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In this paper we examine some properties of complete {k; g}-arcs in projective
planes of order ¢ In particular, we derive a lower bound for k, and we exhibit a
family of arcs having low values of &k which exist in every such plane having a
Baer subplane. In addition we resolve the existence problem for complete {k; 3}-
arcs in PG(2, 9).

1. INTRODUCTION

A {k; n}-arc in a finite projective plane = is a set K of k points such that no
more than n are collinear. A line of the plane containing precisely m points
of K is called an m-secant, and K is said to be complete if every point of
7 — K lies on at least one n-secant. An obvious upper bound for k is k£ <
(n — (g + 1) + 1, and such maximal arcs have been extensively studied
(see, for example, [3, 4, 5, 6]). Of particular interest are results of Cossu [2]
and Barlotti [1] which show that the desarguesian plane of order 9 does not
contain a (maximal) {21; 3}-arc, or even a {20; 3}-arc. In the last section we
shall give examples of complete {k; 3}-arcs in this plane for every possible
value of k. OQur main result is the derivation of a lower bound for & for
complete {k; g}-arcs in planes of order g2. We present also a family of complete
{k; g}-arcs in planes of order g2 containing a Baer subplane of order g,
for “small” values of k.

2. A Lower BOUND FOR k

THEOREM 1. Let w be a finite projective plane of order q* containing a
Baer subplane m, (of order q). Then = contains complete {q® + kq; q}-arcs for
every value of k, 1 <k <q-— 1.
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Proof. Let / and m be two distinct lines of the plane, each containing
g + 1 points of wy, K = {K;|i=1,..,k — 1} a set of kK — 1 points on
mnA, where A =my—~ 1, L={L,|i=1,.,k—1} a set of k —1
points on m — 7, , and p, ,..., pr_, a set of k — 1 lines through P = 7nm
containing no further point of =, . Through each point K; there pass just g
lines of m, — m; define {L,; | j = 1,..., ¢} to be the set of intersections of these
q lines and p,. Let Q = {Q; i = l,...,, q} be any set of g points on / —
(BUm), where B = {L,L,;|i=1,.,k—1, j=1,.,q9}. Such a set
exists because | BNI| <(k — 1) g < g% — 2q, and | — 7, contains g% — ¢
points. Define J = (4 — K)U LU QU{L;!li=1l,..,k—1,j= L..,4q}
Now |[J|=(¢?—(k— 1)) + (k—1) + g + (k — )¢ = ¢* + kq. Every
point of the plane lies on a g-secant of J because every point lies on a line
which meets =, in ¢ + 1 points, and such a line must be either

(i) [, in which case it contains Q but no other point of J,

(i) m,in which caseitcontains ¢ +1 — |K |+ |L|—|Inm|=¢
points of J,

(iii) a line through one of the K; , in which case it contains g — 1 points
in 7, — K — I and precisely one point L;; , or

(iv) any other line of =, , which contains g points of m, — /.

In tact, J is a {g? + kq; q}-arc, because any line of the plane either meets
m, in ¢ + 1 points, and by the above is a g-secant, or is one of the lines p; ,
and by the construction contains just ¢ points L;, or is any other line.
But if such a line were to contain more than ¢ points it would have to contain
g — 2 points amongst the L,;’s (and hence &k = g — 1), one point of L, one
point of A — K and one point of Q-but this is impossible by the definition
of Q. J is thus a complete {¢2 +kq; q}-arc.

Arcs constructed in this way are remarkable in that g% + kq is (for ¢ > 3)
very much less than the upper bound of g2 — ¢% + ¢; in fact, g2 + g is only
one greater than the lower bound we are about to prove. Even so, these arcs
are in no sense unique: as long as k < ¢ — 1 the points of @ can be chosen
arbitrarily on / — =, , so that it is possible for two such arcs to differ by
just one point, moreover there exist examples of {g*> + kq; g}-arcs which are
not isomorphic to arcs constructed using Theorem 1. We now prove our
main theorem.

THEOREM 2. If K is a complete {k; q}-arc in a plane of order g%, then
k>q*+q— 1.

Proof. The result is obvious for ¢ = 2 and a simple computation for
g = 3. Moreover, for ¢ > 3 it is easy to show that k > ¢®. So, assume that X
is a complete {g% + A&; g}-arc, 1 < h < g — 2 in a plane of order ¢?, g > 3.
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A point of K lies on at most ¢ + 1 g-secants. If 7, is the number of g-secants,

@R

4 q2+q+h+g—>tq<q2+q+h

ty

Now there exists an external line, since any external point lies on at least

one g-secant and the remaining ¢% + & — g < ¢* arc points cannot account

for the remaining ¢2 lines through the point. As every point of such a line
must lie on a g-secant,

t,2=2q>+1

If every point of K lay on at most ¢ — 1 g-secants, 7, < (g% + h)(g — D/g <
g% + 1 so some point of X lies on at least g g-secants. As such a point lies on
a tangent, we obtain

ty=2q*+¢q

Again, if every point of K lay on at most g g-secants, ¢, << (g% + h)g/g <
g% + ¢ so some point R of K lies on at least ¢ + 1 g-secants, and hence

t,=¢q*+q+1t forsome t, 1<t<h

Now let P;, 0 <<j < g + 1, be the set of points of X which lie on precisely
j g-secants. Let ry,..., r, be the lines through R e P, containing at least
one, but fewer than ¢, further points of K, and r,, ,..., 741541 the g-secants
through R. A line r;, 1 < i <s, can contain at most one point of P, or
P, apart from R, for, suppose S, T € P, U Py Nr; —{R},and let ] < h — 2
be the number of other points of K N r;. The remaining g2+ 1 —3 — 1/
external points have to be covered byat mostg* + g +¢t — (g + 1) —2¢ =
gt — 2q - t — 1 g-secants, and this is clearly impossible. We can assume that
{r;|i = 1,..., m} is the set of lines which contain just one further point of
P Y P e+l -

Now let y be the number of points of r; N K (i = 1,..., m) which contain
no g-secants. If Ser; N P, the remaining ¢>*+q+¢t—(g+ 1) —g=
q? — q -~ t — 1 g-secants have to cover the remaining g2+ 1 — (2 4 y) =
¢® — 1 — y points on r; which implies y > g — ¢. Similarly, if Se (r; — R) N
P, , weobtainy > q — ¢ + 1 so in either case r; contains at leastg — ¢ + 1
points of K distinct from R.

If n = s — m, this implies that

n<h—mg—t+1)
and M
s<h—m(@g—1)
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Now, foranyliner;, 1 <i<s,lety; =]|r,N U?;; P;landz; = | r; N Py |
and let @; be the number of g-secants through points of r; N U?: P;, and
B; = wi/y; . Counting g-secants through external points of r; as before yields:

Bigl‘l‘ﬁ‘—tyl‘_—l, m+1<i<s,

z

and V)]
p<1+EL =L i<i<m

Letx; = | P, 1 <j<<g+landa=|KN Py|and x;; = |(r; — R) N P; |,
1<i<qg+ 1+ s Wehave

a+1+38 ¢+1 a+1
1+z in,-=2x,~=q2—]~h—a,
=1 =l j=i

8

a-1 s
injzyi, Zzi:cx, Zyi:h—a—m.
j=1 i=1 i=1
We now couat pairs (P, 5), where P € s is a point of K and s is a g-secant:
g+1 a+1

—1
(@+qg+tg= ij,—querm Z(q—j)x,-
=1

=1
g=-1
=qg®+ h—0) + X1 — 2 (g—7)x;.
Jaual

Now, since xg,; << g2 + m, this yields

?—1

g+ Y (@—)x; <m+qth— o). 3
=1
We now have
a1 a—1 g+8-+1
Z (q—j)x; = Z Z (g —J) x4
i= j=1 =1
g-1 s
> (q _]) X
i=1 i=1
8 q—1 a—1
= Z (q Z X — Z un)
i1\ j=

= g (qy:i — Bsyo)



ON SMALL {k; g}-ARCS 245

I
™Mz

(@—B)y: + Z (q— By

i=1 i=m+1
;i(qfl zi+yti—q)yi

+ Z (q—l_ﬂl'i)}7'i (by 2)

f=m+1 Vi

=(q—1)zyi—zzi”‘5t+mlI+"

i1 izl
=(q—1DYh—a—m)—a—st+mqg-+n
and, using (3),
tg —h—st+n<0. @

Now, m > 1sinceif m = 0, n = s and this last inequality yields t(g — 5) <
h — 5 which is impossible since ¢ > 1. Combining (1) and (4) we have

O0>tg—h—tth—mlg—1t)+n
=tg—h(t+D+m@@—t)+n=@—t+D)t—1)+3+n

because £ << g — 2 and m > 1. But this last expression is strictly positive,
which is a contradiction, and hence the theorem is proved.

3. SoME EXAMPLES

In this section we give some specific examples for the case ¢ = 3; in
particular we exhibit complete {k; 3}-arcs for every possible value of k in
the desarguesian plane of order 9, PG(2, 9).

Results of Cossu [2] and Barlotti [1] show that in this plane such arcs
can exist only if £ < 19, and an elementary counting argument shows that
for completeness k£ > 10. Computer programs were written for a CDC 7600
computer using backtrack algorithms to effect exhaustive searches for
complete arcs with k = 11, 18 and 19. Our conclusion is that no such arcs
exist. On the other hand, theorem 1 guarantees the existence of complete
arcs with k = 12 and 15.

Let PG(2, 9) be coordinatized homogeneously over GF(9) = {i + jx | i,
j€ GF(3), o* = 2a + 1} and let m, be the Baer subplane coordinatized by
GF(3). If lis the line z = 0, define 4 = 7, — [ — {(0, 0, 1)}, B = {(1, 24, 0),

582a/24/2-9



246 BARNABEI, SEARBY, AND ZUCCHINI

(L,2x+1,0), (1,2 + 2,00}, C = {(0, o, 1), (&, &, 1), (x4 2, 2a -+ 1, 1),
Qo +2,0,1)}, and D = {(0, &, 1), (&, o, 1), Qa, o, 1), (2, 0, 1)}. It is then
easy to verify that the following are all complete {k; 3}-arcs:

(i k=12:4UBuU{0,0, D},

(i) k=13:4A0CV{({,a+2,0),

(i) £k =14:A9{0, o, 1), (0, &, 1), + 1,0, 1), Qe + 1, o« + 2, 1),
(1,,0), (1, « + 1, 0)},

(iv) k=15:4AVBUD,

V) k=16: 40V BUDU{I,2a-+2,1),(x0,1)} —{(1,0, D}

(viy k=17:{(0,1,1), (0,2, 1), (1,0, 1), (1,2, 1), (2,0, 1), (0, , 1),
(2: , 1)’ (23 2a + 2: 1)’ (a’ 0’ 1)9 (OL + 1, 17 1)5 (a + l>
oy, Dy (e + 1,20, 1), (20,2, 1), Qe + 2, 1, 1), (1, .+ 1, 0),
(19 & + 23 0)9 (1’ za’ 0)}‘

We have thus shown:

THEOREM 3. In PG(2, 9) a complete {k; 3}-arc exists if and only if
12 <k K17
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