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a b s t r a c t

We prove that if a Polish group Gwith a comeagre conjugacy class has a non-nesting action
on an R-tree, then every element of G fixes a point.
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0. Introduction

Non-nesting actions by homeomorphisms onR-trees frequently arise in geometric group theory. For instance, they occur
in Bowditch’s study of cut points of the boundary at infinity of a hyperbolic group [1], or in the Drutu–Sapir study of tree-
graded spaces [4], and their relations with isometric actions were studied in [8]. Non-nesting property is a topological
substitute for an isometric action. It asks that no interval of the R-tree is sent properly into itself by an element of the
group.
In this paper,we are concernedwith a Polish groupGhaving a comeagre conjugacy class. The group S∞ of all permutations

of N and more generally the automorphism group of any ω-stable ω-categorical structure (see [5]) provide typical model-
theoretic examples. Among other examples, we mention the automorphism group of the random graph and the groups
Aut(Q, <), Homeo(2N) and Homeo+(R). The latter ones appear in [7,12] as important cases of extreme amenability and
automatic continuity of homomorphisms. The property of having a comeagre conjugacy class plays an essential role in
these respects.
The following theorem is the main result of the paper:

Consider a group G with a non-nesting action on an R-tree T . If G is a Polish group with a comeagre conjugacy class,
then every element of G fixes a point in T .

This theorem generalizes the main result of the paper of Macpherson and Thomas [9] (where the authors study actions
of Polish groups on simplicial trees) and extends Section 8 of the paper of Rosendal [11] (concerning isometric actions on
Λ-trees). It is worth noting that some related problems have been studied before (see [1–3,8]). Our motivation is partially
based on these investigations.

1. Non-nesting actions on R-trees

Definition 1.1. An R-tree is a metric space T such that for any x 6= y ∈ T , there is a unique topologically embedded arc
joining x to y, and this arc is isometric to some interval of R.
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Equivalently, as a topological space, T is a metrizable, uniquely arc-connected, locally arc-connected topological space
[10]. We define [x, y] as the arc joining x to y if x 6= y, and [x, y] = {x} if x = y. We say that [x, y] is a segment.
A subset S ⊆ T is convex if (∀x, y ∈ S)[x, y] ⊆ S. A convex subset is also called a subtree. Given x, y, z ∈ T , there is a

unique element c ∈ [x, y] ∩ [y, z] ∩ [z, x], called themedian of x, y, z. When c /∈ {x, y, z}, the subtree [x, y] ∪ [x, z] ∪ [y, z]
is called a tripod. A line is a convex subset containing no tripod and maximal for inclusion.
Given two disjoint closed subtrees A, B ⊆ T , there exists a unique pair of points a ∈ A, b ∈ B such that for all x ∈ A, y ∈ B,

[x, y] ⊇ [a, b]. The segment [a, b] is called the bridge between A and B. If x /∈ A, the projection of x on A is the point a ∈ A
such that [x, a] is the bridge between {x} and A.
The betweenness relation B of T is the ternary relation B(x; y, z) defined by x ∈ (y, z). A weak homeomorphism of the

R-tree T is a bijection g : T → T which preserves the betweenness relation. Any homeomorphism of T is clearly a weak
homeomorphism. All actions on T are via weak homeomorphisms.

Remark 1.2. If g : T → T is a weak homeomorphism, then its restriction to each segment, to each line, and to each finite
union of segments is a homeomorphism onto its image (for the topology induced by the metric). This is because the metric
topology agrees with the topology induced by the order on a line or a segment. Conversely, any bijection g : T → T which
maps each segment homeomorphically onto its image is a weak homeomorphism as it maps [x, y] to the unique embedded
arc joining g(x) to g(y).

Remark 1.3. If S ⊆ T is a subtree, then S is closed (for the topology induced by the metric) if and only if S ∩ I is closed in I
for every segment I . In particular, a weak homeomorphism preserves the set of closed subtrees.

Definition 1.4. An action of G on T by weak homeomorphisms is non-nesting if there is no segment I ⊆ T , and no g ∈ G
such that g(I) $ I .

From now on, we assume that G has a non-nesting action on an R-tree T . We say that g ∈ G is elliptic if it has a fixed
point, and loxodromic otherwise.

Lemma 1.5 ([8, Theorem 3]). Let G be a group with a non-nesting action on an R-tree T .

• If g is elliptic, its set of fix points T g is a closed convex subset.
• If g is loxodromic, there exists a unique line Lg preserved by g; moreover, g acts on Lg by an order preserving transformation,
which is a translation up to topological conjugacy.

In [8], g is assumed to be a homeomorphism, but the argument still applies, except to prove that T g is closed. This fact
follows from Remark 1.3.
When g is loxodromic, Lg is called the axis of g . The action of g on Lg defines a natural ordering on Lg such that for all

x ∈ Lg , x < g(x).
The proof of the following lemma is standard (by arguments from [14], Section 3.1) and can be found in [6].

Lemma 1.6. If g is loxodromic, then for any p ∈ T , [p, g(p)]meets Lg and [p, g(p)] ∩ Lg = [q, g(q)] for some q ∈ Lg .
Proposition 1.7. Let G be a group with a non-nesting action on an R-tree T . Then

(1) If g is elliptic and x /∈ T g , then [x, g(x)] ∩ T g = {a} where a is the projection of x on T g .
(2) If g, h ∈ G are elliptic and T g ∩ T h = ∅, then gh is loxodromic, its axis contains the bridge between T g and T h, and T g ∩ Lgh
(resp. T h ∩ Lgh) contains exactly one point. In particular, if g, h and gh are elliptic, then T g ∩ T h ∩ T gh 6= ∅.

(3) Let h, h′ ∈ G be loxodromic elements, and a ∈ Lh be such that for some a′ ∈ T , [a′, (h′)2(a′)] ⊆ [a, h(a)]. Then h and h′ are
not conjugate.

These facts are classical for isometries of anR-tree. Assertion (3) is some substitute for the fact that the translation length
of an isometry is a conjugacy invariant.

Proof. To prove Assertion (1), consider x /∈ T g , and I = [x, a] the bridge between {x} and T g . If g(I) ∩ I = {a}, we are done.
Assume otherwise that g(I) ∩ I = [a, b] for some b 6= a. Since g(b) 6= b, either g.[a, b] $ [a, b] or g.[a, b] % [a, b], in
contradiction with the non-nesting assumption.
To see (2), consider I = [a, b] the bridge between T g and T h with a ∈ T g , b ∈ T h, and let J = h−1(I)∪ I . By Assertion (1),

I∩h−1(I) = {b} (resp. I∩g(I) = {a}), I∩h(I) = {b}),) so h−1(a), b, a (resp. b, a, g(b), a, b, h(a) hence a = g(a), g(b), gh(a))
are aligned in this order. In particular h−1(a), b, a, g(b), gh(a) are aligned in this order so h−1(I), I, g(I), gh(I) are four
consecutive non-degenerate subsegments of the segment [h−1(a), gh(a)]. This implies that gh(J) ∩ J = {a}. If gh was
elliptic, J = [h−1(a), gh(h−1(a)] would contain a point fixed by gh, and this fix point would have to lie in gh(J) ∩ J , but
this is impossible since gh(a) 6= a. We claim that J ⊆ Lgh. Otherwise, the segment J0 = J ∩ Lgh is a proper subsegment
of J , and gh(J0) ∩ J0 = ∅, contradicting Lemma 1.6. Since J ∩ T h = {b} and since T h is convex, Lgh ∩ T h = {b}. Similarly,
(I ∪ g(I)) ∩ T g = {a} implies that Lgh ∩ T g = {a}.
Statement (3) is easy: let I = [a, h(a)] ⊆ Lh, and let I ′ = [a′, (h′)2(a′)] ⊆ I . By Lemma 1.6, changing I ′ to some

subsegment, we may assume that I ′ ⊆ Lh′ so that I ′ is a fundamental domain for the action of (h′)2 on Lh′ by Lemma 1.5. If
h′ = hg , g−1(Lh) = Lh′ and g−1(I) is a fundamental domain for the action of h′ on Lh′ . Replacing g by some g(h′)i (i ∈ Z), if
necessary we obtain g−1(I) $ I ′ ⊆ I , a contradiction with the non-nesting assumption. �
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2. Polish groups with comeagre conjugacy classes

A Polish group is a topological group whose topology is Polish (a Polish space is a separable completely metrizable
topological space). A subset of a Polish space is comeagre if it contains an intersection of a countable family of dense open
sets.
Macpherson and Thomas have proved in [9] that if a Polish group has a comeagre conjugacy class then every element of

the group fixes a point under any action on aZ-treewithout inversions. Ch.Rosendal has generalized this theorem to the case
when the group acts on anΛ-tree by isometries (see Section 8 in [11]). In this section we consider the case of non-nesting
actions.

Theorem 2.1. Consider a group G with a non-nesting action on an R-tree T . If G is a Polish group with a comeagre conjugacy
class, then every element of G is elliptic.

Remark 2.2. We don’t assume any relation between the action of G and its topology as a Polish group: the action of g is not
assumed to depend continuously on g .

Remark 2.3. Using Proposition 1.7(2), one can extend the proof of Serre’s Lemma [13, Prop 6.5.2], and show that every
finitely generated subgroup of G fixes a point in T . It follows that G fixes a point or an end of T .

We start with the following lemma.

Lemma 2.4. Under the circumstances of Theorem 2.1, assume that h1, h2 ∈ G are conjugate and loxodromic, and that g = h2h1
is conjugate to h61 or h

−6
1 . Then Lh1 ∩ Lh2 = ∅.

Moreover, denoting by [a, b] the bridge between Lh1 and Lh2 with a ∈ Lh1 , b ∈ Lh2 then

[h−11 (a), a] ∪ [a, b] ∪ [b, h2(b)] ⊆ Lg

and h−11 (a) < a < b < h2(b) for the ordering of Lg defined after Lemma 1.5.

Proof. Assuming the contrary, consider t ∈ Lh1 ∩ Lh2 and p = h
−1
1 (t). Since [p, g(p)] ⊆ [h

−1
1 (t), t] ∪ [t, h2(t)], may find

q ∈ Lg such that [q, g(q)] ⊆ [h−11 (t), t] ∪ [t, h2(t)].
Consider g0 such that g60 = g , and g0 conjugate to h1 or h−11 . Let I = [q, g

2
0 (q)]. Since Lg0 = Lg , I ⊆ Lg0 and

I ∪ g20 (I) ∪ g
4
0 (I) = [q, g

6
0 (q)] ⊆ [h

−1
1 (t), t] ∪ [t, h2(t)]. Either I or g

4
0 (I) is contained in [h

−1
1 (t), t] or in [t, h2(t)], say

I ⊆ [h−11 (t), t] for instance. Since t ∈ Lh1 , this contradicts Proposition 1.7(3).
To see the final statement note that Lg intersects [h−11 h

−1
2 (a), a] and [b, h2h1(b)], hence contains the bridge between

these segments, i.e. [a, b]. It follows that Lg contains [h−11 h
−1
2 (a), a] ⊇ [h

−1
1 (a), a] and [b, h2h1(b)] ⊇ [b, h2(b)]. The lemma

follows. �

Proof of Theorem 2.1. Let X be a conjugacy class of Gwhich is comeagre in G. Then X ∩X−1 6= ∅, but since X is a conjugacy
class X = X−1. Note that

(*) For every sequence g1, . . . , gm ∈ G there exist h0, h1, . . . , hm ∈ X such that for every 1 ≤ i ≤ m, gi = h0hi.

Indeed, let g1, . . . , gm ∈ G. Since X and giX−1 are comeagre in G, all giX−1 and X have a common element h0 ∈ X . Now
there are h1, . . . , hm ∈ X such that for any 1 ≤ i ≤ m, gi = h0hi.
First assume that X consists of loxodromic elements, and argue towards a contradiction. Take h ∈ X and consider g = h6.

By (*) above find h0, h1, h2 ∈ X such that g = h0h1 and g−1 = h0h2.
Applying Lemma 2.4 to h0, h1 and to h0, h2, we get that Lh0 ∩ Lh1 = ∅ and Lh0 ∩ Lh2 = ∅. Let b ∈ Lh0 and a ∈ Lh1 define

the bridge between Lh0 and Lh1 , and let b
′
∈ Lh0 and a

′
∈ Lh2 define the bridge between Lh0 and Lh2 . Since Lg = Lg−1 , by

Lemma 2.4 we see that the segments [a, b] ∪ [b, h0(b)] and [a′, b′] ∪ [b′, h0(b′)] belong to Lg . Since Lg does not contain a
tripod, b = b′. Then b < h0(b) both with respect to the order defined by g and by g−1. This is a contradiction, so X consists
of elliptic elements.
Assume that some g ∈ G is loxodromic, and argue towards a contradiction. Write g = h′ · h for some h, h′ ∈ X . Then

T h ∩ T h
′

= ∅ and denote by I the bridge between T h and T h
′

. By Proposition 1.7(2) I ⊆ Lg .
By (*) there exist h0, h1, h2, h3 ∈ X such that h = h0h1, h′ = h0h2, and g = h0h3. By Proposition 1.7(2) there are

a1 ∈ T h0 ∩ T h and b1 ∈ T h0 ∩ T h
′

. Then I ⊆ [a1, b1] ⊆ T h0 . On the other hand, by Proposition 1.7(2) applied to h0 and h3, the
intersection T h0 ∩ Lg is a singleton. Since I is contained in this intersection, this is a contradiction. �
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