has no zero in (JIM-, , xj) and no zero in (xj, yj+ ,). 
The following lemmas, whose geometrical content seems evident, helps 

illuminate the situation if (f, qn + ,) has no good intersection values that are 
not among the good intersection values of (f, p,). (We think of A(X) as 
J(x) - q,&,(x), and change the interval ]xj-,, xi] into [0, 11.) 

DEFINITION. Let f(x) and g(x) be two continuous functions on [0, 11. 
Suppose that f(0) = g(0) = 0 and that g(x) < f(x) for all x E 10, 11. We say 
that the graphs off and g are tangent at 0 provided that 

lim inf (‘) - g(x> = 0 
x-o + X 

A similar definition holds for tangency at x = 1. 

LEMMA 5. Let A(x) be a continuous function on [O, 11, say, such that 
A(0) = A( 1) = 0 and A(x) > 0 for all x E (0, 1). Let s(x) be a polynomial 
such that s(O) = s(l) = 0, s’(O) # 0, s’( 1) # 0, and s(x) > 0 for all x E (0, 1). 
If s(x) < A(x) for all x E (0, 1) and if the graphs of s and A are not tangent 
at either x = 0 or x = 1, then there exists an E > 0 such that (1 + F) 
s(x) ,< A(x) for all x E [0, I]. 

Proof: Otherwise, for E = l/n, there exists x, in (0, 1) so that (1 + (l/n)) 
s(x,) 3 d(x,). Choose a convergent subsequence x, + x0. Since s(x) < d(x) 
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in the open interval. x0 must be an endpoint. say x,, = 0. Now d(x,) - s(x,) & 
(l/n) s(x,) so that 

Hence 

lirn inf A(X) ~ s(x) 0 
.r .o + .Y -- 

since s(x,)/x, + s’(O), and the tangency is proved. 

LEMMA 6. Suppose instead thar A(0) = s(O) = 0, s’(0) > 0, that 
s(x) < A(x) for all x E (0, 11, and that the graphs of s(x) and A(x) are not 
tangent at x = 0. Then the same conclusion holds. 

Proof Easier than of Lemma 5, and hence omitted. 

LEMMA 7. Suppose A(x) > 0 for all x E IO, 11, that A(x) > 0 for all 
s E (0, l), and that for each E > 0, ES(X) <A(x) fails for some x =x, in 
10, 1 1. Then the graphs of A(x) and 0 are tangent at one of the endpoints. 

Proof. Otherwise, for each n, there exists a point X, such that A(x,) 6 
s(x,)/n. Passing to a subsequence, we may suppose that x,--t 0 (,u,--t 1 is 
handled similarly.) Then 

Atx 1 1 WI) ---“<--- 
xn n xn 

and lim inf d(x)/.u = 0, as was to be proved. 
We can now complete the proof of the Theorem. There are a number of 

possible cases (not entirely disjoint) that we shall be concerned with. It 
might be good to think of our proof as a computer program. In Cases A, B, 
and C, the program produces pn+ , and stops. In Cases D, D’, E, E’, and F, 
F’, there is possible trouble at an endpoint. In each of these cases, we might 
proceed next to Case C, produce p,+, , and then stop. If we don’t do this, 
then we go this time again to some one of the Cases D, D’, E, E’, or F, F’. 
but after this, we must surely go to Case C, produce p,,+, , and then stop. 

Case A. qn+, has a zero in (0, 1). 

Case B. qn+, has no zero in (0, 1) and (f, qn+ ,) has a good intersection 
value that is not a good intersection value of (f,p,). 
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Case C. q,+, has no zero in ]O, 1 ] and every good intersection value of 
(A q, + ,) is a good intersection value of (f, p,). 

Case D. q,,+, has no zero in (0, 1) but q, + ,(O) = 0, qk+ ,(O) # 0 and 
q,, + ,(s) > f(x) for all x E (0, h) for some h > 0. 

Case D’. Same as Case D, but with x = 0 replaced by x = 1 throughout. 

Case E. Same as Case D but with qk+ ,(O) = 0. 

Case E’. Same as Case D’ but with q;, c ,(I) = 0. 

Case F. Same as Case D, but with q,+ ,(x) < f(x) for all x E (0. h). 

Case F’. Same as Case D’ but with q,,+ ,(x) < f(x) for all x E (I - h, 
1 1. 

Treatment of case A. (For some t E (0, l), q,,+,(t) = 0.) In this case 
we must have u > 0. Since p,,(t) > 0 and since qn+ ,(t) = 0, we 
have q,+ ,(t) <p,(t), and thus s,+,(t) < 0. In particular, q,+,(x) <p,,(x) 
over a neighborhood of t. Also, f(t) < p,(t). We claim that f(t) = 0. 
For if f(t) > 0, then for E a little smaller than u, but still positive, we 
would have f(t) - p,(t) < 0, f(t) - qn+ ,(t) > 0, and hence Lf (t) - 
(p,(t) + ES,,, ,(t)) ] > 0, which would contradict the definition of a. 

We also see that q,+ ,(x) > f( x over a deleted neighborhood of t, since ) 
s,,, ,(.Y) does not change sign near t. Now unless qn+, = f at infinitely many 
points (in which case we choose pn+ 1 = q,,+ ,), q, + , must be strictly greater 
than f over a deleted neighborhood of t. 

We now choose 

Pn*+,(x)=qn+I * ’ i 1 

where we will choose 6 very small and positive to satisfy a number of 
requirements. First of all, we may by Lemma 2 be sure that (f,p,“+ ,) has a 
corresponding cossover value near to each crossover value of (fi q,+ I). If 0 
is an intersection value of (f, q,+ ,), then it is an intersection value of 
(f, p,T+ i). This is not necessarily so for the right-hand endpoint x = 1, 
however. Let us further restrict 6 so that f(t + at) > 0. We shall need two 
more restrictions on the size of 6. 

We have xk < t < xk+ , . where xk and xk+ , are either good intersection 
values of (f, q,) or else xk+, = 1 and qn+,(l) > f(1) or else xk = 0 and 
q, + ,(O) > f(O), by convention on the labelling x_ , and x, +, , Choose t’ with 
Xk < t’ < t and t” with t < t” <XkS,. Choose E > 0 so that 
q,, + ,(t’) > f(t’) + 2s and q, + ,(t”) > f(t”) + 2s. Now we choose 6 so small 
that /q, +,(x) - q,l + ,(x/( 1 + S))] < F for all x E [O, 11. Now p,“+ ,(t’) > f(t’) 
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and p,*+ ,(f + Sf) = 0 < j(r + 6r). Hence there is at least one crossover value 
of (f, p,*+ ,) between xk and t + 6t. Similarly, there is at least one crossover 
value of (5 pz+ ,) between t t 6t and sk / , . This implies that there are at 
least two more crossover values of (A p,*+ ,) than there are of (S,p,,). On the 
other hand. if 1 is an end intersection value of (f, p,,)* it need not be one of 
(5 pz+ ,). But by taking a sure gain of at least 2 and a possible loss of 1, we 
have at least II + 2 good intersection values of (h p,*, ,). Since we have no 
guarantee that p,T. , is strictly positive over (0, 1). the final step is to let 
p,, , ,(.u) = pz- ,(s) + 1.~. where i > 0 is chosen so small that, by Lemma 2. 
(.J p,, L ,) has at least as many crossover values as has (f. pzb ,). Since 
p,*- r(O) = D,, r(O), and since p n + r(.u) y 0 for all x E (0, 1). the polynomial 
P ,, , , satisfies all the requirements. 

Treatment of Case B. (q,,+ , has no zero in (0, 1) and (f; q,, , I) has a 
good intersection value not among the (xi}.) Merely choose p,+ , = 9,, + , . 

Treatmetlt of Case C. (All the intersection values of (f; 9,!+ ,) are 
among the (x,) and 9,+, > 0 over 10, 11.) Let pz+, = 9,1+, + as,+ ,. where 
WC will choose 6 > 0 so small that by Lemma 2. (J p,“, ,) has a 
corresponding crossover value near each crossover value of (J 9,, , , ). Also. 
we restrict 6 to be so small that 9,1L, t ds,, + , > 0 over 10, 1 1. Since 9,, , , t 
6s ,I + I = Pn f ((X + 6) s,,+ 13 where CL + 6 > u. we see by the definition of (1 
that (f: p,T+ ,) must have an intersection value x’ that is not among the s,. If 
it is a good intersection value, then we simply let p,, , =pt, , . Otherwise it 
is a kiss value, and by changing 6 slightly, we can push the kiss point past 
the graph off so that it splits into two crossover points. 

Remark. The purpose of our treatment of Cases D-F’ is to handle 
tangencies at endpoints. We do this by modifying the slope of 9,, , , near the 
offending endpoint. This might lose an endpoint intersection value. but 
compensates by gaining new crossover values. The net result is a reduction 
to cases that have already been treated. 

Treatmetti of Case D. We let 9jj;+ ,(.Y) = 9,(x/l + 6). where WC choose 
6 > 0 so small that (A ,*+ , ) has corresponding crossover values near each 
crossover value of (f, qn+ ,). If x = 1 was an intersection value of (J q, + ,). it 
is not necessarily an intersection value of (f, q,*+ ,). But in any event. there 
must exist a crossover point x’ of (f, 9x, ,) with 0 = sU < x’ < x,. The 
method of proof is like that of Lemma 5, so we omit it. Note that the net 
effect is that we are now in Case F, and x = 1 is definitely not an intersection 
value of (x. 9,*+ ,). 

Treatment of Case D’. The same as that of Case D. with x = 0 replaced 
by X= 1. 
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Treatment of Case E’. Let p,*+ ,(x) = q,+ ,(x) + S(1 - x)’ for 6 > 0 so 
small that (f, pc+ ,) has a corresponding crossover value near each crossover 
value of (5 q,, ,). Note that q;+ ,( 1) > 0 since q,,+ , would otherwise be 
negative for x slightly smaller than 1. Let p,,+,(x) =pX+ ,(x + EX), where 
c > 0 is chosen with an eye to corresponding crossover points with (J:p,*+ ,). 
Further restrict E so that f( l/( 1 + E)) > 0. It is easy to see that (fi p,*+ ,) has 
two crossover values in the interval (x,, , , x,,)’ where x, = 1. However. 
neither 0 nor 1 is an intersection value of (Lpi, ,). But then (S, pc+ ,) still 
has at least n + 1 good intersection values. and we can move to Case C to 
construct p,,- , . 

Treatment of Case E. The same as that of Case E’. but with .Y = 1 
replaced by x = 0 throughout. 

Treatment of Case F. We will be brief. Let q,*+ ,(x) = qn+ ,(x) + 6( 1 - x), 
where 6 is small. One loses the endpoint x = 0 and gains a crossover value 
near x = 0. 

Trearment of Case F’. Essentially the same. 

On tracing the “program” described above, one arrives at Case A, B, or C 
within at most two steps. In each of these three cases, one constructs pnI , , 
and the proof is done. 

Remarks. We outline an alternative approach to a proof of our Theorem, 
suggested to us by G. Hal&z, that might be simpler than ours. However, 
writing down a detailed proof along these lines might prove troublesome. For 
simplicity, we take n = 2m even. Let q,(x) = A(x - t,)* (x - t,)’ ... (x - tm)Z, 
where the ti are chosen in (0, 1). For 2 large and positive, (f, q,) will have n 
intersection values. Then one uses the “blowing up” argument with the S, as 
before to create the needed extra intersection value. 

There is a closely related problem whether, if f is infinitely differentiable, 
we may coalesce all the n + 1 points of interpolation into one single point of 
multiplicity n + 1. This means that pn is the nth section of the Taylor series 
for f at some point x0 in [0, I]. The following argument by G. Hal&z, 
whom we thank for his help, shows that this is not possible in general. 

Take n large and odd, and let f(x) be a non-negative polynomial of degree 
s + 1 such that f(” ‘) (x) = c for all x E 10, 11, where c is a positive 
constant. It is possible to do this so that f(0) = f( 1) = 0. Now if p,, is the 
n th section of the Taylor series for f at x,, then clearly 

nt I 
f(x) =p,(x) + co;n:;;, . 

Then surely, since n + 1 is even, either f(0) > p,(O) or f(1) > p,(l), which 
rules out p, being non-negative throughout (0, I 1, since f (0) = J( 1) = 0. A 



simple argument shows that if tz is even, and if we choose p,, so that 
p!,“‘(x) EM, where M= max y”‘= f’“‘(x,), then p,, > S, so the answer is 
affirmative if n is even. 

Bruce Reznick has pointed out that for f(s) = x’ on 10, 1 I. it is impossible 
to interpolate at 0, a. and 1, if 0 < a c I. with a non negative polynomial p 
of degree <2. He has also suggested the interesting problem whether our 
theorem remains true if one drops the hypothesis that J‘ be continuous. It 
seems not to be easy even in the case n = 2. 


