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Abstract

This paper mainly studies quantitative possibility theory in the framework of domain. Using
Sugeno’s integral and the notion of module a duality theorem is obtained between the extended
possibilistic powerdomain over a continuous domain X and the extended fuzzy predicates on X.
This duality provides a reassuring link between the spaces of quantitative meaning and the corre-
sponding Scott-topological space.
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1 Introduction

Possibility theory is an uncertainty theory devoted to the handling of incom-
plete information (see, for example [2,3,4,10,13], etc.). To a large extent, it is
similar to probability theory because it is based on set functions. The name
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“Theory of Possibility” was coined by Zadeh in [13], and was mainly pro-
posed as a framework for translating natural language information into fuzzy
constraints on an underlying feature space. The basic building blocks of possi-
bility theory were first synthetized in Dubois and Prade’s books [4]. Now, pos-
sibility theory has two main research directions: qualitative and quantitative.
Quantitative possibility theory has been proposed as a numerical model which
could represent quantified uncertainty, whereas qualitative possibility theory
centers on ordinal information rather than numerical information. Both ap-
proaches share the same basic “maxitivity” axiom. They differ when it comes
to conditioning, and to independence notions.

Possibility measures are a concept used in possibility theory. Tradition-
ally, it is defined on a σ-algebra of sets. The set-theoretic operations of such
algebras, set complement, for example, cannot be easily reconciled with topo-
logical notions. Hence some literature studied measure defined open sets of
some topological space(see, for example, [2,6,7], etc.).

We will illustrate our approach with a prime target of quantitative analysis,
the completely distributive lattice [0,∞]. Given a dcpo X, we are interested
in the function space

[X → [0,∞]]

which could be the carrier of meaning for a cost, or real-time analysis. We
stipulated that these functions are continuous. That way we ensure that the
process of approximating total element by partial ones in X is consistent with
the quantitative evidence provided by some function f ∈ [X → [0,∞]] [6].

The aim of the present paper is to study quantitative possibility theory
based on the previous spaces of quantitative meaning in the framework of do-
main. We first introduce the notion of the extended possibilistic powerdomain
which can be used to model possibility computation. Then By using Sugeno’s
integral and the notion of module we succeed in getting a duality theorem
between the extended possibilistic powerdomain over a continuous domain X
and the extended fuzzy predicates on X. This duality provides a reassur-
ing link between the spaces of quantitative meaning and space of topological
possibility valuations.

2 Preliminaries

In this section we briefly review some basic notions in domain theory. We
refer to [5].

Let (D,�) be a partially ordered set. A subset X of D is directed if it is
non-empty and for each pair of elements a, b ∈ X, there is an upper bound
x ∈ X for {a, b}. A directed complete partial order (dcpo, for short) is a

H. Wu, Y. Chen / Electronic Notes in Theoretical Computer Science 257 (2009) 87–9788



partial order set (D,�) such that every directed subset X has the least upper
bound (or join)

⊔
X.

A function from dcpo D to E is Scott-continuous iff it preserves the partial
order and the least upper bounds of directed sets, i.e., f is Scott-continuous
if whenever x � y, then f(x) � f(y), and for any directed set X, f(

⊔
X) =⊔

x∈X f(x). We write [D → E] for all Scott-continuous mappings from D to
E.

O is a Scott-open set iff O is an upper set and for all directed sets X,⊔
X ∈ O implies there exists x ∈ X such that x ∈ O. The collection of all

Scott-open subsets of D will be called the Scott-topology of D and denoted
by σ(D).

The relation way-below, written <<, is defined in terms of � by x << y iff
for all directed sets X, y � ⊔

X, implies there exists d in X such that x � d.
A dcpo D is continuous if for any x in D, the set of elements way-below x is
directed and has lub x, i.e., {y : y << x} is directed and x =

∨{y : y << x}.

3 The Extended Possibility Valuation

In this section, we will introduce the notions of the extended fuzzy predicate,
the extended possibility valuation and module[0, ∞].

Definition 3.1 Let X be a dcpo. Scott-continuous functions from X into
[0,∞] are called the extended fuzzy predicates. The set of all the extended
fuzzy predicates on X is denoted as FE(X). The partial order on FE(X) is
pointwise defined.

Remark 3.2 The extended fuzzy predicate generalizes fuzzy predicate in
[2](Definition 3.1, page 2666), which can be seen as an expectation. Since
[0,∞] with their usual linear order and endowed with the Scott topology the
only proper open sets of which are the intervals (a,∞], an equivalent definition
is: for any a ≥ 0, f−1(a,∞] is a Scott open set of X.

For every open O, the characteristic function χO that maps elements of O
to 1 and all other elements to 0. Note that χU is the extended fuzzy predicate
iff U is a Scott open set of X. Scalar multiplication and sup on FE(X) are
defined as follows:

r ∗ f(x) := r × f(x)

(�ifi)(x) := supi fi(x),

for all r ∈ [0,∞] and f, fi ∈ FE(X). We adopt the convention 0×∞ = 0 and
r ×∞ = ∞ if r 	= 0. It is clear that FE(X) is a complete lattice. Moreover,
f = supα∈[0, ∞](α × χf−1(α, ∞]) for any f ∈ FE(X).
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Definition 3.3 Let X be a dcpo. A function Π : σ(X) −→ [0,∞] is called
the extended possibility valuation on X if, Π preserves arbitrary sup, i.e.,
Π(�i∈IOi) = supi∈I Π(Oi) where σ(X) is Scott-topology of X and {Oi | i ∈
I} is any subset family of σ(X). We write πE(X) for the collection of all
possibility valuations on X, which will be called the extended possibilistic
powerdomain on X, being ordered by the pointwise order �, i.e., Π � Π′ iff
for any O ∈ σ(X), Π(O) ≤ Π′(O). The triple (X, σ(X), Π) will be said to be
a possibility valuation space.

From this definition, we may conclude that Π is strict, i.e., Π(∅) = 0 since
the sup of empty is the least element on the respective space. Intuitively,
Π(O) expresses someone’s subjective evaluation of the statement “y is in O”
in a situation in which he guesses whether y is in O.

Remark 3.4 If [0,∞] is replaced by [0, 1], then this definition is equivalent
to Definition 2.1 in [2](page 2663). So the extended possibilistic powerdomain
generalizes the possibilistic powerdomian.

Definition 3.5 Let X and Y be dcpos. The denotational semantics of deter-
ministic possibility computation F from X to Y refers to the Scott-continuous
mappings [[F ]] : X → π(Y ).

This definition comes from Definition 2.5 (page 2665)in [2]. The difference
is that Definition 2.5 in [2] gives the possibility belonging to the unit interval
[0, 1] that the result of computation falls into some Scott open set for some
input, but here gives the expectation value belonging to the interval [0,∞].

For a state x, the point valuation ηx that maps Scott open set O to 1 if x
belongs to O otherwise 0. Scalar multiplication and sup on π(X) are defined
as follows:

r ∗ Π(O) := r × Π(O)

(�iΠi)(O) := supi Πi(O),

for all r ∈ [0,∞] and Π, Πi ∈ π(X). It is clear that π(X) is a complete lattice.
The following lemma coming from [6] (Theorem 5.4, page 7) will be used later.

Lemma 3.6 [6] Let X be a continuous domain. Then for any Π ∈ π(X),
Π = �{r × ηx | r × ηx << Π}.
Definition 3.7 [6,7] We consider the monoid ([0, ∞],×, 1). A module[0, ∞]

is a pair (L; ∗L), where L is a complete lattice and ∗L : [0, ∞] × L → L
preserves suprema in each coordinate separately, such that for all a ∈ L and
r, s ∈ [0, ∞],

(1) 1 ∗L a = a;

(2) (r × s) ∗L a = r ∗L (s ∗L a).
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In any module[0, ∞]L we have that 0∗L a and m∗L 0L equal 0L for all a ∈ L
and m ∈ [0, ∞], since ∗L preserves suprema, and 0 and 0L are least elements
(empty suprema), respectively.

A simple example of module[0, ∞] is [0,∞] with its usual linear order, with
‘×’ as ∗[0, ∞]. Sup and multiplication, extended to ∞ as usual:

x ∨∞ = ∞ = ∞∨ x, x ∈ [0, ∞]

r ×∞ = ∞, r ∈ (0, ∞]

0 ×∞ = 0.

With this convention, sup and multiplication are sup-preserving on [0,∞].
Other examples are the extended possibilistic powerdomain πE(X) and the
space of the extended fuzzy predicates FE(X).

Now, we consider the category Module[0, ∞]. Morphisms between
module[0, ∞] (A; ∗A) and (B; ∗B) are functions f : A → B such that

(1) f is sup-preserving, i.e., f(supi ai) = supi f(ai), where {ai | i ∈ I} is
any subset of A;

(2) f is homogeneous, i.e., f(r ∗A a) = r ∗B f(a), where r ∈ [0,∞] and
a ∈ A.

Given a module[0, ∞]L, let L◦ = (L, [0,∞]) be all module[0, ∞) morphisms
from L to [0,∞]. Then it is easy to verify that L◦ is a module[0, ∞], which will
be called the dual module[0, ∞] of L. Let A and B be module[0, ∞]. Then A
and B are module[0, ∞]-isomorphism if there exists a mapping f from A to B
such that f is bijective and a module[0, ∞] morphism.

4 Duality Theorem

In this section, we will prove duality between the extended possibilistic pow-
erdomain πE(X) over a continuous domain X and all the extended fuzzy pred-
icates FE(X) on X. Consider the dual module space of FE(X):

([X → [0,∞]] → [0,∞])(1)

could be the domain which, given a property φ and some t ∈ [0,∞] returns
the expectation value satisfying φ within time t. We first present the ‘Riesz’
style represent theorem, i.e.,

πE(X) ∼= FE(X)◦.(2)

It provides a reassuring link between the spaces of quantitative meaning
in (1) and space of topological possibility valuations.

In order to show the isomorphism above, we need to introduce fuzzy inte-
gral. Fuzzy integrals of a fuzzy measurable function h over a fuzzy measure
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space (X,A, μ) introduced by Sugeno in his dissertation [9] are well studied
(see, for example, [1,8,11,12], etc.). Sugeno’s integral is analogous to Lebesgue
integral. The difference between them is that addition and multiplication in
the definition of Lebesgue integral are replaced respectively by the operations
“min” and “max” when Sugeno’s integral is considered. Sugeno’s integral has
been applied in the fields of subjective evaluation, decision system, high level
knowledge reasoning and pattern recognition, name a few [12]. The basic
style of Sugeno’s integral of h over A, a subset of X, with respect to the fuzzy
measure μ can be calculated as follows:

(S)

∫

A

hdμ = sup
α∈[0, ∞]

[α ∧ μ(h−1(α,∞] ∩ A)].

For our purpose, we change min into product, i.e.,

(S)

∫

A

fdu = sup
α∈[0, ∞]

[α × μ(f−1(α,∞] ∩ A)].

Similarly, we can define the integral of the extended fuzzy predicate f with
respect to the extended possibility valuation Π as follows:

Definition 4.1 Let X be a dcpo, f the extended fuzzy predicate on X, and
Π the extended possibility valuation on X. The integral of f with respect to
Π over a Scott open set U of X is defined as∫

U

fdΠ = sup
α∈[0, ∞]

[α × Π(f−1(α,∞] ∩ U)].(3)

Particularly,
∫

X
fdΠ = supα∈[0, ∞][α×Π(f−1(α,∞])]. We write

∫
fdΠ for∫

X
fdΠ.

We now collect some properties of the above integral needed in what fol-
lows.

Proposition 4.2 Let X be a dcpo, f, g the extended fuzzy predicates on X
and Π, Ξ the extended possibility valuations on X, and let U be a Scott open
set of X. Then,

(1) f � g implies
∫

fdΠ ≤ ∫
gΠ;

(2) Π � Ξ implies
∫

fdΠ ≤ ∫
fdΞ;

(3)
∫

χUdΠ = Π(U);

(4)
∫ �g∈GgdΠ = supg∈G

∫
gdΠ and

∫
gd(�iΠi) = supi

∫
gdΠi;

(5)
∫

(r×f)dΠ = r×∫
fdΠ and

∫
fd(r×Π) = r×∫

fdΠ where r ∈ [0,∞];

(6)
∫

fdηx = f(x).
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Proof. One can refer to the proofs of Proposition 4.2, 4.3, 4.4 and 4.5 (page
2668-2669)in [2]. �

Defining two mappings as follows:

Φ : πE(X) → FE(X)◦

such that Φ(Π)(f) =
∫

fdΠ for any Π ∈ πE(X) and f ∈ FE(X).

Ψ : FE(X)◦ → πE(X)

such that Ψ(φ)(O) = φ(χO) for any φ ∈ FE(X)◦ and O ∈ σ(X).

The following two propositions state that the mappings Φ and Ψ are well-
defined.

Proposition 4.3 Let Π ∈ πE(X) and φ ∈ FE(X)◦. Then Φ(Π) ∈ FE(X)◦

and Ψ(φ) ∈ πE(X).

Proof. They can be proven by Proposition 4.2(4,5). �

We continue with,

Proposition 4.4 Φ and Ψ as defined above are module[0, ∞] morphisms.

Proof. They can be proven by Proposition 4.2(4,5). �

Theorem 4.5 Let X be a dcpo. Then Φ ◦Ψ = idFE(X)◦ and Ψ ◦Φ = idπE (X).

Proof. For any φ ∈ FE(X)◦ and f ∈ FE(X), we have

(Φ ◦ Ψ)(φ)(f) = Φ(Ψ(φ))(f)

=
∫

fdΨ(φ)

= supα∈[0, ∞] α × Ψ(φ)(f−1(α, ∞])

= supα∈[0, ∞] α × φ(χf−1(α, ∞])

= φ(supα∈[0, ∞] α × χf−1(α, ∞]) (since φ is a module[0, ∞] morphism)

= φ(f)

Hence Φ ◦ Ψ = idFE (X)◦ .
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One the other hand, for any Π ∈ πE(X) and O ∈ σ(X), we have

(Ψ ◦ Φ)(Π)(O) = Ψ(Φ(Π))(O)

= Φ(Π)(χO)

=
∫

χOdΠ

= Π(O) (by Proposition 4.2(3))

So Ψ ◦ Φ = idπE(X). �

Theorem 4.6 Let X be a dcpo. Then πE(X) and FE(X)◦ are order-
isomorphic and module[0, ∞]-isomorphic.

Proof. In order to prove that πE(X) and FE(X)◦ are order-isomorphic, we
only show that Φ and Ψ are order-preserving. In fact, Φ is order-preserving
by Proposition 4.2(2) and Ψ is order-preserving which can directly proven by
the definition of Ψ. πE(X) and FE(X)◦ are module[0, ∞]-isomorphic since the
mappings Φ and Ψ are bijective and preserve the module[0, ∞] operations by
Proposition 4.4. �

The above theorem states that FE(X)◦ can be viewed as the extended
possibilistic powerdomain πE(X). If in addition X is a continuous domain we
have full duality, meaning that

πE(X)◦ ∼= FE(X).(4)

Defining two mappings as follows:

Γ : FE(X) → πE(X)◦

such that Γ(f)(Π) =
∫

fdΠ for any f ∈ FE(X) and Π ∈ πE(X).

Ω : πE(X)◦ → FE(X)

such that Ω(φ)(x) = φ(ηx) for any φ ∈ πE(X)◦ and x ∈ X.

The following two propositions state that the mappings Γ and Ω are well-
defined.

Proposition 4.7 Let f ∈ FE(X) and φ ∈ πE(X)◦. Then Γ(f) ∈ πE(X)◦ and
Ω(φ) ∈ FE(X).

Proof. Γ(f) ∈ πE(X)◦ can be proven by Proposition 4.2(4,5). Ω(φ) ∈ FE(X)
is because that Ω(φ) is Scott-continuous which can be directly verified by the
definition of Scott-continuous. �

We continue with,
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Proposition 4.8 Γ and Ω as defined above are module[0, ∞] morphisms.

Proof. Γ is a module[0, ∞] morphism which can be proven by Proposi-
tion4.2(4,5) and Ω is a module[0, ∞] morphism which can be directly verified.�

Theorem 4.9 Let X be a continuous domain. Then Ω ◦ Γ = idFE (X) and
Γ ◦ Ω = idπE(X)◦.

Proof. First, for any f ∈ FE(X) and x ∈ X, we have

(Ω ◦ Γ)(f)(x) = Ω(Γ(f))(x)

= Γ(f)(ηx)

=
∫

fdηx

= f(x) (by Proposition 4.2(6))

Hence, Ω ◦ Γ = idL(X).

Second, for any φ ∈ πE(X)◦ and Π ∈ πE(X), we have

(Γ ◦ Ω)(φ)(Π) = Γ(Ω(φ))(Π)

=
∫

Ω(φ)dΠ

= supα∈[0, ∞] α × Π((Ω(φ))−1(α, ∞])

= supα∈[0, ∞] α × [(�r×ηx<<Πr × ηx)((Ω(φ))−1(α, ∞])]

(by Lemma 3.6 )

= supα∈[0, ∞] α × [supr×ηx<<Π r × ηx((Ω(φ))−1(α, ∞])]

= supα∈[0, ∞][supr×ηx<<Π α × r × ηx((Ω(φ))−1(α, ∞])]

= supr×ηx<<Π[supα∈[0, ∞] α × r × ηx((Ω(φ))−1(α, ∞])]

= supr×ηx<<Π r × [supα∈[0, ∞] α × ηx((Ω(φ))−1(α, ∞])]

= supr×ηx<<Π r × [supα∈[0, ∞] α × χ((Ω(φ))−1(α, ∞])(x)]

= supr×ηx<<Π r × Ω(φ)(x)

= supr×ηx<<Π r × φ(ηx)

= φ(�r×ηx<<Πr × ηx) (since φ is a module[0, ∞] morphism)

= φ(Π)

Hence, Γ ◦ Ω = idπE (X)◦ . �
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Moreover, similar to the proof of Theorem 4.6, the mappings Γ and Ω are
order-preserving. Therefore,

Theorem 4.10 Let X be a continuous domain. Then πE(X)◦ and FE(X) are
order-isomorphic and module[0, ∞]-isomorphic.

Proof. πE(X)◦ and FE(X) are module[0, ∞]-isomorphic since the mappings Γ
and Ω are bijective and preserve the module[0, ∞] operations by Proposition
4.8. �

5 Conclusion and Further Work

In this paper, we point out that semantic domain of deterministic possibility
computation is a module construction. By using Sugeno’s integral and the
notion of module we obtain a duality theorem, which shows that the extended
possibilistic powerdomain over a continuous domain X and the extended fuzzy
predicates on X can be represented each other. In the future, we plan to study
the semantic domain of nondeterministic possibility computation and set up
the corresponding Hoare powerdomain and Smyth powerdomain structures.
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