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1. Introduction

First we introduce some notations. For a topological space X , let VectC(X) (resp. VectR(X)) be the set of isomorphic
classes of complex (resp. real) vector bundles on X , and let r : VectC(X) → VectR(X) be the real reduction, which induces
the real reduction homomorphism r̃ : K̃ (X) → K̃O(X) from the reduced KU-group to the reduced KO-group of X . For a map
f : X → Y between topological spaces X and Y , denote by f ∗

u : K̃ (Y ) → K̃ (X) and f ∗
o : K̃O(Y ) → K̃O(X) the induced ho-

momorphisms. We will denote by ξ̃ ∈ K̃ (X) (resp. K̃O(X)) the stable class of ξ ∈ VectC(X) (resp. VectR(X)) (cf. Hilton
[9, p. 62]).

Let M be a 2n-dimensional smooth manifold with tangent bundle TM. We say that M admits an almost complex structure
(resp. a stable almost complex structure) if TM ∈ Im r (resp. T̃M ∈ Im r̃). Clearly, M admits an almost complex structure implies
that M admits a stable almost complex structure. It is a classical topic in geometry to determine which M admits an almost
complex structure. See for instance Wu [20], Ehresmann [6], Dessai [4], Heaps [8], Müller and Geiges [13], Thomas [18],
Sutherland [17], etc. In this paper we determine those closed (n − 1)-connected 2n-dimensional smooth manifolds M with
n � 3 that admit an almost complex structure.

Throughout this paper, M will be a closed oriented (n − 1)-connected 2n-dimensional smooth manifold with n � 3.
In [19], C.T.C. Wall assigned to each M a system of invariants as follows.

1) H = Hn(M;Z) ∼= Hom(Hn(M;Z);Z) ∼= ⊕k
j=1 Z, the cohomology group of M , with k the n-th Betti number of M .
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2) I : H × H → Z, the intersection form of M which is unimodular and n-symmetric, defined by

I(x, y) = 〈
x ∪ y, [M]〉,

where the homology class [M] is the orientation class of M .
3) A map α : Hn(M;Z) → πn−1(SOn) that assigns each element x ∈ Hn(M;Z) to the characteristic map α(x) for the normal

bundle of the embedded n-sphere Sn
x representing x.

These invariants satisfy the relation (cf. Wall [19, Lemma 2])

α(x + y) = α(x) + α(y) + I(x, y)∂ιn, (1.1)

where ∂ is the boundary homomorphism in the exact sequence

· · · → πn
(

Sn) ∂−→ πn−1(SOn)
S−→ πn−1(SOn+1) → ·· · (1.2)

of the fiber bundle SOn ↪→ SOn+1 → Sn , and ιn ∈ πn(Sn) is the class of the identity map.
Denote by ν = S ◦ α : Hn(M;Z) → πn−1(SOn+1) ∼= K̃O(Sn) the composition map, then from (1.1) and (1.2)

ν = S ◦ α ∈ Hn(M; K̃O
(

Sn)) = Hom
(

Hn(M;Z); K̃O
(

Sn)) (1.3)

can be viewed as an n-dimensional cohomology class of M , with coefficient in K̃O(Sn). It follows from Kervaire [11,
Lemma 1.1] and Hirzebruch index theorem [10, p. 86] that the Pontrjagin classes p j(M) ∈ H4 j(M;Z) of M can be ex-
pressed in terms of the cohomology class ν and the index τ of the intersection form I (when n is even) as follows (cf. Wall
[19, pp. 179–180]).

Lemma 1.1. Let M be a closed oriented (n − 1)-connected 2n-dimensional smooth manifold with n � 3. Then

1) if n ≡ 2 (mod 4)

pn/2(M) = n!
2n(2n−1 − 1)Bn/2

τ ,

2) if n ≡ 0 (mod 4)

p j(M) =
⎧⎨⎩

±an/4(n/2 − 1)!ν, j = n/4,

a2
n/4
2 ((n/2 − 1)!)2{1 − (2n/2−1−1)2

2n−1−1

( n
n/2

) B2
n/4

Bn/2
}I(ν, ν) + n!

2n(2n−1−1)Bn/2
τ , j = n/2,

where

an/4 =
{

1, n ≡ 0 (mod 8),

2, n ≡ 4 (mod 8),

Bm is the m-th Bernoulli number.

Now we can state the main results as follows.

Theorem 1. Let M be a closed oriented (n − 1)-connected 2n-dimensional smooth manifold with n � 3, ν be the cohomology class
defined in (1.3), τ be the index of the intersection form I (when n is even). Then the necessary and sufficient conditions for M to admit
a stable almost complex structure are:

1) n ≡ 2,3,5,6,7 (mod 8), or

2) if n ≡ 0 (mod 8): ν ≡ 0 (mod 2) and
Bn/2−Bn/4
Bn/2 Bn/4

· nτ
2n ≡ 0 (mod 2),

3) if n ≡ 4 (mod 8):
Bn/2+Bn/4
Bn/2 Bn/4

· τ
2n−2 ≡ 0 (mod 2),

4) if n ≡ 1 (mod 8): ν = 0.

Theorem 2. Let M be a closed oriented (n − 1)-connected 2n-dimensional smooth manifold with n � 3, ν be the cohomology class
defined in (1.3), k be the n-th Betti number, I be the intersection form, and p j(M) be the Pontrjagin classes of M as in Lemma 1.1. Then
M admits an almost complex structure if and only if M admits a stable almost complex structure and one of the following conditions
are satisfied:

1) if n ≡ 0 (mod 4): 4pn/2(M) − I(pn/4(M), pn/4(M)) = 8(k + 2),
2) if n ≡ 2 (mod 8): there exists an element x ∈ Hn(M;Z) such that x ≡ ν (mod 2) and

I(x, x) = 2(k + 2) + pn/2(M)

((n/2 − 1)!)2
,
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Table 1
Real reduction r̃ : K̃ (Sm) → K̃O(Sm).

m (mod 8) K̃ (Sm) K̃O(Sm) r̃ : K̃ (Sm) → K̃O(Sm)

0 Zω̃m
C

Zω̃m
R

r̃(ω̃m
C

) = 2ω̃m
R

1 0 (Z/2)ω̃m
R

r̃ = 0

2 Zω̃m
C

(Z/2)ω̃m
R

r̃(ω̃m
C

) = ω̃m
R

4 Zω̃m
C

Zω̃m
R

r̃(ω̃m
C

) = ω̃m
R

6 Zω̃m
C

0 r̃ = 0

3, 5, 7 0 0 r̃ = 0

Table 2
Real reduction r̃ : K̃ (M) → K̃O(M).

n (mod 8) K̃ (M) K̃O(M) r̃ : K̃ (M) → K̃O(M)

0 Zξ̃ ⊕ ⊕k
j=1 Zη̃ j Zγ̃ ⊕ ⊕k

j=1 Zζ̃ j r̃(ξ̃ ) = 2γ̃ , r̃(η̃ j) = 2ζ̃ j

1 Zξ̃ (Z/2)γ̃ ⊕ ⊕k
j=1(Z/2)ζ̃ j r̃(ξ̃ ) = γ̃

2 Zξ̃ ⊕ ⊕k
j=1 Zη̃ j Zγ̃ ⊕ ⊕k

j=1(Z/2)ζ̃ j r̃(ξ̃ ) = γ̃ , r̃(η̃ j) = ζ̃ j

4 Zξ̃ ⊕ ⊕k
j=1 Zη̃ j Zγ̃ ⊕ ⊕k

j=1 Zζ̃ j r̃(ξ̃ ) = 2γ̃ , r̃(η̃ j) = ζ̃ j

5 Zξ̃ (Z/2)γ̃ r̃(ξ̃ ) = γ̃

6 Zξ̃ ⊕ ⊕k
j=1 Zη̃ j Zγ̃ r̃(ξ̃ ) = γ̃ , r̃(η̃ j) = 0

3, 7 Zξ̃ 0 r̃ = 0

3) if n ≡ 6 (mod 8): there exists an element x ∈ Hn(M;Z) such that I(x, x) = (2(k + 2) + pn/2(M))/((n/2 − 1)!)2 ,
4) if n ≡ 1 (mod 4): 2((n − 1)!) | (2 − k),
5) if n ≡ 3 (mod 4): (n − 1)! | (2 − k).

Remark 1.2. i) Since the rational numbers
Bn/2−Bn/4
Bn/2 Bn/4

· nτ
2n and

Bn/2+Bn/4
Bn/2 Bn/4

· τ
2n−2 in Theorem 1 can be viewed as 2-adic integers

(see the proof of Theorem 1), it makes sense to take congruent classes modulo 2.
ii) In the cases 2) and 3) of Theorem 2, when the conditions are satisfied, the almost complex structure on M depends

on the choice of x.

This paper is arranged as follows. In Section 2 we obtain presentations for the groups K̃O(M), K̃ (M) and determine the
real reduction r̃ : K̃ (M) → K̃O(M) accordingly. In Section 3 we determine the expression of T̃M ∈ K̃O(M) with respect to the
presentation of K̃O(M) obtained in Section 2. With these preliminary results, Theorems 1 and 2 are established in Section 4.

2. The real reduction r̃ : ˜K (M) → ˜KO(M)

According to Wall [19], M is homotopic to a CW complex (
∨k

λ=1 Sn
λ) ∪ f D2n , where k is the n-th Betti number of M ,∨k

λ=1 Sn
λ is the wedge sum of n-spheres which is the n-skeleton of M and f ∈ π2n−1(

∨k
λ=1 Sn

λ) is the attaching map of
D2n which is determined by the intersection form I and the map α (cf. Duan and Wang [5, Lemma 3]). We will denote by
i : ∨k

λ=1 Sn
λ → M the inclusion map of the n-skeleton of M , p : M → S2n the map collapsing the n-skeleton

∨k
λ=1 Sn

λ to the

base point and t j : ∨k
λ=1 Sn

λ → Sn
j the map collapsing

∨
λ
= j Sn

λ to the base point.
Let Zβ (resp. (Z/2)β) be the infinite cyclic group (resp. finite cyclic group of order 2) generated by β . Recall that the

generators ω̃m
C

(resp. ω̃m
R

) of the cyclic group K̃ (Sm) (resp. K̃O(Sm)) with m > 0 can be so chosen such that the real reduction
r̃ : K̃ (Sm) → K̃O(Sm) can be summarized as in Table 1 (cf. Mimura and Toda [16, Theorem 6.1, p. 211]).

Then we get that:

Lemma 2.1. Let M be a closed oriented (n − 1)-connected 2n-dimensional smooth manifold with n � 3. Then the presentations of
the groups K̃ (M) and K̃O(M) as well as the real reduction r̃ : K̃ (M) → K̃O(M) can be given as in Table 2, where the generators ξ̃ , η̃ j ,
γ̃ , ζ̃ j , 1 � j � k, satisfy:{

ξ̃ = p∗
u

(
ω̃2n

C

)
, i∗u(η̃ j) = t∗

ju

(
ω̃n

C

);
γ̃ = p∗

o

(
ω̃2n

R

)
, i∗o(ζ̃ j) = t∗

jo

(
ω̃n

R

)
.
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Proof. By the naturality of the Puppe sequence, for any h ∈ Z, we have the exact ladder (2.1), where the horizontal ho-
momorphisms Σh p∗

u , Σh p∗
o , Σhi∗u , Σhi∗o and Σh f ∗

u , Σh f ∗
o are induced by Σh p, Σhi and Σh f respectively, and where Σ

denotes the suspension.

· · · K̃ (S2n+h)
Σh p∗

u

r̃

K̃ (Σh M)
Σhi∗u

r̃

K̃ (
∨k

λ=1 Sn+h
λ )

Σh f ∗
u

r̃

K̃ (S2n+h−1)

r̃

· · ·

· · · K̃O(S2n+h)
Σh p∗

o
K̃O(Σh M)

Σhi∗o
K̃O(

∨k
λ=1 Sn+h

λ )
Σh f ∗

o
K̃O(S2n+h−1) · · ·

(2.1)

Recall that the group π2n−1(
∨k

j=1 Sn
j ) can be decomposed as (cf. the Hilton–Milnor theorem [21, p. 511]):

π2n−1

(
k∨

j=1

Sn
j

)
∼=

k⊕
j=1

π2n−1
(

Sn
j

) ⊕
1�i< j�k

π2n−1
(

S2n−1
i j

)
,

where S2n−1
i j = S2n−1, the group π2n−1(Sn

j ) is embedded in π2n−1(
∨k

j=1 Sn
j ) by the natural inclusion, and the group

π2n−1(S2n−1
i j ) is embedded by composition with the Whitehead product of certain elements in πn(

∨k
j=1 Sn

j ). Hence by
Duan and Wang [5, Lemma 3], the attaching map f can be decomposed accordingly as:

f =
k∑

j=1

f j + g,

where

f j ∈ Im J ⊂ π2n−1
(

Sn)
J being the J -homomorphism (cf. Whitehead [21, p. 504]) and

g ∈
⊕

1�i< j�k

π2n−1(S2n−1
i j ).

Note that r̃ ◦ c = 2 : K̃O(X) → K̃O(X), where c : K̃O(X) → K̃ (X) is the complexification. Then by the exact ladder (2.1) and
the Bott periodicity theorem [3], the fact of Table 2 when n 
≡ 2 (mod 8) follows from Table 1 and Adams [1, Proposition 7.1]
while the fact of Table 2 when n ≡ 2 (mod 8) follows from Table 1, Adams [1, Propositions 7.1, 7.19] and the Bott sequence
(cf. Kishimoto [12, Proposition 4.1]). �
Remark 2.2. All the KU-groups and KO-groups of M can be deduced easily from the exact ladder (2.1).

Remark 2.3. Since the induced homomorphisms i∗ : Hn(M;Z) → Hn(
∨k

λ=1 Sn
λ;Z) and p∗ : H2n(S2n;Z) → H2n(M;Z) are

both isomorphisms, and the generator ω̃2n
C

∈ K̃ (S2n) can be chosen such that its n-th Chern class cn(ω̃2n
C

) = (n − 1)! (cf.
Hatcher [7, p. 101]), from the naturality of the Chern class, we get

cn(ξ̃ ) = (n − 1)!, cn/2(ξ̃ ) = 0.

Similarly, when n is even, η̃ j , 1 � j � k, can be chosen such that

cn/2

(
k∑

j=1

x jη̃ j

)
= (n/2 − 1)!(x1, x2, . . . , xk) ∈ Hn(M;Z),

where x j ∈ Z for all 1 � j � k (since Hn(M;Z) ∼= ⊕k
j=1 Z, we can write an element x ∈ Hn(M;Z), under the isomorphism i∗ ,

as the form (x1, x2, . . . , xk)).

Remark 2.4. As in Remark 2.3, if we write the cohomology class ν as (ν1, . . . , νk) ∈ Hn(M; K̃O(Sn)), where

ν j ∈ K̃O
(

Sn) ∼=
⎧⎨⎩

Z, n ≡ 0 (mod 4),

Z/2, n ≡ 1,2 (mod 8),

0, others,
then since the tangent bundle of sphere is stably trivial, it follows that

i∗o(T̃M) =
k∑

j=1

ν jt
∗
jo

(
ω̃n

R

)
.
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3. The stable tangent bundle of M

Denote by dimC α the dimension of α ∈ VectC(M). When n ≡ 0 (mod 4), we set

Â(M) = 〈
Â(M), [M]〉,

ÂC(M) = 〈
ch(TM ⊗ C) · Â(M), [M]〉,

Âν(M) =
〈

ch

(
k∑

j=1

ν jη j

)
· Â(M), [M]

〉
,

where ch denotes the Chern character, and Â(M) is the A-class of M (cf. Atiyah and Hirzebruch [2]). It follows from the
differentiable Riemann–Roch theorem (cf. Atiyah and Hirzebruch [2]) that Â(M), ÂC(M) and Âν(M) are all integers. In
particular, Âν(M) is even when ν ≡ 0 (mod 2).

Using the notation above, we get

Lemma 3.1. Let M be a closed oriented (n−1)-connected 2n-dimensional smooth manifold with n � 3. Then the stable tangent bundle
T̃M of M can be expressed by the generators γ̃ , ζ̃ j , 1 � j � k, of K̃O(M) as follows:

T̃M =

⎧⎪⎨⎪⎩
�γ̃ + ∑k

j=1 ν j ζ̃ j, n ≡ 0,1,2,4 (mod 8),

�γ̃ , n ≡ 6 (mod 8),

0, n ≡ 3,5,7 (mod 8),

where

�

⎧⎪⎨⎪⎩
= ÂC(M) + (

∑k
j=1 an/4ν j dimC η j − 2n) Â(M) − an/4 Âν(M), n ≡ 0 (mod 4),

= − 1
2 pn/2(M)/(n − 1)!, n ≡ 2 (mod 4),

∈ Z/2, n ≡ 1 (mod 8).

Remark 3.2. In the case n ≡ 1 (mod 8), the generators of K̃O(M) can be good chosen such that � = 0 ∈ Z/2 (see the proof
below).

Proof. Case n ≡ 0 (mod 8). By Remark 2.4, we may suppose that

T̃M = �γ̃ +
k∑

j=1

ν j ζ̃ j ∈ K̃O(M),

where � ∈ Z. Hence from r̃ ◦ c = 2 and Table 2, we have

c(T̃M) = ˜TM ⊗ C = �ξ̃ +
k∑

j=1

ν jη̃ j ∈ K̃ (M).

Then by the definition of stable equivalence, we have

TM ⊗ C ⊕ εs ∼= �ξ ⊕
k⊕

j=1

ν jη j ⊕ εt,

for some s, t ∈ Z satisfying

s − t = � · dimC ξ +
k∑

j=1

ν j dimC η j − 2n,

where ε j is the trivial complex vector bundle of dimension j. Thus we have

ÂC(M) = −
(

� · dimC ξ +
k∑

j=1

ν j dimC η j − 2n

)
Â(M) +

〈
ch

(
�ξ +

k∑
j=1

ν jη j

)
· Â(M), [M]

〉
,

that is
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� = ÂC(M) +
(

k∑
j=1

ν j dimC η j − 2n

)
Â(M) − Âν(M).

Cases n ≡ 2,4,6 (mod 8) can be proved by the same way as above.
Case n ≡ 1 (mod 4). From Milnor and Kervaire [14, Lemma 1] and Adams [1, Theorem 1.3], we get that ν = 0 implies

T̃M = 0 ∈ K̃O(M). Then the proof of this case and Remark 3.2 is trivial.
Case n ≡ 3 (mod 4) is trivial. �

4. Almost complex structure on M

We are now ready to prove Theorem 1 and Theorem 2.

Proof of Theorem 1. Cases 1) and 2) n ≡ 0 (mod 4). In these cases, we get that (cf. Wall [19, pp. 179–180])

Â(M) = − Bn/2

2(n!) pn/2(M) + 1

2

{ B2
n/4

4((n/2)!)2
+ Bn/2

2(n!)
}

I
(

pn/4(M), pn/4(M)
)
,

Â(M) = 1 − Bn/4

2((n/2)!) pn/4(M) + Â(M),

ch(TM ⊗ C) = 2n + (−1)n/4+1 pn/4(M)

(n/2 − 1)! + I(pn/4(M), pn/4(M)) − 2pn/2(M)

2((n − 1)!) .

Hence by Lemma 1.1 we have

ÂC(M) = 2n

{
1 + 1

Bn/2
+ (2n−1 − 1)

(2n/2 − 1)2
· (−1)n/4 Bn/2 − Bn/4

Bn/2 Bn/4

}
Â(M)

+ 1

(2n/2 − 1)2
· (−1)n/4 Bn/2 − Bn/4

Bn/2 Bn/4
· nτ

2n
. (4.1)

Moreover since Bm can be written as the form Bm = bm/(2cm) (cf. Milnor [15, p. 284]), where cm and bm are odd integers.
Then multiply each side of (4.1) by (2n/2 − 1)2 · bn/2 · bn/4, we get that(

2n/2 − 1
)2

bn/2bn/4 ÂC(M) = 2n
{(

2n/2 − 1
)2 · bn/2 · bn/4 + 2

(
2n/2 − 1

)2
bn/4cn/2

+ 2
(
2n−1 − 1

)(
(−1)n/4bn/2cn/4 − bn/4cn/2

)}
Â(M)

+ 2
(
(−1)n/4bn/2cn/4 − bn/4cn/2

)nτ

2n
.

Since ÂC(M) and Â(M) are integers and (2n/2 − 1)2 · bn/2 · bn/4 is an odd integer, it follows that
(−1)n/4 Bn/2−Bn/4

Bn/2 Bn/4
· nτ

2n is a

2-adic integer, and hence

ÂC(M) ≡ 0 (mod 2) ⇐⇒ (−1)n/4 Bn/2 − Bn/4

Bn/2 Bn/4
· nτ

2n
≡ 0 (mod 2).

Then by combining these facts with Lemmas 2.1 and 3.1, one verifies the results in these cases.
Cases 3) and 4) n 
≡ 0 (mod 4) are trivial. �
To prove Theorem 2, we need the following lemma (cf. Sutherland [17, Theorem 1.1] or Thomas [18, Theorem 1.7]).

Lemma 4.1. Let N be a closed smooth 2n-manifold. Then N admits an almost complex structure if and only if it admits a stable almost
complex structure β̃ satisfying cn(β̃) = e(N), where e(N) is the Euler class of N.

Proof of Theorem 2. Firstly, it follows from Lemma 4.1 that M admits an almost complex structure if and only if there exists
an element β̃ ∈ K̃ (M) such that{

r̃(β̃) = T̃M ∈ K̃O(M),

cn(β̃) = e(M).
(4.2)
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Secondly, if there exists an element β̃ ∈ K̃ (M) such that r̃(β̃) = T̃M ∈ K̃O(M), then we have the following identity (cf. Milnor
[15, p. 177]):(∑

j

(−1) jc j(β̃)

)
·
(∑

j

c j(β̃)

)
=

∑
j

(−1) j p j(M). (4.3)

Now we prove Theorem 2 case by case.
Case 1) n ≡ 0 (mod 4). In this case e(M) = k + 2. From Lemma 4.1 we know that M admits an almost complex structure

if and only if there exists an element β̃ ∈ K̃ (M) such that (4.2) is satisfied. Now (4.3) becomes(
1 + cn/2(β̃) + cn(β̃)

) · (1 + cn/2(β̃) + cn(β̃)
) = 1 + (−1)n/4 pn/4(M) + pn/2(M),

it follows that

cn/2(β̃) = (−1)n/4 pn/4(M)/2,

hence

cn(β̃) = pn/2(M)/2 − I
(

pn/4(M), pn/4(M)
)
/8.

Therefore from (4.2) we get that, M admits an almost complex structure if and only if M admits a stable almost complex
structure and satisfies

4pn/2(M) − I
(

pn/4(M), pn/4(M)
) = 8(k + 2).

Case 2) n ≡ 2 (mod 8). In this case e(M) = k + 2. Set β̃ = �ξ̃ + ∑k
j=1 x j η̃ j ∈ K̃ (M) where � ∈ Z is the integer as in

Lemma 3.1 and x j ∈ Z, 1 � j � k, are the integers such that x j ≡ ν j (mod 2). Then from Lemma 2.1, we know that r̃(β̃) = T̃M.
Hence by (4.2), we see that M admits an almost complex structure if and only if⎧⎪⎪⎨⎪⎪⎩

β̃ = �ξ̃ +
k∑

j=1

x jη̃ j ∈ K̃ (M),

cn(β̃) = e(M).

Let x = (x1, x2, . . . , xk) ∈ Hn(M;Z). Then by Remark 2.3

cn/2(β̃) = (n/2 − 1)!x.
Now (4.3) is(

1 − cn/2(β̃) + cn(β̃)
) · (1 + cn/2(β̃) + cn(β̃)

) = 1 − pn/2(M),

therefore

cn(β̃) = (
I
(
cn/2(β̃), cn/2(β̃)

) − pn/2(M)
)
/2 = {(

(n/2 − 1)!)2
I(x, x) − pn/2(M)

}
/2.

Thus it follows from (4.2) that M admits an almost complex structure if and only if there exists an element x ∈ Hn(M;Z)

such that{
x ≡ ν (mod 2),

I(x, x) = (
2(k + 2) + pn/2(M)

)
/
(
(n/2 − 1)!)2

.

Case 3) n ≡ 6 (mod 8). The proof is similar to the proof of case 2).
Case 4) n ≡ 1 (mod 4). Now e(M) = 2 − k. From (4.2), Lemmas 2.1, 3.1, Remarks 3.2 and 2.3, we see that M admits an

almost complex structure if and only if⎧⎪⎨⎪⎩
ν = 0,

β̃ = 2aξ̃ ,

2a(n − 1)! = 2 − k,

for some a ∈ Z. Hence by Lemmas 2.1 and 3.1, M admits an almost complex structure if and only if M admits a stable
almost complex structure and

2(n − 1)! | (2 − k).

Case 5) n ≡ 3 (mod 4). The proof is similar to the proof of case 4). �
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