
Journal of the Egyptian Mathematical Society (2014) 22, 214–219

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org
www.elsevier.com/locate/joems
ORIGINAL ARTICLE
On MHD flow of an incompressible viscous fluid
* Corresponding author. Tel.: +92 321 5151290.

E-mail address: syedtauseefs@hotmail.com (S.T. Mohyud-Din).

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

1110-256X ª 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

http://dx.doi.org/10.1016/j.joems.2013.07.003

Open access under CC BY-NC-ND l

Open access under CC BY-NC-N
Muhammad Usman, Zertaisha Naheed, Aqsa Nazir, Syed Tauseef Mohyud-Din*
Department of Mathematics, HITEC University, Taxila Cantt, Pakistan
Received 1 July 2013; accepted 18 July 2013
Available online 13 November 2013
KEYWORDS

Homotopy Perturbation

Method;

Nonlinear equation;

Hartmann number;

Reynolds number;

MHD flow;

MAPLE 13
Abstract In this paper, we apply Homotopy Perturbation Method (HPM) to find the analytical

solutions of nonlinear MHD flow of an incompressible viscous fluid through convergent or diver-

gent channels in presence of a high magnetic field. The flow of an incompressible electrically con-

ducting viscous fluid in convergent or divergent channels under the influence of an externally

applied homogeneous magnetic field is studied both analytically and numerically. The graphs are

presented to reveal the physical characteristics of flow by changing angles of the channel, Hartmann

and Reynolds numbers.
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ª 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

D license.
1. Introduction

The incompressible viscous fluid flow through convergent or
divergent channels is one of the most applicable cases in many
applications such as aerospace, chemical, civil, environmental,

mechanical, and biomechanical engineering as well as in
understanding rivers and canals. Jeffery [1] and Hamel [2] have
carried out the mathematical formulations of this problem in

1915 and 1916, respectively. If we simplify Navier–Stokes
equations in the particular case of two-dimensional flow
through a channel with inclined walls, finally we can reach
Jeffery–Hamel problem [3–6]. Jeffery–Hamel flows have been

extensively studied by several authors and discussed in many
textbooks, for example [7–11], and so forth. The study of elec-
trically conducting viscous fluid that flows through convergent

or divergent channels under the influence of an external mag-
netic field not only is fascinating theoretically but also finds
applications in mathematical modeling of several industrial
and biological systems. A possible practical application of

the theory we envisage is in the field of industrial metal casting,
the control of molten metal flows. Another area in which the
theoretical study may be of interest is in the motion of liquid

metals or alloys in the cooling systems of advanced nuclear
reactors [12]. Clearly, the motion in the region with intersect-
ing walls may represent a local transition between two parallel

channels with different cross-sections, a widening or a contrac-
tion of the flow. The first recorded use of the word magnetohy-
drodynamics (MHD) is by Bansal [13]. The theory of MHD is

inducing current in a moving conductive fluid in the presence
of magnetic field which creates force on electrons of the con-
ductive fluid and also changes the magnetic field itself. A sur-
vey of magnetohydrodynamics studies in the mentioned

technological field can be found in [14]. The problem is basi-
cally an extension of classical Jeffery–Hamel flows of ordinary
fluid mechanics to MHD. In the MHD solution an external

magnetic field acts as a control parameter for both convergent
icense.
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Table 1 Values of a for Re = 100 and a = �2.5�.

H 0 1000 2000 4000

a �1.117418863 �0.9644432630 �0.8367326331 �0.6392026162

Figure 1 HPM solution for velocity is convergent channel for

Re = 100 and a = �2.5�.

Table 2 Values of a for Re = 100 and a = 2.5�.

H 0 1000 2000 4000

a �3.512069452 �3.011764524 �2.583264460 �1.912965835

Figure 2 HPM solution for velocity is convergent channel for

Re = 100 and a = 2.5�.
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and divergent channel flows. Here, besides the flow Reynolds
number and the channel angular widths, at least an additional

dimensionless parameter appears, namely, the Hartman num-
ber. Hence, a much larger variety of solutions than in the clas-
sical problem are expected. The inspiration of this paper is the

extension of a relatively new technique which is called Homot-
opy Perturbation Method [15–17] to investigate the MHD flow
through convergent or divergent channels in presence of a high

magnetic field. The governing highly nonlinear equation of this
problem is also solved numerically by shooting method, cou-
pled with fourth-order Runge–Kutta scheme.

2. Mathematical formulation

Consider a system of cylindrical polar coordinates (r, h, z),
where the steady two-dimensional flow of an incompressible

conducting viscous fluid from a source or sink at channel walls
lie in planes and intersect in z-axis. The schematic diagram of
problem is illustrated in [18]. Now we assumed that uh = 0; it

means that there are no changes with respect to z direction;
thus the motion is purely in radial direction and merely de-
pends on r and h and there is no magnetic field along z-axis.

The polar form of equation of continuity, Navier–Stokes and
Maxwell’s in reduce form is given as follows:
q
@

r@r
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where B0 is the electromagnetic induction strength, r the con-

ductivity of the fluid, u the velocity along radial direction, P
the fluid pressure, m the coefficient of kinematic viscosity,
and q the fluid density.

Now from Eq. (1), we have

fðhÞ ¼ ruðr; hÞ: ð4Þ

Using g ¼ h
a ; i.e., the dimensionless parameters, where a is

the semiangle between the inclined walls

fðgÞ ¼ fðhÞ
fmax

; ð5Þ

substituting Eq. (5) into Eq. (2) and Eq. (3), we have

f000ðgÞ þ 2aRefðgÞf0ðgÞ þ ð4�HÞa2f0ðgÞ ¼ 0; ð6Þ

where H ¼
ffiffiffiffiffiffi
rB2

0

qv

q
is Hartmann number and Re is the Reynolds

number is

Re ¼ fmaxa
m

divergent� channel : a > 0; fmax > 0;

convergent� channel : a < 0; fmax < 0:

�

So we have the BCs

fð0Þ ¼ 1; f0ð0Þ ¼ 0; fð1Þ ¼ 0: ð7Þ



Figure 3 HPM solution for velocity is convergent channel for

Re = 100 and a = 5�.
Figure 4 HPM solution for velocity is convergent channel for a

positive, Re = 100 and H = 1500.
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3. Analysis of Homotopy Perturbation Method (HPM)

To illustrate the basic concept of Homotopy Perturbation
Method, consider the following nonlinear functional equation:

AðuÞ ¼ fðrÞ; r 2 X; ð8Þ

with the boundary conditions

B u;
@u

@n

� �
¼ 0; r@X ð9Þ

where A is the general functional operator, B the boundary
operator, f(r) the known analytic function, and oX is the

boundary of the domain X.
The operator A is decomposed as A= L + N, where L is

the linear and N is the nonlinear operator. Hence Eq. (8) can

be written as follows:

LðuÞ þNðuÞ � fðrÞ ¼ 0; r 2 X: ð10Þ

We construct a Homotopy v(r, p):X · [0, 1] fi R satisfying
Table 3 Values of a for Re = 100 and a = 5�.

H 0 1000

a �5.458959462 �3.262595571

Table 4 Values of a for a positive, Re = 100 and H= 150

a 2.5� 5� 10�

a �2.788876071 �2.458506932 �0.6

Table 5 Values of a for a negative, Re = 100 and H= 150

a �2.5� �5� �10�

a �0.8977494512 �0.306202513 �0.039
Hðv; pÞ ¼ ð1� pÞ½LðvÞ � Lðu0Þ� þ p½AðvÞ � fðrÞ�
¼ 0; p½0; 1�; r 2 X: ð11Þ

Hence

Hðv; pÞ ¼ LðvÞ � Lðu0Þ þ pLðu0Þ þ p½NðvÞ � fðrÞ� ¼ 0; ð12Þ

where u0 is an initial approximation for the solution of (10). As

Hðv; 0Þ ¼ LðvÞ � Lðu0Þ and Hðv; 1Þ ¼ AðvÞ � fðrÞ; ð13Þ

It shows that H(v, p) continuously traces an implicitly de-
fined curve from a starting point H(u0, 0) to a solution

H(v, 1). The embedding parameter p increases monotonously
from zero to one as the trivial linear part L(u) = 0 deforms
continuously to the original problem A(u) = f(r). The embed-
ding parameter p e [0,1] can be considered as an expanding

parameter to obtain

v ¼ v0 þ pv1 þ p2v2 þ � � � : ð14Þ
2000 4000

�1.854117794 �0.6557546191

0.

15� 20�

923394340 �0.1033788301 �0.01711080411

0.

�15� �20�

17948224 �0.007564057560 �0.00201446237



Figure 5 HPM solution for velocity is convergent channel for a

negative, Re = 100 and H= 1500.

Figure 6 HPM solution for velocity is convergent channel for

a = 2.5� and H= 1500.
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The solution is obtained by taking the limit as p tends 0 to 1

in Eq. (14). Hence

u ¼ lim
p!1

v ¼ v0 þ v1 þ v2 þ � � � : ð15Þ

4. Numerical simulation

In this section we compute an accurate analytical solution to
the problem (6–7) using Homotopy Perturbation Method.

Assuming f= v the Eq. (6) we have

v000ðgÞ þ 2aRevðgÞv0ðgÞ þ ð4�HÞa2v0ðgÞ ¼ 0: ð16Þ

According to the Homotopy Perturbation Method we con-

struct the homotopy in the form:

Hðv; pÞ ¼ ð1� pÞ½v000ðgÞ � f0000 ðgÞ�
� p½v000ðgÞ þ 2aRevðgÞv0ðgÞ þ ð4�HÞa2v0ðgÞ�:

ð17Þ

Substituting Eq. (14) into Eq. (16) and rearranging based
on powers of p-terms, it is reduced to

v0000 ðgÞ � f0000 ðgÞ ¼ 0;

v0001 ðgÞ þ 2aRev0ðgÞv00ðgÞ þ ð4�HÞa2v00ðgÞ ¼ 0;

..

.

..

.

..

.

Solving the above equations
Table 6 Values of a for a = 2.5� and H= 1500.

Re �200 �100 50

a �0.5181038551 �0.8977494510 �
v0ðgÞ ¼ 1þ a
g
2!

2

;

v1 ¼ �
1

120
Reaa2g6 � 1

12
Reaag4 � 1

6
a2ag4 � 1

120
Ha2ag4;

..

.

..

.

..

.

As before, the solution of Eq. (6) when p fi 1 is as follows:

fðgÞ ¼ v0ðgÞ þ v1ðgÞ þ v2ðgÞ þ � � � :

fðgÞ ¼ 1þ a
g
2!

2

� 1

120
Reaa2g6 � 1

12
Reaag4 � 1

6
a2ag4

þ� 1

120
Ha2ag4 þ 1

10800
Re2a2a3g10 þ 1

560
Re2a2a2g8

þ � � � :
5. Results and discussion

The objective of the present study was to apply the Homotopy
Perturbation Method to obtain an explicit analytic solution of
MHD flow through convergent or divergent channels in the
presence of a high magnetic field. The magnetic field plays

its role in no dimensional parameter, namely, the Hartmann
number. If we fix Re number that reveals the fact that by
increasing magnetic field the velocity profile becomes flat and
100 200

2.108830241 �2.788876073 �4.704765922



Figure 7 HPM solution for velocity is convergent channel for

a = �2.5� and H= 1500.
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thickness of boundary layer decreases. In fact magnetic field

induces a force in opposite of the momentum’s direction that
stabilizes the velocity profile. We have Table 1.

Now we take inverse case of Fig. 1 in which we see by

decreasing Hartman number, the velocity profile becomes flat
Table 7 Values of a for a = �2.5� and H= 1500.

Re �200 �100 50

a �4.704765923 �2.788876073 �

Table 7a The comparison between the numerical results and HPM

X 0th Order

approximants

1st Order

approximants

2nd Order

approximan

0.00 1.00000 1.00000 1.00000

0.05 0.99650 0.99650 0.99648

0.10 0.98599 0.98606 0.98598

0.15 0.96848 0.96883 0.96865

0.20 0.94397 0.94505 0.94473

0.25 0.91245 0.91506 0.91456

0.30 0.87393 0.87928 0.87852

0.35 0.82840 0.83817 0.83706

0.40 0.77587 0.79227 0.79067

0.45 0.71633 0.74210 0.73983

0.50 0.64980 0.68822 0.68503

0.55 0.57625 0.63115 0.62674

0.60 0.49571 0.57132 0.56538

0.65 0.40815 0.50912 0.50135

0.70 0.31360 0.44478 0.43498

0.75 0.21204 0.37837 0.36655

0.80 0.10348 0.30974 0.29631

0.85 �0.01209 0.23848 0.22443

0.90 �0.13466 0.16389 0.15105

0.95 �0.26424 0.08490 0.07625

1.00 �0.40082 0.00000 �0.00000
and thickness of boundary layer decreases, and we have Table 2
(see Figs. 2 and 3).

We take a = 5� instead of a = 2.5� as discuss in Fig. 1, no-

tice that velocity profile is more clear (see Table 3).
We examine if we increases a the effect of walls on fluid flow

decreases when we move away from them which lead to an in-

crease in velocity and the velocity profile in divergent channels,
we have Tables 4 and 5).

If we decrease a the behavior in velocity profile is over-

turned as in Fig. 4. The velocity profile in convergent channels
and we have (see Fig. 5).

Now we examine the behavior of velocity profile if Re var-
ies, and fixed Hartmann numbers we obtained (see Table 6).

The reverse behavior of velocity profile is notice when we
increase Re. We can infer from Figs. 6 and 7 for inflow regime,
back flow is prevented in the case of convergent channels but is

possible for large Reynolds numbers in the case of divergent
channels. Figs. 6 and 7 show that there is a reverse condition
for outflow regime.

The comparison between the numerical results and HPM
solution (1st, 2nd, 3rd and 4th order approximate) for velocity
when Re= 100 and H = 1500 is shown in Tables 7a and 7b.

6. Discussion

Homotopy Perturbation Method applied to find the approxi-

mate solutions of nonlinear MHD Flow of an incompressible
viscous fluid through convergent or divergent channels in the
presence of a high magnetic field. Tables 7a and 7b show the
comparison of numerical method and the proposed technique
100 200

1.192205819 �0.5181038541 �0.1989016484

solution for velocity when a = 2.5�, Re = 100 and H= 1500.

ts

3rd Order

approximants

4th Order

approximants

Numerical

solution

1.00000 1.00000 1.00000

0.99652 0.99652 0.99652

0.98612 0.98612 0.98612

0.96897 0.96895 0.96895

0.94529 0.94525 0.94525

0.91542 0.91536 0.91536

0.87974 0.87966 0.87966

0.83871 0.83860 0.83860

0.79279 0.79269 0.79265

0.74247 0.74232 0.74230

0.68824 0.68809 0.68804

0.63056 0.63038 0.63032

0.56984 0.56956 0.56956

0.50643 0.50620 0.50612

0.44063 0.44029 0.44029

0.37264 0.37240 0.37229

0.30257 0.30225 0.30224

0.23042 0.23012 0.23013

0.15609 0.15602 0.15589

0.07939 0.07939 0.07930

0.00000 �0.00000 �0.00000



Table 7b The comparison between the numerical results and HPM solution for velocity when a = �2.5�, Re = 100 and H = 1500.

x 0th Order

approximants

1st Order

approximants

2nd Order

approximants

3rd Order

approximants

4th Order

approximants

Numerical

solution

0.00 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

0.05 0.99868 0.99867 0.99886 0.99888 0.99887 0.99887

0.01 0.99470 0.99465 0.99539 0.99547 0.99546 0.99545

0.15 0.98808 0.98782 0.98951 0.98968 0.98966 0.98965

0.20 0.97881 0.97799 0.98103 0.98134 0.98131 0.98129

0.25 0.96689 0.96490 0.96972 0.97022 0.97016 0.97013

0.30 0.95232 0.94821 0.95526 0.95599 0.95591 0.95586

0.35 0.93510 0.92751 0.93723 0.93826 0.93808 0.93808

0.40 0.91523 0.90232 0.91515 0.91654 0.91638 0.91629

0.45 0.89272 0.87210 0.88843 0.89021 0.89001 0.88989

0.50 0.86755 0.83625 0.85634 0.85859 0.85832 0.85817

0.55 0.83974 0.79410 0.81809 0.82085 0.82030 0.82031

0.60 0.80927 0.74495 0.77274 0.77601 0.77558 0.77534

0.65 0.77616 0.68802 0.71923 0.72299 0.72213 0.72215

0.70 0.74040 0.62250 0.65636 0.66052 0.65986 0.65951

0.75 0.70199 0.54756 0.58281 0.58723 0.58600 0.58601

0.80 0.66093 0.46231 0.49714 0.50155 0.50062 0.50014

0.85 0.61722 0.36586 0.39776 0.40182 0.40028 0.40028

0.90 0.57086 0.25728 0.28299 0.28624 0.28523 0.28473

0.95 0.52186 0.13563 0.15103 0.15294 0.15219 0.15283

1.00 0.47020 0.00000 �0.00000 �0.00000 0.00000 0.00000
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for different values of g, a and Re= 100. Table 7 shows the
accuracy of the Homotopy Perturbation Method. In this inves-

tigation, the flow of an incompressible electrically conducting
viscous fluid in convergent or divergent channels under the
influence of an externally applied homogeneous magnetic field

is studied both numerically and analytically. The behavior of
the HPM solution is in good agreement with the numerical
simulation. Graphical results are presented to investigate the

influence of the angles of the channel, Hartmann number
and Reynolds number on the velocity profiles. In addition,
the reliability of the method and the reduction in the size of
computational domain give this method a wider applicability.
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