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Abstract

We present a perfect simulation algorithm for measures that are absolutely continuous with
respect to some Poisson process and can be obtained as invariant measures of birth-and-death
processes. Examples include area- and perimeter-interacting point processes (with stochastic
grains), invariant measures of loss networks, and the Ising contour and random cluster models.
The algorithm does not involve couplings of the process with di5erent initial conditions and it is
not tied up to monotonicity requirements. Furthermore, it directly provides perfect samples of 7-
nite windows of the in/nite-volume measure, subjected to time and space “user-impatience bias”.
The algorithm is based on a two-step procedure: (i) a perfect-simulation scheme for a (7nite
and random) relevant portion of a (space–time) marked Poisson processes (free birth-and-death
process, free loss networks), and (ii) a “cleaning” algorithm that trims out this process accord-
ing to the interaction rules of the target process. The 7rst step involves the perfect generation
of “ancestors” of a given object, that is of predecessors that may have an in<uence on the
birthrate under the target process. The second step, and hence the whole procedure, is feasible if
these “ancestors” form a 7nite set with probability one. We present a su=ciency criteria for this
condition, based on the absence of in7nite clusters for an associated (backwards) oriented per-
colation model. The criteria is expressed in terms of the subcriticality of a majorizing multitype
branching process, whose corresponding parameter yields bounds for errors due to space–time
“user-impatience bias”. The approach has previously been used, as an alternative to cluster
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expansion techniques, to extract properties of the invariant measures involved. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Perfect simulations or exact sampling are labels for a recently developed set of tech-
niques designed to produce output whose distribution is guaranteed to follow a given
probability law. These techniques are particularly useful in relation with Markov Chain
Monte Carlo, and their range of applicability is rapidly growing (see http://dimacs.
rutgers.edu/∼dbwilson/exact).
There are several techniques for perfect simulation of Markov processes. The most

popular ones can be classi7ed in two categories: Propp and Wilson’s Coupling from the
Past (CFTP) and Fill’s Interruptible Algorithm. The 7rst type of technique applies, in
its original version, to invariant measures of Markov processes with a /nite coalescence
time. That is, of processes for which there exists a coupling among trajectories such
that with probability one the trajectories starting from all possible initial states coalesce
in a 7nite time. This includes all irreducible Markov processes with a 7nite state
space. The coalescence property becomes di=cult to check if the state space is very
large. The problem can be overcome for processes with the following monotonicity
property: there must exist a “maximal” and a “minimal” state and a coupling such
that the coalescence of coupled trajectories starting from these two states implies the
coalescence of all other trajectories (“monotone coupling”). Examples of processes
with this property include Glauber dynamics of spin systems with the FKG property
(Propp and Wilson, 1996). Other perfect simulation techniques are based on backward
coupling of embedded regeneration times (Corcoran and Tweedie, 2001), 7nitary coding
(HLaggstrLom and Steif, 2000; van den Berg and Steif, 1999), tempering algorithms,
cluster representation of a Markov chain (Cai, 1999 preprint), regenerative construction
(Comets et al., 2002), embedding the problem into the coloring of a graph (Fill and
Huber, 2000), representation as an in7nite mixture (Hobert and Robert, 2000) among
others.
The basic CFTP algorithm, sometimes called vertical CFTP, is in general not ap-

plicable to processes with in7nite state space. Indeed, most of them lack uniform
ergodicity, a property shown (Foss and Tweedie, 1998) to be equivalent to the exis-
tence of a coalescence scheme as above. To cope with this situation, Kendall (1997,
1998) introduced dominated CFTP (also called horizontal CFTP and coupling into
and from the past). This extension also requires the state space to have a partial or-
der, as well as the existence of a monotone coupling among the target process and
two reversible sandwiching processes, which must be easy to sample. Algorithms of
this type are available for attractive point processes and, through a minor modi7cation,

http://dimacs.rutgers.edu/~dbwilson/exact
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also for repulsive point processes (Kendall, 1998). Similarly, HLaggstrLom et al. (1999)
combined ideas from CFTP and the two-component Gibbs sampler to perfect simulate
from process in in7nite spaces which do not have maximal (or minimal) elements.
The interruptible algorithm proposed by Fill (1998) (see also ThLonnes, 1999) is an

acceptance-rejection scheme which applies to invariant measures of Markov processes
whose time-reversed process has a monotonicity property. Thus, its range of applica-
bility overlaps with that of the CFTP algorithm at reversible monotone processes like
Glauber dynamics of attractive automata or ferromagnetic spin systems and attractive
point processes. Later developments have made Fill’s algorithm applicable to other
processes as well (Fill et al., 2000). An important advantage of this algorithm is that
it is free of the so-called impatient-user bias: no bias is introduced if the user aborts
a long run of the algorithm.
Kendall (1997, 1998) and Kendall and MHller (2000) proposed dominated CFTP

schemes applicable to 7nite-volume measures which are absolutely continuous with
respect to a 7nite Poisson point process and that can be obtained as the invariant
measure of an interacting spatial birth-and-death process. These algorithms are based
on two ingredients: (i) the “thinning” of a space–time marked Poisson process, and
(ii) the coupled construction of upper and lower processes whose coalescence sig-
nals the output of a perfect sample. See the recent review of MHller (2000) for more
references.
In this paper we propose a new perfect-simulation algorithm which applies to the

same type of measures but has the following distinctive features:

• We sample directly from a time stationary realization of the process. There is no
coalescence criterion, either between coupled realizations or between sandwiching
processes. The scheme neither requires nor takes advantage of monotonicity proper-
ties.
• The scheme directly samples a 7nite window of the equilibrium measure in in/-

nite volume. In contrast, Kendall (1997, 1998) focus on 7nite windows with 7xed
boundary conditions, and the in7nite-volume limit requires an additional process of
“perfect simulation in space”. Our construction is in the spirit of the algorithms
proposed by van den Berg and Steif (1999) and by HLaggstrLom and Steif (2000)
to simulate in7nite-volume measures for nearest-neighbor interactions in a lattice at
high temperature or “high noise”. In a sense, our algorithm is complementary to
those, because it applies to regimes where they break down (e.g. at low tempera-
ture). We point out that before the arrival of the perfect simulation wave, Ferrari
(1990), van den Berg (1993) and van den Berg and Maes (1994) have also proposed
construction schemes for (in7nite-volume) Gibbs measures of spin systems that can
be easily transcribed into perfect-simulation algorithms.
• The construction has the added value of being a proven theoretical tool for the anal-
ysis of properties of the target measure. For instance, in Fern(andez et al. (1998,
2001) we used it to obtain mixing properties, 7nite-volume corrections and the
asymptotic (in temperature) distribution of “defects” of the low-temperature Ising
translation-invariant extremal measures. Ferrari and Garcia (1998) used a similar
construction to show ergodicity of family of loss networks in R.
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• More generally, the construction can be used as an alternative to the cluster-expansion
technology (Brydges, 1986; KoteckMy and Preiss, 1986; Dobrushin, 1996) for the
study of spin models, at least those with a <ipping symmetry. In fact, it seems to
have a region of validity more extended than usual cluster-expansion approaches.

Our algorithm does involve the “thinning” of a marked Poisson process—the free
process—which dominates the birth-and-death process, and it involves a time-backward
and a time-forward sweep. But these procedures are performed in a form quite di5er-
ent from previous algorithms. The initial stage of our construction is done towards the
past, starting with a 7nite window and retrospectively looking to ancestors, namely to
those births in the past that could have (had) an in<uence on the current birth. The con-
struction of the clan of ancestors constitutes the time-backward sweep of the algorithm.
Once this clan is completely constructed, the algorithm proceeds in a time-forward fash-
ion “cleaning up” successive generations according to appropriate penalization schemes.
This “ancestors approach” o5ers some noteworthy advantages:

(i) The algorithm constructs only the portion of the birth-and-death process strictly
needed for the /nal window at t = 0. This economy has two important conse-
quences: 7rst, we can sample directly from the in7nite-volume measure, without
boundary e5ects. Second, the scheme works for point processes with quite general
grain distribution, for instance chosen from an unbounded family of objects. As
a consequence, it can be applied to the simulation of loss networks or of Peierls
contours of the low-temperature Ising model.

(ii) Perfect sampling is assured once the algorithm determines the “7rst” ancestors,
that is those ancestors that themselves do not have ancestors. Thus, the algorithm
determines by itself, in a single sweep, how far back into the past the simulation
must go. This contrasts with usual CFTP schemes where algorithms may have to
be iterated several times, going further and further into the past, until coalescence
is achieved.

The relation “being ancestor of” induces a backwards in time contact/oriented perco-
lation process. The algorithm is applicable as long as this oriented percolation process
is subcritical. This implies the following limitations of our scheme:

• It works at low density of objects, at least in in7nite volume. It may work at higher
densities in 7nite volume, but we have not pursued this investigation.
• The birthrate of objects must be uniformly bounded. This is necessary to guarantee
the existence of the dominating free birth-and-death process.

Our algorithm does not rely on any type of monotonicity. Therefore, for monotone
systems our algorithm probably needs to go further back into the past than dominated
CFTP or other schemes that exploit monotonicity. This loss in e=ciency could be com-
pensated, at least partially, by the “economy” and “single-sweep” features mentioned
in (i) and (ii) above. As Prof. Kendall pointed out (private communication), dominated
CFTP constructions “are wasteful in that they simulate past grains without regard to
whether or not they are in the relevant percolation cluster, but e=cient in that they use
some kind of monotonicity to detect whether or not one needs to investigate further
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back into the past”. As a counterpart, insensitivity to monotonicity amounts to gener-
ality and versatility. In particular, this versatility could be used to o5set the limitation
imposed by the low-density constraint.
As an illustrative analogy, let us present a parallel with what happens in statisti-

cal mechanics, where studies usually rely on two types of methods: (I) those based
on correlation inequalities, and (II) those expansion based. (These are not the only
methods, others include exact solutions and more abstract arguments based on com-
pactness or convexity.) Types (I) and (II) are mutually complementary. Correlation
inequalities yield very strong results, often valid over whole regions in parameter
space. Nevertheless, these results are rigid in that their validity depends on very precise
symmetry (monotonicity) properties that can be easily destroyed by even in7nitesimal
perturbations. In contrast, expansion-based techniques are very versatile and robust.
While their a priori range of convergence is limited—it is restricted to low densities
or high temperatures—, it is often the case that suitable changes of variables place
other regions of parameter space within the scope of expansion methods. For instance,
expansion-based studies of high-temperature spin models work with (interacting) ran-
dom walks (see, e.g. Dobrushin, 1996). Closer to, and above, the critical temperature
alternative expansions are available (Olivieri and Picco, 1990; Fern(andez et al., 1992).
At low temperature the right variables are the contours, and to get closer to (but below)
the critical temperature coarse-grained contours are needed (GawQedzki et al., 1987). In
fact, the belief is that there always are “good” variables that make everything diluted
enough.
Existing dominated-CFTP algorithms are reminiscent of methods of type (I). They

are very e5ective and apply for large intervals of rates. But they are also very spe-
ci7c, small alterations in the models could a5ect monotonicity and render an algorithm
inapplicable. Our scheme could, perhaps, play a role similar to the studies of type (II)
for simulation purposes. In this sense, it is crucial that monotonicity requirements be
absent from the procedure. The goal is to change variables so to fall into a low-rate
Poissonian (birth-and-death) process. Such changes will in general destroy any (obvi-
ous) monotonicity property. As an example, our scheme is capable to deal with Peierls
contours, and hence to provide an exact-sampling algorithm for the low-temperature
Ising model (of course, it is “exact” modulo time and space user-impatience). This is
a region inaccessible to pre-existing algorithms. The use of other random objects (see
the end of the previous paragraph) could yield analogous algorithms for other regions
of the phase diagram.
The comparison of our algorithm with expansion methods is, in fact, more than

just an analogy. Its theoretical basis has been used to construct an alternative to usual
expansion methods in statistical mechanical (Fern(andez et al., 1998, 2001). This alter-
native has a provable region of validity that exceeds that of usual cluster-expansion
treatments.
For the sake of completeness we start with the de7nitions of the most conspicu-

ous space processes whose distributions we can perfect-simulate (Section 2). Examples
include area- and perimeter-interacting point process, invariant measures of loss net-
works, the random cluster model and the contour representation of the “+” or “−” Ising
measures at low temperature. Its relation with birth-and-death processes is discussed



68 P.A. Ferrari et al. / Stochastic Processes and their Applications 102 (2002) 63–88

immediately after (Section 3), together with the basic simulation approach for the
latter. The perfect-simulation scheme is 7nally presented in Section 5. Its central piece
is the time-backward construction of the clan of ancestors of a Poissonian birth-and-
death process.

2. Point processes

Let G be a measurable space and � a Radon measure on G. Typically G is Rd, Zd,
Rd ×G′ or Zd ×G′, where G′ is a set of “animals” or “marks”. Let

S= {�∈NG: �(�)¿ 0 only for a countable set of �∈G}:
A point process is a random element N ∈S. We denote with 
 the law of a point
process N . N is interpreted either as a random con7guration of points or a random
counting measure on G.

Poisson process. The 7rst example is a Poisson process on G with intensity measure
�. Its law is characterized by


0(N : N (B) = k) = e−�(B)�(B)k =k!

for measurable B ⊂ G; besides, under 
0 N (Bi) are independent if Bi are disjoint.
When G = Rd and T ⊂ Rd we call 
0

T the law of N 0 ∩ T. We call a Poisson process
on G = Rd homogeneous when �(T) is a function of ‘(T), the Lebesgue measure of
T. Similarly, when G=Zd, the process is called homogeneous when �(T) is a function
of |T|, the number of points in Zd∩T. In this case, the intensity is proportional to the
Lebesgue (respectively, counting) measure and the factor of proportionality is called
the rate which equals �(T) for any T with unit Lebesgue measure (resp. counting
measure).

Finite total rate. For future purposes we consider the case �(Rd × R+)¡∞; we
interpret the last coordinate as time. One can compute the distribution of the (not
necessarily 7nite) time �1, the smallest time-coordinate of the points (if any) of the
process. Indeed, calling N the point Poisson process with rate �, for 06 t6∞,

P(�1 ¿t) = P(N (Rd × [0; t)) = 0) = exp(−�(Rd × [0; t)): (2.1)

In the case of one-dimensional processes (d= 0) the above reads

P(�1 ¿t) = P(N ([0; t)) = 0) = exp(−�[0; t)): (2.2)

In this paper we consider only point processes that are absolutely continuous with
respect to a Poisson process with law 
0. The law of these processes is characterized
by


(dN ) =�(N )
0(dN );

where � is the Radon-Nikodim derivative of 
 with respect to 
0.
A Poisson process that appears in the literature is the germ-grain Poisson process.

In this case G = Rd × B0(Rd), where B0(Rd) is the set of compact Borel sets of
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Rd. For each alive germ x∈Rd, g∈B0(Rd) is the associated grain. Assume that the
grains are determined by a random variable independent of the rest, given by a certain
probability distribution �x, which may depend on the germ location x. The intensity �
is de7ned by

�(d(x; g)) = f(x)�x(dg) dx; (2.3)

where f(x) is the intensity of germs.
Area-interaction point processes. These processes have been introduced by Baddeley

and van Lieshout (1995). This is a germ-grain process as de7ned above, but the grain
shape is 7xed and equal to a compact convex G ⊂ Rd. We only need to keep track of
the germs, so G=Rd. The intensity � is de7ned by �(dx) = � dx, � is a positive real
number. The intersections of the grains determine a weight that corrects the otherwise
Poissonian distribution of germs. The process is absolutely continuous with respect
to the Poisson process 
0 with intensity �. The law of the area-interaction process is
de7ned for bounded windows T ⊂ Rd by


T(dN ) =
�−md(N⊕G)

ZT(�; �)

0
T(dN ); (2.4)

where 
0
T is the law of the unit Poisson process in the box T, � is a positive parameter,

ZT(�) is a normalizing constant and N ⊕ G is the coverage process given by

N ⊕ G :=
⋃
x∈N

{x + G}: (2.5)

Strauss process. The setup is the same as the area interaction process, but now the
unit Poisson process is weighted according to an exponential of the number of pairs
of points closer than a 7xed threshold r. The measure is de7ned by


T(dN ) =
1
ZT

e�1N (T)+�2S(N;T) 
0
T(dN ); (2.6)

where S(N;T) is the number of unordered pairs such that ‖xi − xj‖¡r. The case
�2 ¿ 0 was introduced by Strauss (1975) to model the clustering of Californian red
wood seedling around older stumps. However, (2.6) is not integrable in that case (see
Kelly and Ripley, 1976).

Low-temperature Ising model. The well-known Peierls contours allow to map the
“+” or “−” measures of the ferromagnetic Ising model at low temperature into an
ensemble of objects—the contours—interacting only by perimeter exclusion. See, for
instance, Section 5B of Dobrushin, 1996, for a concise and rigorous account of this
mapping. The (discrete) set G consists of contours; these are hypersurfaces formed
by a 7nite number of (d− 1)-dimensional unit cubes—links for d= 2, plaquettes for
higher dimensions—centered at points of Zd and perpendicular to the edges of the
dual lattice Zd + (12 ; : : : ;

1
2 ). To each contour one can assign an “origin” in Zd and

say that two contours are equivalent if they coincide after a translation of the origin.
Calling G′ the set of contours modulus this class of equivalence, the set G can be
expressed by G = Zd × G′, where the 7rst coordinate corresponds to the origin and
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the second to the “shape” of the contour. Call two plaquettes adjacent if they share a
(d− 2)-dimensional face. A set of plaquettes, �, is connected if for any two plaquettes
in � there exists a sequence of adjacent plaquettes in � joining them. The set � is closed
if every (d − 2)-dimensional face is covered by an even number of plaquettes in �.
Contours are connected and closed sets of plaquettes. For example, in two dimensions
contours are closed polygonals. Two contours � and  are said to be compatible if no
plaquette of � is adjacent to a plaquette of  . In two dimensions, therefore, contours
are compatible if and only if they do not share the endpoint of a link. In three di-
mensions two compatible contours can share vertices, but not sides of plaquettes. Ising
spin con7gurations in a bounded region with “+” (or “−”) boundary condition are in
one-to-one correspondence with families of pairwise compatible contours.
Let the compatibility matrix I :G ×G→ {0; 1} be de7ned by

I(�;  ) =

{
0 if � and  are compatible;

1 otherwise:
(2.7)

The “Poisson process” 
0
T in NG is the product of Poisson measures whose �-marginal

is Poisson with mean

w(�) := exp(−�|�|)
for � ⊂ T. Here |�| stands for the number of plaquettes of �. The intensity measure �
is discrete:

∫
B d�= �(B) =

∑
�∈B w(�).

Let 
T be the measure de7ned by: for �∈{0; 1}G, such that �(�)6 1{� ⊂ T},


T(�) =
1
ZT


 ∏

�; :�(�)�( )=1

[1− I(�;  )]


 
0

T(�); (2.8)

where � is a positive parameter called inverse temperature. The factor ZT is just the
normalization.

The random cluster model. Consider T ⊂ Zd and let B(T) := {(x; y)∈T × T:
|x − y| = 1} the set of bonds of T. A bond con7guration $∈{0; 1}B(T) is a function
from B(T)→ {0; 1}. Bonds assigned 1 are called open, otherwise closed. A cluster of
$ is a set of sites connected with open bonds; sites surrounded only by closed bonds
are clusters of size 1. Let p∈ [0; 1] and q¿ 0 be parameters and de7ne the 7nite
volume measure

’T($) =
1

ZT(p; q)
pO($) (1− p)C($)qL($); (2.9)

where O($) is the number of open bonds of $ in T, C($) is the number of closed
bonds and L($) is the number of clusters. The constant ZT(p; q) is the normalization.
In other words, ’T is absolutely continuous with respect to the product measure on
B(T) with parameter p, with Radon-Nikodim derivative qL($)=ZT(p; q). This model has
been introduced by Fortuin and Kasteleyn (1972); a review can be found in Grimmett
(1995).
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Taking the connected sets of bonds as the basic objects, this model can be written as
in (2.8). More precisely, if one says that two sets of bonds are incompatible whenever
they share some vertices, and takes G = {� ⊂ B(T): � is 7nite and connected}, the
probability weights of the model can be written in the form (2.8) with the Poisson
means

w(�) =
(

p
1− p

)B(�)(1
q

)V (�)−1

: (2.10)

Here B(�) is the number of bonds of � and V (�) the number of vertices in the extremes
of the bonds of �. [That is, V (�) = #{x∈T such that (x; y)∈ � or (y; x)∈ � for some
y∈ �}.] The transformation Y : {0; 1}B(T) → {0; 1}G de7ned by

Y ($)(�) = 1 ⇔ � is a maximally connected set of open bonds of $

satis7es

’T($) = 
T(Y ($)): (2.11)

3. Birth-and-death processes

3.1. De/nition and examples

The common feature linking all the spatial processes described in the previous sec-
tion is that all these distributions can be realized as invariant measures of spatial
interacting birth-and-death processes.
We consider the state space S of point con7gurations on G with a Radon measure

� as in Section 2.
The free birth death process is characterized by the fact that individuals are born

at intensity � and last for a random time exponentially distributed of mean one. The
generator of the free process is

A0F(.) =
∫
G
�(d�)[F(.+ /�)− F(.)] +

∑
�∈G:.(�)¿0

.(�)[F(.− /�)− F(.)]: (3.1)

Here /� is the con7guration with only one point at � and (. + �)( ) = .( ) + �( )
(coordinatewise sum). The invariant (and reversible) measure for the free process is
the Poisson process 
0 with intensity �.

Let 
 be a measure absolutely continuous with respect to 
0 with Radon-Nikodim
derivative �: d
(.) =�(.) d
0(.). De7ne

AF(.) =
∫
G
�(d�)

�(.+ /�)
�(.)

[F(.+ /�)− F(.)]

+
∑

�∈G:.(�)¿0

.(�)[F(.− /�)− F(.)]: (3.2)
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The di5erence with the free process is that in the interacting process the rate of birth
�(d�) is corrected with the quotient �(. + /�)=�(.), while the rate of death remains
unaltered. The measure 
 is reversible for the process with generator A. To better
interpret this dynamics assume

0� := sup
.;�

�(.+ /�)
�(.)

¡∞

and de7ne M :G ×S→ [0; 1] by

M (�|�) = �(�+ /�)
0��(�)

: (3.3)

If X�= 0��, the generator can be rewritten as

AF(.) =
∫
G

X�(d�)M (�|.)[F(.+ /�)− F(.)]

+
∑

�∈G:.(�)¿0

.(�)[F(.− /�)− F(.)]: (3.4)

This dynamics has the following interpretation. When the current con7guration of ob-
jects is �, object � attempts to be born with rate X�(d�) and is e5ectively born with
probability M (�|�). The death rate of any object is one.
The interaction M induces naturally the notion of incompatibility between individ-

uals. This is not a necessarily symmetric matrix I :G ×G→ {0; 1} de7ned by

I(�;  ) := 1

{
sup
�
{|M (�|�)−M (�|�+ / )|}¿ 0

}
; (3.5)

where / is the con7guration having unique individual  and the supremum is taken
over the set of those � such that � and �+ / are in the set of con7gurations (either
{0; 1}G or NG). The function I(�;  ) indicates which individuals  may have an in-
<uence in the birthrate of the individual �. In the case of the spatial point processes
described above the matrix is symmetric and given by I((x; g); (x′; g′)) = 1{(x + g) ∩
(x′ + g′) �= ∅}. If I(�;  ) = 1—that is, if the presence/absence of  modi7es the rate
of birth of �—we say that  is incompatible with �. For the Ising and random-cluster
models one recovers (2.7).

Area interaction point processes. In the repulsive (�¡ 1) point process (2.4) we
have 0� = ��−md(G) and

X�(dx) = ��−md(G) dx; (3.6)

M (x|�) = �md(G)−md((x+G)\(�⊕G)): (3.7)

For the attractive (�¿ 1) case,

X�(dx) = � dx (3.8)

M (x|�) = �−md((x+G)\(�⊕G)): (3.9)
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Continuous unbounded one-dimensional loss network. A loss network models, for
instance, the occurrence of calls in a communication network. Kelly (1991) reviews
several discrete regimes and introduces the following continuous generalization. Callers
are arranged along an in7nitely long cable and each call between two points s1; s2 ∈R
on the cable involves just the segment between them. The cable has the capacity to
carry simultaneously up to C calls past any point along its length. Hence, a call attempt
between s1 and s2 ∈R, s1 ¡s2, is lost if past any point of the interval [s1; s2] the cable
is already carrying C calls. Calls are attempted with initial (leftmost) point following
a space–time Poisson process with intensity f(x) dx, and (space) lengths given by a
distribution �, independent of its leftmost point, with 7nite mean 31. The holding time
of a call has exponential distribution with mean one. The location of a call, its length
and its duration are independent.
In this case, the germs (x) are the leftmost points of calls and the grains (g) are

segments with random lengths. This process can be viewed as a spatial birth and death
process where we can take

X�(d(x; g)) = f(x) dx�(dg); (3.10)

and denoting �(u) := number of calls using point u,

M ((x; g)|�) = 1{(�+ /{x+g})(u)6C;∀u∈R}: (3.11)

Discrete processes. Free birth-and-death processes with a countable family of indi-
viduals G are simply the product of independent birth death processes labeled by each
�∈G, with birthrates w(�) and deathrate equal to the number of alive individuals.
Such a process exists without any requirement on the weights w(�); it is ergodic and
its invariant distribution is the product of Poisson laws with mean w(�).
The (discrete) loss networks, the contour model and the animal version of the random

cluster model of Section 2 are processes of this form where, in fact, the matrix M takes
only two values, 0 and 1. That is, the interaction imposes a deterministic constraint. In
particular, the interaction terms of the Ising-model, random cluster and loss networks
have a simple product form

M (�|�) =
∏

 :�( )�=0

[1− I(�;  )]: (3.12)

Indeed, the Radon-Nikodim derivative is one for allowed con7gurations, hence the
denominator in (3.3) is one.

3.2. Graphical construction

We proceed to the construction of the probability space where both the free process
and the interacting birth death process will be constructed. Consider the countable
family of random quartets {(5i; Ti; Si; Zi): i∈J}, with 5i ∈G, Ti; Si ∈R, Zi ∈ [0; 1]
such that:

• The process {(5i; Ti); i∈J} is a Poisson process on G × R with mean measure
� × ‘; ‘ is the Lebesgue measure in R. This process determines the time and type
of attempted births of individuals.
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• Si is exponentially distributed with mean 1. This variable will determine the lifetime
of the ith attempted birth.

• Zi is uniformly distributed in (0; 1). This variable is called the @ag or mark of the
ith attempted birth and will be used together with the function M (·|·) to decide if
the attempted birth is actually a real birth.

Each triplet (5i; Ti; Si) can be visualized as a cylinder of (space) basis 5i, birth time
Ti and lifetime Si. The random set of marked cylinders is called

C= {(5i × [Ti; Ti + Si] Zi); i∈J}: (3.13)

For a generic marked cylinder C=(5× [t; t+s]; z)∈C, denote birth(C)= t, death(C)=
t + s, life(C) = [t; t + s], basis(C) = 5 and <ag(C) = z.

The free process. The construction of C is time-translation invariant. Call

�t(�) := #{C ∈C: basis(C) = �; life(C) � t} (3.14)

the set of individuals forming the sections of C at time t. All attempted births are
actual births in this case. �t(�) will be at most 1 in the continuous case, but could
be bigger in the discrete case. (�t : t ∈R) constitutes a stationary free birth death
process with generator (3.1). The marginal law of �t is 
0, the Poisson process with
intensity �.
Likewise, one can de7ne the free process on Rd × [0;∞) with initial con7guration

of individuals

�0 := {�01; �02; : : :}: (3.15)

For this associate cylinders to the initial con7guration:

C0(�0) := {(�0i × [0; 0 + S0
i ]; Z

0
i ); i∈Z}; (3.16)

where S0
i and Z0

i are independent and independent-of-everything random variables
whose distributions are, respectively, Exp(1) and U (0; 1). De7ne the subset of cylinders
born between 0 and t:

C[0; t] := {C ∈C: birth(C)∈ [0; t]}:
Then, the process de7ned at time t by

�t(�) := #{C ∈C[0; t] ∪ C0(�0): basis(C) = �; life(C) � t} (3.17)

has initial con7guration �0 and generator (3.1).
Interacting processes. The absolute continuity with respect to the free process, em-

bodied in the generator (3.4), suggests a simple alteration to the previous construction
to pass to an interacting birth-and-death process: the attempted births become actual
births only if an additional (generally stochastic) test is passed. This test is determined
by the factor M of the rate densities. The interacting process is, therefore, obtained as
a “thinning” or “trimming” of the free process.
The formalization of this intuitively simple idea is easy for 7nite windows, but more

delicate for the in7nite-volume process. We discuss the former case 7rst.
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3.2.1. Finite-volume construction
To construct a birth-and-death process �t with rate density X�(d�)M (�|�), for individ-

uals within a 7nite space-region T and for a 7nite time interval [t0; t7n], one proceeds
as follows:

(1) Run the free process with rate density X� starting from the initial cylinders C0. If
M (�|�) is deterministic—for instance forbidding individuals to overlap—the initial
con7guration is assumed to satisfy the corresponding constraint.

(2) Each death happening before reaching an event of the free process causes the
corresponding updating of �t , by taking the corresponding individual out of �t .

(3) When the free process yields a 7rst event (�1; t1; s1; z1), this event is considered
an attempted birth. To decide, one looks to the set �t1− of alive individuals (�t1−
is equal to �0 minus the initial individuals with lifetime smaller than t1). If

z1 ¡M (�1|�t1−) (3.18)

the cylinder is allowed to be born and the individual �1 is included in the con-
7guration �t1 ; otherwise it is ignored and �t1 is set equal to �t1−.

(4) Now iterate the procedure, that is, repeat the previous two steps shifting sub-
scripts 1→ 2 and 0→ 1. Continue in this way until reaching an attempted birth
beyond t7n.

3.2.2. Two-sweep /nite-volume construction
The visualization in terms of cylinders suggests an alternative implementation as

a two-sweep scheme: in the 7rst sweep one generates free cylinders by running the
free process from t0 to t7n, while in the second sweep a decision is made on which
cylinders are kept and which are erased. The set of kept cylinders includes, by de7ni-
tion, all initial cylinders while successive additions must pass the test (3.18). We call
K[0; t](T; �0) the resultant set of kept cylinders in the construction of Section 3.2.1. The
con7guration of the process at time t with initial con7guration �0 is then given by the
projection of the bases of the alive kept cylinders at that time:

.t(�) = #{C ∈K[0; t](T; �0) with basis � and alive at t}: (3.19)

3.2.3. Finite-volume time-stationary construction
The construction can be also performed in a stationary manner for t ∈R. Indeed,

since in a 7nite window the number of alive individuals is 7nite (with probability
one), there exist random times {�j ∈R: j∈Z}, such that (a) �j → ±∞ for j → ±∞
and (b) (

⋃
i [Ti; Ti + Si]) ∩ (

⋃
j{�j}) = ∅. In words, at each �j no cylinder is alive.

The above selection of kept cylinders can then be performed independently in each
of the random intervals [�i; �i+1). This stationary construction is particularly useful to
study properties of the invariant measure 
T. In fact, calling K(T) the (time stationary
random) set of kept cylinders, the law of

.t(�) = #{C ∈K(T) with basis � and alive at t} (3.20)

is exactly 
T.
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3.2.4. In/nite-volume construction
None of the 7nite-volume procedures discussed above can be directly implemented

to construct the process in in7nite volume. On the one hand, the scheme proposed for
7nite time intervals is not applicable to in7nite volume because it is not possible to
decide which is the 7rst mark in time. On the other hand, the stationary construction is
also not feasible because in in7nite volume there are cylinders alive at all times. This
last objection, however, may play no role if one only focuses on a family of cylinders
intersecting a /nite set and tries to decide which of them should be erased and which
ones kept.
According to the previous discussion, to decide whether a cylinder C ∈C is kept, one

has to look at the set of cylinders C′ (born before C and) alive at the birth time of C
whose basis are incompatible with the basis of C in the sense of (3.5). Let us call this
set the 7rst generation of ancestors of C and denote it AC

1 . Once we determine which
of these ancestors are alive, the decision on whether to keep C or not requires only
a single application of the test (3.18). However, to decide which of these ancestors
are alive we have to work with the second generation of ancestors of C, that is, with
the ancestors of the ancestors. Recursively, we 7nd ourselves having to deal with all
generations of ancestors of C. Let us call the union of all generations of ancestors
of C the clan of ancestors of C, and denote it AC =

⋃
n¿1 A

C
n , where AC

n is the set
of ancestors in the nth generation. These sets may contain cylinders in C0(�0). The
procedure for deciding whether to keep or to erase C can be univocally de7ned if the
clan of ancestors of C is /nite.
This picture makes it apparent that an in7nite-volume process given initial starting

conditions (i.e. for a /nite time interval) exists as long as there are no explosions,
that is, as long as no cylinder can develop in7nitely many ancestors in a 7nite time.
Furthermore, there exists a unique stationary process (for in/nite time intervals) if all
clans of ancestors are 7nite with (free process) probability one.

Theorem 1. (i) If with probability one AC ∩C[0; t] is /nite for every cylinder C alive
at time t, for any t ¿ 0, then the birth-and-death process with the generator (3.2) and
initial condition .0 is obtained by performing the two-sweep construction of Section
(3.2.2) on each set (AC ∩ C[0; t]) ∪ C0(.0) and taking the projections

.t(�) = #{C ∈K[0; t](.0) with basis � and alive at t}; (3.21)

where K[0; t](.0) is the resulting set of kept cylinders.
(ii) If with probability one AC is /nite for every cylinder C, then the stationary

birth-and-death process with the generator (3.2) can be constructed for t ∈R by
performing the two-sweep construction of Section (3.2.2) on each set AC and taking
the projections

.t(�) = #{C ∈K with basis � and alive at t}: (3.22)

Moreover, the marginal distribution of .t is the stationary measure 
.

A proof of this theorem is presented in Appendix A.
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4. Oriented percolation and branching processes

To determine the conditions allowing the construction of Theorem 1, we point out
that the relation “being ancestor of” gives rise to a model of oriented percolation.
We call it backwards oriented percolation to emphasize the fact that it is de7ned
by only looking into the past. The 7nite-time construction is possible if there is no
cluster with in7nitely many members in a 7nite-time slice, while the feasibility of the
in7nite-time construction requires the absence of a percolation cluster reaching to time
−∞. As usual in oriented percolation problems, it is useful to work with a majorizing
multitype branching process. In this process the o5spring distribution of a cylinder
C has the same (marginal) law as the distribution of AC

1 , but the branches behave
independently. The problem is then reduced to determine conditions guaranteeing the
7niteness of the clan of branching ancestors. Hence it is su=cient to show in the
7nite-time case that the branching process does not explode, while in the in7nite-time
case we need to prove that the branching process is subcritical. Factorization makes
these tasks easier.
Let us give su=cient conditions on the dominating branching for the di5erent pro-

cesses listed in Section 2.
Discrete processes. If the family of individuals G is countable, the free birth-and-

death process is the product over �∈G of independent marked Poisson processes. The
construction of the interacting processes is an obvious adaptation of the procedure of
the continuous case. For the in7nite-volume process one relies on the properties of
the backwards oriented percolation model of cylinders de7ned by the oriented bonds
C → C′ if C′ is an ancestor of C, that is if the basis of C and C′ intersect and C′ is
alive when C is born. Let m(�;  ) be the mean number of cylinders of basis  in the
7rst generation of a cylinder of basis �. These are cylinders born at negative times −t
and have a lifetime at least t, so they survive to intersect the grain born at time zero.
Its average number is, therefore,

m(�;  ) = w( )I(�;  )

[∫ 0

−∞
dt
∫ ∞

t
ds e−s

]
= w( )I(�;  ) · 1: (4.1)

De7ne mn(�;  ) as the mean number of cylinders of basis  incompatible with a cylinder
of basis � in the nth generation of ancestors, mn is the matrix product of m by itself
n times. The condition for absence of oriented percolation is∑

n¿1

∑
 

mn(�;  )¡∞ (4.2)

for all �. For any function “size” q :G → R+, such that inf � q(�)¿ 1, as in Lemma
5.15 of Fern(andez et al. (2001), calling

@q := sup
�

1
q(�)

∑
 

q( )m(�;  ); (4.3)

we have∑
 

mn(�;  )6 @nqq(�): (4.4)
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The form of measuring this “size” depends on the process in question, but usually there
is an obvious prescription. For instance, for the loss networks, the Peierls contours and
the random clusters model this measure is just the length of the call, the number of
plaquettes of the contour or the number of points of the cluster. The (in7nite-volume)
birth-and-death process—and hence the corresponding loss network—exists for 7nite
time intervals if @q ¡∞, while @q ¡ 1 is a su=cient condition to be an ergodic
in7nite-time process.

Area interaction-point process. Here m(x; :) is a measure on G=Rd; m(x; dy) rep-
resents the rate at which cylinders with basis centered at y appear. Consider a germ
x0, which, by space–time-invariance, can be placed at the origin and assumed to be
born at time zero. Its ancestors are all cylinders whose bases involve germs located in
@G := {x: (x + G) ∩ G �= ∅}. Therefore, as in (4.1),

m(x;G) = �(@G) · 1: (4.5)

We conclude that the corresponding birth-and-death process exists for 7nite times as
long as �(@G)¡∞ and, if furthermore,

�(@G)¡ 1 (4.6)

then there is an stationary ergodic process, absolutely continuous respect to the free
process, having as invariant measure the corresponding point process of Section 2.
The argument also works if G ∈G is a random set chosen independently of every-

thing as in (2.3). Recall f(x) is the intensity of germs and �x is the distribution of
the grain centered in x. Let

m(G; dH) =
∫

dxf(x)I(G;H) �x(dH) (4.7)

the rate at which individuals H having an in<uence in the birthrate of G appear (see
(3.5) for the de7nition of I). This implies that the mean number of individuals in the
7rst generation of ancestors of G is m(G;G). Let the “matrix product” mn be de7ned
inductively by m1 = m and

mn(G; dH) :=
∫
G
mn−1(G; dK)m(K; dH) n¿ 1: (4.8)

As for n = 1, mn(G;G) is the mean number of individuals in the nth generation of
ancestors of G. The ergodicity of the process is implied by∑

n¿1

mn(G;G)¡∞ (4.9)

for all individual G. A su=cient condition for (4.9) is

@q := sup
G

1
q(G)

∫
Rd

f(x) dx
∫
G
�x(dH)q(H)I(G;H)¡ 1 (4.10)

for some function q :B(Rd)→ R+ satisfying infG q(G)¿ 1. Indeed, it can be proven
as in Lemma 5.15 in Fern(andez et al. (2001)

mn(G;G)6 q(G)@nq: (4.11)
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Strictly speaking the above statements have been rigorously proven only for the dis-
cretized version of the models.

Loss networks. The calls of the loss networks can be interpreted as germ-grains. For
instance, in the one-dimensional case, the germs are the leftmost points of the calls
and the grains are segments with random lengths.
A particular case where one can explicitly compute the su=cient condition is the

one-dimensional continuous loss networks of Section 3.1. Assume, in general, that the
leftmost points of calls appear with rate f(x) and that call lengths are given by a
distribution � independent of x. We only require the latter to have a 7nite mean 31.
Consider a germ sitting at the origin, that is a call stretching from the origin to the
right, born at time zero. Its ancestors correspond to cylinders with su=cient lifetime
and with bases given by either calls starting at negative sites and passing through the
origin, or calls of arbitrary length originating within the sites occupied by the initial
call. Therefore, the @q in (4.10) for the case q(L) ≡ 1 turns to be

@q = sup
L

(∫ 0

−∞
�{L¿− x}f(x) dx +

∫ L

0
dx f(x)

)
: (4.12)

In the homogeneous case (f(x) ≡ �) this gives the following condition for ergodicity:

�
(
31 + sup

L
L
)
¡ 1: (4.13)

A simple computation shows that choosing q(L)=max(L; 1) gives @q6 �(32 +31 +1),
where 31 and 32 are the 7rst and second moment of the distribution �, respectively.
This gives the following su=cient condition for ergodicity:

�(32 + 31 + 1)¡ 1: (4.14)

M(aric (2002) improved this bound to

�(
√
32 + 31)¡ 1: (4.15)

We remark that to obtain these conditions it was important to consider only oriented
percolation. The analogous conditions obtained by considering unoriented percolation
of cylinders are far more restrictive.

5. Perfect simulation of invariant measures of birth-and-death processes

The main issue of this section is a construction of the set AT;0 formed by the
cylinders with bases intersecting the space–time set T× {0} (“cylinders alive at time
0”) and their clans of ancestors. This is a problem of simulation of cylinders generated
by the free process. Once these clans are perfectly simulated, it is only necessary to
apply the deterministic “cleaning procedure”, based on the test (3.18), to obtain a
perfect sample of the interacting process. The scheme is feasible if these clans are
7nite with probability one, a fact valid under conditions like (4.6), (4.9) or @q ¡ 1,
where @q is de7ned in (4.3) for the discrete case and (4.10) for the area interaction
process.
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We propose a non-homogeneous time-backwards construction of the clan based on
a result proven in Section 4.5.1 of Fern(andez et al. (2001). It is shown there that the
clan of ancestors of a family of cylinders can be obtained combing back in time and
generating births of ancestors with an appropriate rate. Alternatively, one could use the
fact that the law of C is time-re<exion invariant, to generate deaths of ancestors. This
is simple in the area-interaction process with a 7xed grain, but it is not Markovian and
more involved in the in7nite case. This approach was proposed by one of the referees
and developed by Garcia (2000).

For concreteness, let us discuss our scheme for individuals living in Rd or Zd. The
birthrate of a new cylinder to be added to the clan is equal to the rate density of
the free process multiplied by an exponential time factor ensuring that the ancestor
has a lifespan large enough to actually be an ancestor. This time factor involves the
time–distance to the birth of existing cylinders, which can be expressed through the
following function. For a 7nite region T and a 7nite set of cylinders H, let the set of
bases of the potential ancestors of H and T× {0} be

G(H;T) := { ∈G: I(basis(C′);  ) = 1; for some C′ ∈H}
∪ { ∈G:  ∩ T �= ∅} (5.1)

and for a given individual  ∈G(H;T),

TI(H;T;  ) = min{birth(C′): C′ ∈H; I(basis(C′);  ) = 1} (5.2)

with the convention min ∅= 0. By de7nition, TI(H;T;  )6 0.

Theorem 2. The clan AT;0 is the limit as t → ∞ of a process At , de/ned by the
initial condition A0 = ∅ and the evolution equation

E
(
dF(At)

dt

∣∣∣∣As; 06 s6 t
)

=
∫
G(At ;T)

�(d )
∫ ∞

t+TI(At ;T; )
ds e−s[F(At ∪ ( ;−t; s))− F(At)]: (5.3)

Here F is an arbitrary function depending on a /nite number of individuals inter-
secting T and we have denoted ( ;−t; s) the cylinder of base  , born at time −t and
with lifetime s.

For completeness, a proof of this theorem is presented in Appendix A. For the free
discrete loss-network (contours, random cluster) processes,∫

G(At ;T)
�(d )F( ) =

∑
 ∈G(At ;T)

w( )F( ) (5.4)

while for free birth-and-death processes on Rd,∫
G(At ;T)

�(d )F( ) =
∫
Rd

f(x) dx
∫
Gx

�x(dg)1{x ⊕ g∈G(At ;T)}F(x; g):
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Notice that At is a monotone process (At ⊂ At+s) in which at time t only cylinders
in G(At ;T) can be included. The inclusion of a cylinder born at time −t requires that
either (a) its basis is incompatible with that of some cylinder born later and its lifespan
reaches the birth time of such cylinder, or (b) its basis is compatible with those of all
cylinders born later, but it intersects T and the cylinder survives up to time equal zero.
The last condition is ensured via the convention min ∅= 0 in the de7nition of TI.

Algorithm to construct the backwards clan of a /nite region. The combination of
(5.1)/(5.3) can be translated into the following explicit algorithm. We do it 7rst for
the case of countable number of individuals and indicate at the end of this section how
to proceed in the continuous case. To generate AT;0:

(1) Start with �= 0 and H = ∅.
(2) Let H be the current set of cylinders and � the current −min{birth(C): C ∈H}.

For each �∈G(H;T) generate an independent realization of the 7rst time �1(�)
of the non-homogeneous Poisson process in R with intensity

D�(ds) := w(�)e−s+TI(H;T; �)1{s¿�} ds: (5.5)

Notice that �1(�) may be in7nity.
(3) Order the set {�1(�): �∈G(H;T)}. Let �̃ be the in7mum of this set. This is well

de7ned and strictly positive because the condition @¡ 1 guarantees that the total
rate

∑
�∈G(H;T)

∫
R+ D�(ds)¡∞.

(4) If �̃¡∞, call �1 the basis corresponding to the minimum (i.e. �1(�1)= �̃). Update
�← �̃ and H← H ∪ {(�1;−�; �+ TI(H;T; �) + R1)}, where R1 is an exponential
random variable with rate 1 independent of everything. In the sequel ignore the
set {�1(�): I(�; �1) = 1} (we can reuse the remaining �1) and go to (2).

(5) If �̃ =∞ set AT;0 =H and stop. By Theorem 2 the distribution of the set AT;0

so generated is exactly that of the free birth-and-death process.

If �i are the successive times of jump of At , then Hi =A�i have the same distribution
as the ith iterate of the above algorithm.
In the continuous case, time and space cannot be in general separated. Instead of

steps (2) and (3) above we must consider the events (�; s) of a Poisson process on
G × R+ with intensity

D(d(�; s)) = �(d�) e−s+TI(H;T; �)1{s¿�}1{�∈G(H;T)} ds: (5.6)

For a 7nite window T the total rate is 7nite, hence these events can be well ordered
by looking to the time coordinate. If the set of these events is not empty, we take �̃ to
be the minimal time coordinate (it is strictly positive with probability one) and denote
�1 the associated individual. If the Poisson process with rate density (5.6) yields no
event we take �̃=∞. We then continue as in (4).
This algorithm plus the subsequent “cleaning algorithm” constitutes our perfect sim-

ulation scheme.
The cleaning algorithm. Let AT;0 be the clan of the cylinders whose life contains

time 0 and basis intersects T. The following algorithm shows how to construct induc-
tively the set KT;0 of kept cylinders.



82 P.A. Ferrari et al. / Stochastic Processes and their Applications 102 (2002) 63–88

(1) Start with H=AT;0 and K= ∅ (H is formed by the cylinders to be tested and K
by those already kept).

(2) If H is empty go to 5. If not, order the cylinders of H by time of birth. Let C1 be
the 7rst of those cylinders; call �1 its basis and �1 its birth time. Let �1 be the set
of bases of the cylinders in K alive at �1 which are incompatible with the basis
of C1. Let Z1 be a random variable uniformly distributed in [0; 1] independent of
everything.

(3) If Z1 ¡M (�1|�1), then update: H← H \ {C1}, K← K ∪ {C1}. Go to 2.
(4) If Z1 ¿M (�1|�1), then update: H← H \ {C1}. Go to 2.
(5) Set KT;0 = K and stop. By Theorem 1(ii) the distribution of this clan KT;0 is

exactly that of the interacting birth-and-death process.

Algorithm to simulate a /nite window of 
. This is the easiest part. Once the set
KT;0 of kept cylinders has been determined, take the con7guration . de7ned by

.(�) =
∑

C∈KT;0

1{C has basis � and life containing 0} (5.7)

for � intersecting T. This con7guration has the marginal distribution of the in7nite-
volume measure 
 on the (not necessarily 7nite) set GT =N{ ∈G: ∩T �=∅}. This fact is
guaranteed by Theorem 1(ii).

6. Errors in perfect simulation?

Even in 7nite volume, perfect-simulation algorithms are subjected to error. In gen-
eral terms, a perfect-simulation algorithm of a measure 
 on a set X is a function
F : [0; 1]N → X, such that, if (Un)n∈N is a sequence of i.i.d. uniform in [0; 1] random
variables, there exists a stopping time T for (Un) such that F depends only on the 7rst
T coordinates of (U1; U2; : : :) and

P(F(U1; : : : ; UT )∈A) = 
(A): (6.1)

The CFTP algorithm, for instance, stops when a random value t is found such that
the di5erent copies of the algorithm coupled from time −t started with all possible
initial conditions attain the same con7guration at time 0. Finding t requires the use of
a random number T (t) of uniform random variables, which must be less than S=“the
maximum time left in order to have the results ready for the next congress”, for
instance. Thus, one actually samples from the distribution de7ned by

P(F(U1; : : : ; UT )∈A |T ¡S) (6.2)

which is di5erent from, though as S → ∞ converges to, (6.1). This is the so-called
impatient-user bias. The CFTP algorithm also permits the construction of a joint real-
ization (.; �) with marginals (6.1) and (6.2) such that T ¡S implies .= �. In fact, as
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pointed in Proposition 6.2 of Fill (1998)

sup
A
|P(F(U1; : : : ; UT )∈A |T ¡S)− 
(A)| 6 P[T ¿S]

1− P[T ¿S]
: (6.3)

In our algorithm T is determined by the number of uniform random variables necessary
to construct the clan of the observed region T.
When the possible sizes of the individuals � form an unbounded set, for instance

for the Peierls contours of the Ising model, practical limitations prevent the inclusion
of all possible sizes in the simulation. In fact the mere enumeration of the possible
contours is beyond reach when more than a few dozens of links are involved. This is
tantamount to a “space impatient-user bias”: the user is forced to do a space cut-o5
that produces a bias, even when the actual probability for a cut event to take place is
tiny. In mathematical terms, one actually samples from the conditioned measure

P(F(U1; : : : ; UT )∈A | {K ¡k} ∩ {T ¡S}); (6.4)

where K= “maximum perimeter of bases of cylinders in the clan” (k = 30, for in-
stance). In fact, our approach also admits a joint realization (.; �) with marginal
distributions (6.1) and (6.4) such that . = � if K ¡k and T ¡S, and such that
P({K¿ k} ∩ {T ¿S}) goes to zero exponentially fast in S and in the cut-o5 of the
length of the contours (30 in our example). Slightly more precisely, a bound like (6.3)
holds with

P({K¿ k} ∩ {T ¿S})6O
(
@T × sup

x
�x(K ¿k)

)
: (6.5)

This follows from the subcriticality of the majorizing branching process. For the Ising
model, for instance, �x(K ¿k) = O(e−�k).

7. Conclusion

Our algorithm o5ers an approach to perfect simulations of processes with in7nite
state space. The fact that there is no coupling between di5erent initial conditions, makes
it a <exible tool for processes with a large state space. No “sandwiching processes”
need to be followed; the free process is a natural “dominating process” in our setting. In
addition, our algorithm is backed by a rather detailed theory that allows the estimation
of various properties of the resulting measure, as well as possible errors. In particular,
our approach is not free from the “impatient-user bias”, but the resulting error is
relatively straightforward to control.
A noteworthy feature of our approach is that the perfect simulation stage applies,

in fact, to the free process. Interacting processes are then obtained by a determin-
istic “cleaning”. As a consequence our scheme allows the simultaneous simulation
of all processes absolutely continuous with respect to the same free process. This
coupled construction could be potentially useful, for instance to establish comparison
criteria.
The algorithm admits a further generalization more or less immediate that has

not been pursued here: it can be applied to processes with variable death rate that,
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however, must be uniformly bounded from below by 1, say. The dependences in the
birth and death-rates induce de7nitions of incompatibility and respective parameters @
(cf. (4.10), (4.3)). A construction analogous to the one described in this paper can
be performed, but with a thinning algorithm that takes also into account the variable
deathrates.
In this work, the advantages of the approach have been exploited only at a theoretical

level, where it has led to a new treatment of systems with exclusions and to better
estimates of regions of existence of a number of processes. Berthelsen and MHller
(2001) compared it to the dominated CFTP introduced by Kendall and MHller (2000).
Based on simulation results, the authors show that the dominated CFTP is better than
the algorithm based on the clan of ancestors in the particular case of a Strauss process
(see Eq. (2.6)) de7ned on a unit square with e�1=100 and e�2=0 (the so-called hard-core
process), 0.5 and 1 (a Poisson processes with rate 100). This is obviously the case
from the description of the processes since the backward construction of our algorithm
stops when the dominated Poisson process regenerates and usually the coupling of
CFTP is achieved before it in the 7nite case. However, it should be noticed that the
algorithm based on the clan of ancestors was designed for sampling the in7nite-volume
process viewed in a 7nite window. This seems to be a much more interesting and
challenging problem which has been studied by M(aric (2002) for the speci7c case of
one-dimensional loss networks with bounded calls. No comparison was made to other
perfect simulation schemes.
Finally, we hope that a suitable combination of our ideas with some rejection sam-

pling scheme could yield a version free of the user-impatience bias.
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Appendix A. Proof of Theorems

Proof of Theorem 1. We need to show that .$t has generator (3.4). Denote .t =.$t and
K[0; t] the set of kept cylinders born at time zero or after time zero (this includes
the cylinders induced by the initial con7guration) and for F a function depending on
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individuals intersecting a region with 7nite total rate, write

[F(.t+h)− F(.t)]

=
∑

C∈K[0; t+h]

1{birth(C)∈ [t; t + h]}[F(.t + /basis(C))− F(.t)]

+
∑

C∈K[0; t]

1{life(C) � t; life(C)3t + h}[F(.t − /basis(C))− F(.t)]

+ {other things}; (A.1)

where {other things} refer to events with more than one Poisson mark in the time
interval [t; t + h] for the contours in the (7nite) support of F . Since the total rate of
the Poisson marks in this set is 7nite, the event {other things} has a probability of
order (hm(Supp(F);G))2, where m is de7ned in (4.7). We have∑

C∈C

1{birth(C)∈ [t; t + h]}1{C ∈K[0; t + h]}[F(.t + /basis(C))− F(.t)]

=
∑
C∈C

1{birth(C)∈ [t; t + h]}1{<ag(C)¡M (basis(C)|.t)}

×[F(.t + /basis(C))− F(.t)]: (A.2)

To compute the second term of (A.1), observe that life(C) is independent of birth(C)
and both the event {C ∈K[0; t]} and .t are Ft-measurable. Here Ft is the G-algebra
generated by the births and deaths occurred before t. Hence

P(life(C) � t; life(C)3t + h|Ft)

=P(life(C)3t + h | life(C) � t)1{life(C) � t}

and

E
[∑

C

1{C ∈K[0; t]}1{life(C) � t; life(C)3t + h}[F(.t − /basis(C))− F(.t)]

]

= E
[∑

C

P(life(C)3t + h | life(C) � t)1{C ∈K[0; t]; life(C) � t}

× [F(.t − /basis(C))− F(.t)]

]
: (A.3)

Since life(C) is exponentially distributed with mean 1,

P(life(C)3t + h | life(C) � t) = h+ o(h): (A.4)
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Taking the expectation of (A.1) and substituting (A.2)–(A.4) we get

E[F(.t+h)− F(.t)]

= h
∫
G
�(d�)E(M (� | .t)[F(.t + /�)− F(.t)]) + o(h)

+ h
∑

�:.t(ga)¿0

E(.t(�)[F(.t − /�)− F(.t)]) + o(h) (A.5)

which dividing by h and taking limit gives

dEF(.$t )
dt

= AEF(.$t ): (A.6)

Proof of Theorem 2. De7ne

At = {C′ ∈AT;0: 0¿ birth(C′)¿− t}= AT;0 ∩ C[− t; 0]; (A.7)

that is, the set of cylinders in AT;0 with birth time posterior to −t. It su=ces to prove
that the process so de7ned satis7es the evolution equation (5.3).
The inclusion of a new cylinder in the time interval [t; t+h] depends on the existence

of a birth Poisson mark in [− t− h;−t] whose corresponding cylinder is incompatible
with some C′ ∈At . That is, if C is a cylinder with I(basis(C′); basis(C))=1 for some
C′ ∈At ,

P(At+h = Ã ∪ C|At = Ã;At′ = Ãt′ ; t′ ∈ [0; t))
=P{C ∈C: birth(C)∈ [−t−h; −t]; death(C)¿t−TI(Ã;T; basis(C))}+ o(h):

The remainder o(h) is the correction related to the probability that C is not the only
relevant cylinder born in [− t − h;−t]. Hence

o(h)6

(
h
∑
C∈At

m(basis(C);G)

)2
6 h2|At |2@2;

where m is de7ned in (4.7) and |At | stands for
∑

C∈At
q(basis(C)), where q is the

measure used to de7ne @ in (4.10). Since the birth time is independent of the lifetime
which is exponentially distributed with rate one,

P(At+h = Ã ∪ C|At = Ã;At′ = Ãt′ ; t′ ∈ [0; t))
=P{C ∈C: birth(C)∈ [− t − h;−t]}
×P(life(C)¿t − TI(Ã;T; basis(C))) + o(h)

= hf(basis(C)) e−t+TI(Ã;T;basis(C)) + o(h): (A.8)

This implies that when the con7guration at time t− is Ã, a new cylinder with basis �
is included in At(H) at rate

f(�) e−t+TI(Ã;T; �): (A.9)
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From (A.8), as in the computation of the forward Kolmogorov equations, we get
(5.3). This equation characterizes the law of the process At(H) as a non-homogeneous
Markov process.
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