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EDITORIAL COMMENT

Nitroso-Redox
Imbalance Affects
Cardiac Structure and Function*

Vasileios Karantalis, MD,†
Ivonne Hernandez Schulman, MD,†‡
Joshua M. Hare, MD†

Miami, Florida

Cardiovascular diseases (CVDs) and their treatment pose a
huge economic and social burden in Western societies and
in the developing world (1). Thus, there is significant
interest in developing new therapeutic targets, and it is of
particular interest that an old class of drugs, inhibitors of
xanthine oxidoreductase (XO), may be repositioned to treat
heart failure and left ventricular (LV) dysfunction. In this
context, there is growing awareness that nitroso-redox balance
may represent a new therapeutic target for heart failure (2).
However, whether XO inhibitors fully address nitroso-redox
imbalance in all patients remains controversial.

See page 926

The hypothesis that XO inhibition could treat heart
failure was tested in the OPT-CHF (Oxypurinol Therapy
for Congestive Heart Failure) trial (3). In that study, the
primary endpoint was not statistically different in the
population of symptomatic heart failure patients enrolled;
however, patients with hyperuricemia appeared to be a
responsive population. While hyperuricemia is classically
associated with gout and nephropathy, it is clearly also a
biomarker in heart failure populations (4–6). Uric acid
(UA) is the end product of purine metabolism, involving the
conversion of hypoxanthine to xanthine and then to UA in
reactions catalyzed by XO (Fig. 1) (7). In most mammals
including rodents, UA is further degraded to allantoin via
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the enzyme urate oxidase (UO), resulting in low UA serum
levels. In humans and great apes, however, this final step
does not occur because of a single point mutation inactivat-
ing UO, resulting in substantially higher serum UA levels.
Whether UA plays beneficial or deleterious roles remains
controversial, and some arguments can be made that the
impact of UA on vascular tone has played an evolutionary
role (4). However, in hypertension, type 2 diabetes mellitus,
coronary artery disease (CAD), heart failure, and chronic
kidney disease (CKD), high UA levels correlate with an
increased risk of stroke and CVDs (4,6,8–10).

As UA levels represent a biomarker of XO activity, the
OPT-CHF results suggest that patients with elevated XO
activity responded preferentially (3). XO is a key oxidase
participating in nitroso-redox imbalance in the heart, pro-
ducing superoxide as a byproduct of purine metabolism
(Fig. 1). Thus, the epidemiological association of high UA
levels with worse prognosis in a wide cohort of patients with
CVDs likely reflects the fact that UA levels rise with increased
XO activity (4–10).

XO and Nitroso-Redox Imbalance

In the heart, XO localizes to the sarcoplasmic reticulum
(SR), interacting with neuronal nitric oxide (NO) synthase
(nNOS, NOS1) and the ryanodine receptor (RYR2)
(11,12). Depressed NOS1 activity or abundance in the SR
augments XO activity (12,13), elevating oxidative stress in
the SR (14–16). The functional consequences of this
imbalance are evident in patients with heart failure, where
inhibition of XO with allopurinol improved myocardial
efficiency (reversing mechanoenergetic uncoupling) (17,18).
The mechanism of this effect is attributable, at least in part,
to post-translational modification of thiol moieties on pro-
teins (19,20). In the case of the SR, nitrosylation of the RYR2
modulates the open probability of this Ca2� pore. With
nitroso-redox imbalance, formation of reactive oxygen species
predominates, and in turn also activates the RYR2, but in an
irreversible manner, leading to Ca2� leak (11,12,16).

This colocalization of an oxidase with a NO synthase and
their signaling interactions underlies the basis for nitroso-
redox imbalance as a key pathophysiologic signaling mech-
anism (2). In this regard, we and others have demonstrated
that the NOS1-deficient mouse has increased mortality, LV
remodeling, and ventricular arrhythmias after myocardial
infarction, associated with increased XO activity and decreased
S-nitrosylation of Ca2� handling proteins (21–23). This phe-

otype is further substantiated in NOS1 overexpressing mice
here specific myocardial NOS1 overexpression protects from

emodeling and preserves Ca2� cycling (24).
In the failing heart, NOS1 translocates from the SR to

he cell membrane (25,26), an effect that is protective from
a2� overload. Increased NOS1 in sarcolemmal caveolae

increases S-nitrosylation of the L-type calcium channel,
leading to a decreased inward Ca2� current. In turn, the

reduced Ca2� influx within the cardiac myocyte prevents
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Ca2� overload-induced injury (23,27,28). While this mech-
nism is largely protective, probably acutely (29), it also
esults in SR nitroso-redox imbalance over the long term,
hich as described above can potentiate SR Ca2� leak,

arrhythmias, and contractile dysfunction. The disruption of
physiological nitrosylation of SR proteins has been shown to
be deleterious (19,20,30,31).

Cardiac Function and Structure

Struthers and collaborators have made a series of contribu-
tions regarding the role of XO inhibition and cardiovascular
morbidity and mortality. They have shown that allopurinol
in a dose-dependent fashion (32) decreases both cardiovas-
cular events and mortality (33), improves endothelial func-
tion in patients with CAD (34), and regresses LV mass in
patients with CKD (10). In the study published in this issue
of the Journal (35), the authors further address a key issue,
that of the regression of LV hypertrophy (LVH) in patients
with CAD. Indeed, a key surrogate for clinical efficacy in
disorders of LV dysfunction is the amelioration of LVH
(36,37). They randomized 66 patients with CAD and LVH
to receive either 600 mg/day allopurinol or placebo on a
background of optimal medical therapy. LV mass was
reduced by 5.2 � 5.8 g for the high-dose allopurinol cohort
versus 1.3 � 4.48 g for the placebo group (p � 0.007).

oreover, allopurinol significantly reduced LV end-systolic
olume, improved endothelial function, and reduced aug-
entation index, an independent predictor of LV mass

egression (38). The beneficial effect of XO inhibition on
VH regression is supported by experimental animal mod-
ls of heart failure (39). Furthermore, the importance of

Figure 1 Increased Xanthine Oxidase Activity and Nitroso-Redo

The reactive oxygen species (ROS) generated as a result of purine metabolism
oxynitrite formation and the oxidation of proteins blocking important post-trans
activity can activate xanthine oxidase and exacerbate nitroso-redox imbalance.
a biomarker of increased xanthine oxidase activity and possibly nitroso-redox i
hese findings are highlighted by fact that in the LIFE study
40), LVH regression alone was associated with reduced
ll-cause mortality (by 28%), cardiovascular mortality (by
8%), sudden cardiac death (by 19%), myocardial infarction
by 15%), new heart failure (by 36%), new onset atrial
brillation (by 12%), and stroke (by 24%).
The importance of this small single-center study lies in

he fact that it adds further support for the development of
O inhibitors in the treatment of heart failure. As with

ngiotensin-converting enzyme inhibitors, beta-blockers,
nd the combination of isosorbide dinitrate and hydralazine,
he regression of LVH augurs well for the possibility that
O inhibitors could have clinical benefits in an appropri-

tely selected heart failure population. Thus, this work adds
nother piece of evidence supporting the development of
herapeutic strategies targeting myocardial nitroso-redox
mbalance.
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