Thiol modulation of CF₀–CF₁ stimulates acid/base-dependent phosphorylation of ADP by broken pea chloroplasts

John D. Mills and Peter Mitchell

Glynn Research Institute, Bodmin, Cornwall, PL30 4AU, England

Received 10 May 1982

Chloroplast ATPase Acid/base phosphorylation Enzyme activation Thiol modulation of enzymes
Pea chloroplasts

1. INTRODUCTION

There is now considerable evidence that the reversible protonmotive ATPase of chloroplasts (CF₀–CF₁) is a highly regulated enzyme both in vivo [1,2] and in vitro [3–11]. Studies with broken chloroplasts (that lack an outer envelope and stroma) have shown that CF₀–CF₁ in dark-adapted chloroplasts is catalytically inactive, but undergoes activation when a difference in the electrochemical potential of protons (ΔμH⁺) is generated across the thylakoid [3–10]. This activation is accompanied by the release of 1 mol bound ADP/mol CF₁, by which means the activation process has been extensively studied [5–10]. Deactivation of CF₀–CF₁ occurs upon the collapse of ΔμH⁺ and is associated with the rebinding of ADP [8–10]. Activation of CF₀–CF₁ may simply reflect a dual pH optimum requirement of CF₁, whereby the stromal, or N pole, of CF₁ has an optimum around pH 8 but the intrathylakoid, or P pole, has an optimum around pH 5 [12]. These differential pH conditions would normally only exist when ΔμH⁺ was present across the thylakoid. Deactivation would occur when the appropriate pH conditions ceased to exist at either the P or N poles of CF₁, and its rate would be influenced by the presence of bound nucleotides. We call this type of regulation of CF₀–CF₁ ‘pH (de)activation’.

In addition to pH activation, CF₀–CF₁ activity is also modulated by reduced dithiols [3, 13–17]. In the absence of reduced dithiols, CF₀–CF₁ is in a demodulated state and is observed to catalyse net synthesis of ATP under the appropriate conditions, but little ATPase or ATP=Pi exchange activity is observed. In contrast, the presence of reduced di-thiols modulates the pH-activated CF₀–CF₁ [3] and ATP hydrolysis [3,13] and PiGATP exchange [14] are readily observed.

Work from this laboratory has shown that thiol modulation of CF₀–CF₁ is a physiological process that, in vivo, is probably catalysed by the thioredoxin system [11,16]. Illumination of intact chloroplasts [11,16–18] (or leaves [1,2]) results in both the pH activation and the thiol modulation of CF₀–CF₁ and both these processes are readily reversed in the dark [17], providing that the chloroplasts remain intact. In an attempt to understand why CF₀–CF₁ is subject to thiol modulation in vivo, we have considered whether the process improves the efficiency of photophosphorylation. As a first step, we have studied acid/base-dependent phosphorylation [19] in order to eliminate the influence of electron transport reactions. We show here that, contrary to an early report [15], thiol modulation of CF₀–CF₁ increases the yield of ATP synthesis by chloroplasts subjected to an acid/base transition. The stimulation is mainly observed under conditions of limiting ΔpH, suggesting that, in demodulated chloroplasts, the ΔpH required for

Abbreviations: CF₀–CF₁, reversible protonmotive ATPase of chloroplasts; MES, 2-(N-morpholino)ethanesulfonic acid; Hepes, N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid; Tricine, N-tris(hydroxymethyl)methyl glycine; pHₑₓ, pHₑₑ, bulk pH of the extra- and intrathylakoid aqueous phases; ΔμH⁺, ΔpH, difference in electrochemical potential of protons or pH between the aqueous phases separated by the thylakoid membrane; ΔμH⁺ₑₓ, minimum ΔμH⁺ required for activation of CF₀–CF₁
activation of CF_0-CF_1 is larger than that required thermodynamically for the synthesis of ATP.

2. MATERIALS AND METHODS

Intact chloroplasts were isolated from *Pisum sativum* [11] (variety Meteor) as previously described except that the grinding medium contained 0.36 M sorbitol, 5 mM MgCl$_2$, 50 mM KCl, 5 mM ascorbate, 5 mM MES (pH 6.5). The organelles were lysed [11], washed twice by recentrifugation, and finally resuspended in a small volume of grinding medium at 2–4 mg chlorophyll/ml. Chloroplasts were thiol modulated by mixing (typically) 200 µl stock suspension with 0.8 ml of a medium containing 15 mM tricine, 5 mM MgCl$_2$, 12 mM dithiothreitol, 100 µM methyl viologen, 1600 U catalase (type C40, Sigma Chemical Co.) and 2.5 µM diadenosine pentaphosphate (to inhibit adenylate kinase). The chloroplasts were illuminated for 6 min at 80 W/m2 (300 W projector filtered through Corning 3-97 glass filter) then stored on ice and used within 30 min. Demodulated chloroplasts were treated as above but no preillumination was given. Acid/base-induced phosphorylation was measured as follows: 100 µl treated chloroplasts were mixed with 100 µl 30 mM succinate, 5 mM MgCl$_2$ for 30 s in a well-stirred tube (acid stage), then 0.8 ml 100 mM buffer, 5 mM MgCl$_2$, 100 µM ADP, 0.5 mM KH$_2$PO$_4$, 2.5 µM diadenosine pentaphosphate was added. Buffers used were MES (pH 6.0–7.0); Heps (7.0–8.0) and glycyglycine (8.0–9.6). These buffers were chosen because of their lack of inhibitory side-effects at the high concentrations used.

The reaction was terminated by addition of 0.5 ml 10% trichloracetic acid, usually 10 s after addition of the basic medium. ATP synthesis was assayed by either luciferase or 32P methods. For the luciferase technique, the solution was neutralized with 0.5 ml 0.6 M KOH, then 100 µl was withdrawn and directly assayed for ATP with the aid of LKB monitoring reagent and luminometer. In the 32P assay, the P$_i$ content of the base stage was reduced to 120 µM, and 0.5 µCi 32P$_i$ (Amersham International) was included per assay. Unreacted 32P$_i$ was removed by a modification (to be described elsewhere) of the ammonium molybdate/triethylamine precipitation procedure [6]. Samples were counted via Cerenkov radiation in an LKB Rackbeta scintillation counter. This procedure ensured that $> 99.9\%$ of 32P$_i$ was removed and resulted in controls that were barely above background levels (50–80 cpm compared to typically 1000 cpm for maximal acid/base-dependent phosphorylation).

3. RESULTS

Acid/base-induced phosphorylation was discovered by Jagendorf and coworkers [19] and has been extensively studied using broken, demodulated chloroplasts [7,19,20]. To our knowledge, only one study has compared the yield of ATP synthesized by demodulated and thiol-modulated chloroplasts and this showed an apparent decrease in yield of ATP after thiol modulation of the chloroplasts [15]. The authors recognized that the apparent decrease in yield may have resulted from hydrolysis of the newly formed ATP by CF_0-CF_1 ATPase which was activated by the acid/base procedure [15], but they did not study the problem further.

Fig.1 shows the results of an experiment where the yield of ATP observed after an acid/base transition is compared for demodulated and thiol-modulated chloroplasts and for two values of pH of the acid stage (pH$_a$). The pH of the base stage (pH$_b$) was varied from 6.0–9.3. At pH$_a = 4.1$, thiol-modulated chloroplasts were observed to synthesize more ATP than demodulated chloroplasts when ΔpH was limiting. In contrast, for large ΔpH values

Fig.1. Comparison of the yield of ATP observed after an acid/base transition of thiol-modulated (\circ, \triangle) and demodulated (\bullet, \star) chloroplasts. The pH of the acid stage was either 4.1 (\circ, \bullet) or 5.3 (\triangle, \star). ATP was assayed by luciferase technique.
(high pH$_N$), the yield was apparently diminished, as reported in [15]. When the pH of the acid stage was raised to 5.3, a stimulation of yield throughout the pH$_N$ range was observed after thiol modulation of the chloroplasts (fig. 1). Two other points may be noted.

(i) When ΔpH was large (i.e., low pH$_P$), the optimal yield of ATP was observed when the base stage was around pH 8.0, and the yield declined above pH 8. When ΔpH was limiting (high pH$_P$), the optimal yield was shifted to pH$_N$ = 9, but the overall yields at pH 9 for both values of pH$_P$ were similar.

(ii) The threshold pH$_N$ (at which net ATP synthesis is first observed) was, as expected, shifted to more alkaline values as the pH of the acid stage was raised. However, for both the values of pH$_P$ given in fig.1, thiol modulation of the chloroplasts resulted in a lower threshold pH$_N$ relative to demodulated chloroplasts. In other words, thiol modulation appears to lower the threshold ΔpH required for acid/base-induced synthesis of ATP.

The latter result is shown in more detail in fig.2, where the observed threshold ΔpH for ATP synthesis is plotted against the pH of the acid stage for several experiments of the kind depicted in fig.1. It is of interest to note that the threshold ΔpH for ATP synthesis depended on the pH of the acid stage, and apparently decreased as pH$_P$ increased. In all cases however, the observed value was lower when chloroplasts were thiol-modulated.

The data of fig.1 and 2 indicate that thiol-modulation of CF$_0$–CF$_1$ increases the efficiency of phosphorylation when ΔpH is limiting. We considered whether this might also be true when ΔpH is not limiting (i.e., large ΔpH jumps), but that hydrolysis of the newly formed ATP by CF$_0$–CF$_1$ was obscuring the observations. Fig.3 shows an experiment where the reaction time in the base stage was varied from 2.5–40 s. It is clear that extensive hydrolysis of ATP occurred subsequent to acid/base mixing when chloroplasts were thiol-modulated, especially at the lower value of pH$_P$. At short reaction times, thiol-modulation of CF$_0$–CF$_1$ stimulated the yield of ATP synthesized at both pH$_P$ = 4.3 and 5.3 (fixed pH$_N$ = 8.0) but the relative stimulation is much smaller in the former case (i.e., at the larger value of ΔpH). However, the rapid rate of hydrolysis of ATP precludes a firm conclusion from this type of experiment. Therefore, we have re-examined this question using glucose and hexokinase to trap the newly formed ATP before subsequent hydrolysis can take place. The results are shown in fig.4 and they qualitatively confirm the results already presented. It can be seen that thiol-modulation of the chloroplasts stimulated the yield of ATP

![Fig.2](image_url)

Fig.2. Comparison of the threshold ΔpH (at which ATP synthesis is first observed) of thiol-modulated (∙) and demodulated (○) chloroplasts. Other details as in fig.1.
Fig. 4. Comparison of the yield of ATP observed after an acid/base transition of thiol-modulated (○) and demodulated (●) chloroplasts. The pH of the acid stage was 4.15. The base stage additionally contained 4 units of hexokinase (type F-300, Sigma Chemical Co.) and 12 mM glucose. ATP was estimated by the 32P method.

4. DISCUSSION

It has long been known that thiol-modulation of CF$_0$–CF$_1$ stimulates the observed rate of ATP hydrolysis [13] and ATP = P$_i$ exchange [14] reactions, and we now show that this treatment also stimulates the yield of ATP observed after an acid/base transition. The stimulation of acid/base-induced phosphorylation is most marked at limiting ΔpH, and the effect tends to diminish as the size of the pH transition is increased (fig.4). These results cannot be explained in terms of changes in the binding constant of ADP or P$_i$. Therefore, in order to explain this behavior, it is necessary to determine what limits the yield of ATP synthesis at low ΔpH.

It has been suggested that phosphorylation in demodulated chloroplasts at low ΔμH$^+$ is limited by the fraction (α) of CF$_0$–CF$_1$ complexes that are active [5–7]. On this assumption, CF$_0$–CF$_1$ activity is kinetically controlled, and ΔμH$^+$ may not be in equilibrium with ΔG$_p$, the free energy of ATP hydrolysis. Therefore, thiol-modulation of CF$_0$–CF$_1$ may stimulate phosphorylation by causing α to increase, and studies of the steady levels of bound nucleotides suggest that this is indeed the case [9]. Furthermore, the effect of thiol modulation would be most marked when α is initially small, i.e., at low ΔμH$^+$ (ΔpH) as observed here. One would also predict that photophosphorylation should also be stimulated when ΔpH is limiting. We have studied and verified this prediction, and details will be published elsewhere.

The mechanism by which thiol-modulation causes an increase in α under any particular set of conditions is not clear at this stage. A likely possibility is that a change in enzyme structure results in a lowering of the ΔμH$^+$ required to activate CF$_0$–CF$_1$ (ΔμH$_{act}^+$). Such a reduction in ΔμH$_{act}^+$ could occur by a change in the pH optimum at either the P or N poles of CF$_1$. At low ΔG$_p$, this may cause a ΔμH$_{act}^+$ > ΔG$_p$ whilst after thiol-modulation, a ΔμH$_{act}^+$ < ΔG$_p$. This situation would then explain the appearance of net ATP hydrolysis only after thiol modulation of CF$_0$–CF$_1$. However, it should be noted that the effect of thiols would tend to disappear as ΔμH$^+$ increases. Therefore, this mechanism cannot explain the lack of ATP hydrolysis or ATP = P$_i$ exchange at high ΔμH$^+$ where α is close to 1.

The data of fig.1 and 2 show that the threshold ΔpH at which ATP synthesis is first observed is lower after chloroplasts have been thiol-modulated. The H$^+$/ATP stoichiometry may be calculated from this threshold value and the values obtained are 3.4 (demodulated chloroplasts, ΔpH = 2.0) and 4.6 (thiol-modulated chloroplasts, ΔpH = 1.5). The latter value is higher than the values of 2 [21] or 3 [7,23] obtained by other methods. The threshold ΔpH obtained with thiol-modulated chloroplasts should be a better estimate of the thermodynamic...
equilibrium point than that obtained with demodulated chloroplasts where CF$_0$–CF$_1$ is certainly under kinetic control. However, the H$^+$/ATP stoichiometry calculated from the observed threshold ΔpH may be in error for two reasons.

(i) The threshold ΔpH was observed to vary with the pH of the acid stage (which may in fact be caused by a suboptimal pH in the base stage).

(ii) The acid/base transition will certainly generate ionic diffusion potentials (in addition to ΔpH) which, although probably small, should be taken account of in calculating H$^+$/ATP.

Finally, these results are important in understanding the in vivo regulation of CF$_0$–CF$_1$. The ability of CF$_0$–CF$_1$ to interact with the thioredoxin system suggests that the in vivo enzyme is thiol-modulated in the light but demodulated in the dark [17]. Therefore, in the dark ΔpH$_{\text{act}}^+$ > ΔG$_P$ and CF$_0$–CF$_1$ is able to deactivate rapidly and completely whereas in the light, ΔpH$_{\text{act}}^+$ < ΔG$_P$ and ATP synthesis may proceed at maximal efficiency. In this way, the chloroplast may avoid unnecessary hydrolysis of ATP during darkness without affecting the efficiency of ATP synthesis during illumination.

Acknowledgements

We thank Dr Jennifer Moyle for reading the manuscript, Alan Jeal and Sally Madgwick for their capable technical assistance, and Stephanie Key and Robert Harper for help in preparing the manuscript. Financial support for this work was provided by Glynn Research Ltd and by a grant from the Science and Engineering Research Council and is gratefully acknowledged.

References

