Non-nesting actions of Polish groups on real trees

Vincent Guirardel, Aleksander Ivanov*
Institut de Mathématiques de Toulouse, Université Paul Sabatier Toulouse 3, 31062 Toulouse cedex 9, France Institute of Mathematics, Wrocław University, pl. Grunwaldzki 2/4, 50-384, Wrocław, Poland

ARTICLE INFO

Article history:

Received 11 November 2009
Received in revised form 14 January 2010
Available online 21 February 2010
Communicated by M. Sapir

MSC:

Primary: 20E08
Secondary: 03C50; 03E15

Abstract

We prove that if a Polish group G with a comeagre conjugacy class has a non-nesting action on an \mathbb{R}-tree, then every element of G fixes a point.

© 2010 Elsevier B.V. All rights reserved.

0. Introduction

Non-nesting actions by homeomorphisms on \mathbb{R}-trees frequently arise in geometric group theory. For instance, they occur in Bowditch's study of cut points of the boundary at infinity of a hyperbolic group [1], or in the Drutu-Sapir study of treegraded spaces [4], and their relations with isometric actions were studied in [8]. Non-nesting property is a topological substitute for an isometric action. It asks that no interval of the \mathbb{R}-tree is sent properly into itself by an element of the group.

In this paper, we are concerned with a Polish group G having a comeagre conjugacy class. The group S_{∞} of all permutations of \mathbb{N} and more generally the automorphism group of any ω-stable ω-categorical structure (see [5]) provide typical modeltheoretic examples. Among other examples, we mention the automorphism group of the random graph and the groups $\operatorname{Aut}(\mathbb{Q},<)$, Homeo $\left(2^{\mathbb{N}}\right)$ and Homeo $_{+}(\mathbb{R})$. The latter ones appear in $[7,12]$ as important cases of extreme amenability and automatic continuity of homomorphisms. The property of having a comeagre conjugacy class plays an essential role in these respects.

The following theorem is the main result of the paper:
Consider a group G with a non-nesting action on an \mathbb{R}-tree T. If G is a Polish group with a comeagre conjugacy class, then every element of G fixes a point in T.
This theorem generalizes the main result of the paper of Macpherson and Thomas [9] (where the authors study actions of Polish groups on simplicial trees) and extends Section 8 of the paper of Rosendal [11] (concerning isometric actions on Λ-trees). It is worth noting that some related problems have been studied before (see [1-3,8]). Our motivation is partially based on these investigations.

1. Non-nesting actions on \mathbb{R}-trees

Definition 1.1. An \mathbb{R}-tree is a metric space T such that for any $x \neq y \in T$, there is a unique topologically embedded arc joining x to y, and this arc is isometric to some interval of \mathbb{R}.

[^0]Equivalently, as a topological space, T is a metrizable, uniquely arc-connected, locally arc-connected topological space [10]. We define $[x, y]$ as the arc joining x to y if $x \neq y$, and $[x, y]=\{x\}$ if $x=y$. We say that $[x, y]$ is a segment.

A subset $S \subseteq T$ is convex if $(\forall x, y \in S)[x, y] \subseteq S$. A convex subset is also called a subtree. Given $x, y, z \in T$, there is a unique element $c \in[x, y] \cap[y, z] \cap[z, x]$, called the median of x, y, z. When $c \notin\{x, y, z\}$, the subtree $[x, y] \cup[x, z] \cup[y, z]$ is called a tripod. A line is a convex subset containing no tripod and maximal for inclusion.

Given two disjoint closed subtrees $A, B \subseteq T$, there exists a unique pair of points $a \in A, b \in B$ such that for all $x \in A, y \in B$, $[x, y] \supseteq[a, b]$. The segment $[a, b]$ is called the bridge between A and B. If $x \notin A$, the projection of x on A is the point $a \in A$ such that $[x, a]$ is the bridge between $\{x\}$ and A.

The betweenness relation B of T is the ternary relation $B(x ; y, z)$ defined by $x \in(y, z)$. A weak homeomorphism of the \mathbb{R}-tree T is a bijection $g: T \rightarrow T$ which preserves the betweenness relation. Any homeomorphism of T is clearly a weak homeomorphism. All actions on T are via weak homeomorphisms.
Remark 1.2. If $g: T \rightarrow T$ is a weak homeomorphism, then its restriction to each segment, to each line, and to each finite union of segments is a homeomorphism onto its image (for the topology induced by the metric). This is because the metric topology agrees with the topology induced by the order on a line or a segment. Conversely, any bijection $g: T \rightarrow T$ which maps each segment homeomorphically onto its image is a weak homeomorphism as it maps $[x, y]$ to the unique embedded arc joining $g(x)$ to $g(y)$.
Remark 1.3. If $S \subseteq T$ is a subtree, then S is closed (for the topology induced by the metric) if and only if $S \cap I$ is closed in I for every segment I. In particular, a weak homeomorphism preserves the set of closed subtrees.
Definition 1.4. An action of G on T by weak homeomorphisms is non-nesting if there is no segment $I \subseteq T$, and no $g \in G$ such that $g(I) \varsubsetneqq I$.

From now on, we assume that G has a non-nesting action on an \mathbb{R}-tree T. We say that $g \in G$ is elliptic if it has a fixed point, and loxodromic otherwise.
Lemma 1.5 ([8, Theorem 3]). Let G be a group with a non-nesting action on an \mathbb{R}-tree T.

- If g is elliptic, its set of fix points T^{g} is a closed convex subset.
- If g is loxodromic, there exists a unique line L_{g} preserved by g; moreover, g acts on L_{g} by an order preserving transformation, which is a translation up to topological conjugacy.

In [8], g is assumed to be a homeomorphism, but the argument still applies, except to prove that T^{g} is closed. This fact follows from Remark 1.3.

When g is loxodromic, L_{g} is called the axis of g. The action of g on L_{g} defines a natural ordering on L_{g} such that for all $x \in L_{g}, x<g(x)$.

The proof of the following lemma is standard (by arguments from [14], Section 3.1) and can be found in [6].
Lemma 1.6. If g is loxodromic, then for any $p \in T,[p, g(p)]$ meets L_{g} and $[p, g(p)] \cap L_{g}=[q, g(q)]$ for some $q \in L_{g}$.
Proposition 1.7. Let G be a group with a non-nesting action on an \mathbb{R}-tree T. Then
(1) If g is elliptic and $x \notin T^{g}$, then $[x, g(x)] \cap T^{g}=\{a\}$ where a is the projection of x on T^{g}.
(2) If $g, h \in G$ are elliptic and $T^{g} \cap T^{h}=\emptyset$, then gh is loxodromic, its axis contains the bridge between T^{g} and T^{h}, and $T^{g} \cap L_{g h}$ (resp. $T^{h} \cap L_{g h}$) contains exactly one point. In particular, if g, h and gh are elliptic, then $T^{g} \cap T^{h} \cap T^{g h} \neq \emptyset$.
(3) Let $h, h^{\prime} \in G$ be loxodromic elements, and $a \in L_{h}$ be such that for some $a^{\prime} \in T,\left[a^{\prime},\left(h^{\prime}\right)^{2}\left(a^{\prime}\right)\right] \subseteq[a, h(a)]$. Then h and h^{\prime} are not conjugate.
These facts are classical for isometries of an \mathbb{R}-tree. Assertion (3) is some substitute for the fact that the translation length of an isometry is a conjugacy invariant.
Proof. To prove Assertion (1), consider $x \notin T^{g}$, and $I=[x, a]$ the bridge between $\{x\}$ and T^{g}. If $g(I) \cap I=\{a\}$, we are done. Assume otherwise that $g(I) \cap I=[a, b]$ for some $b \neq a$. Since $g(b) \neq b$, either $g .[a, b] \varsubsetneqq[a, b]$ or $g .[a, b] \supsetneqq[a, b]$, in contradiction with the non-nesting assumption.

To see (2), consider $I=[a, b]$ the bridge between T^{g} and T^{h} with $a \in T^{g}, b \in T^{h}$, and let $J=h^{-1}(I) \cup I$. By Assertion (1), $\left.\left.I \cap h^{-1}(I)=\{b\}(\operatorname{resp} . I \cap g(I)=\{a\}), I \cap h(I)=\{b\}\right),\right)$ so $h^{-1}(a), b, a(\operatorname{resp} . b, a, g(b), a, b, h(a)$ hence $a=g(a), g(b), g h(a))$ are aligned in this order. In particular $h^{-1}(a), b, a, g(b), g h(a)$ are aligned in this order so $h^{-1}(I), I, g(I)$, gh(I) are four consecutive non-degenerate subsegments of the segment $\left[h^{-1}(a), g h(a)\right]$. This implies that $g h(J) \cap J=\{a\}$. If $g h$ was elliptic, $J=\left[h^{-1}(a), g h\left(h^{-1}(a)\right]\right.$ would contain a point fixed by $g h$, and this fix point would have to lie in $g h(J) \cap J$, but this is impossible since $g h(a) \neq a$. We claim that $J \subseteq L_{g h}$. Otherwise, the segment $J_{0}=J \cap L_{g h}$ is a proper subsegment of J, and $g h\left(J_{0}\right) \cap J_{0}=\emptyset$, contradicting Lemma 1.6. Since $J \cap T^{h}=\{b\}$ and since T^{h} is convex, $L_{g h} \cap T^{h}=\{b\}$. Similarly, $(I \cup g(I)) \cap T^{g}=\{a\}$ implies that $L_{g h} \cap T^{g}=\{a\}$.

Statement (3) is easy: let $I=[a, h(a)] \subseteq L_{h}$, and let $I^{\prime}=\left[a^{\prime},\left(h^{\prime}\right)^{2}\left(a^{\prime}\right)\right] \subseteq I$. By Lemma 1.6, changing I^{\prime} to some subsegment, we may assume that $I^{\prime} \subseteq L_{h^{\prime}}$ so that I^{\prime} is a fundamental domain for the action of $\left(h^{\prime}\right)^{2}$ on $L_{h^{\prime}}$ by Lemma 1.5. If $h^{\prime}=h^{g}, g^{-1}\left(L_{h}\right)=L_{h^{\prime}}$ and $g^{-1}(I)$ is a fundamental domain for the action of h^{\prime} on $L_{h^{\prime}}$. Replacing g by some $g\left(h^{\prime}\right)^{i}(i \in \mathbb{Z})$, if necessary we obtain $g^{-1}(I) \varsubsetneqq I^{\prime} \subseteq I$, a contradiction with the non-nesting assumption.

2. Polish groups with comeagre conjugacy classes

A Polish group is a topological group whose topology is Polish (a Polish space is a separable completely metrizable topological space). A subset of a Polish space is comeagre if it contains an intersection of a countable family of dense open sets.

Macpherson and Thomas have proved in [9] that if a Polish group has a comeagre conjugacy class then every element of the group fixes a point under any action on a \mathbb{Z}-tree without inversions. Ch.Rosendal has generalized this theorem to the case when the group acts on an Λ-tree by isometries (see Section 8 in [11]). In this section we consider the case of non-nesting actions.

Theorem 2.1. Consider a group G with a non-nesting action on an \mathbb{R}-tree T. If G is a Polish group with a comeagre conjugacy class, then every element of G is elliptic.

Remark 2.2. We don't assume any relation between the action of G and its topology as a Polish group: the action of g is not assumed to depend continuously on g.

Remark 2.3. Using Proposition 1.7(2), one can extend the proof of Serre's Lemma [13, Prop 6.5.2], and show that every finitely generated subgroup of G fixes a point in T. It follows that G fixes a point or an end of T.

We start with the following lemma.
Lemma 2.4. Under the circumstances of Theorem 2.1, assume that $h_{1}, h_{2} \in G$ are conjugate and loxodromic, and that $g=h_{2} h_{1}$ is conjugate to h_{1}^{6} or h_{1}^{-6}. Then $L_{h_{1}} \cap L_{h_{2}}=\emptyset$.

Moreover, denoting by $[a, b]$ the bridge between $L_{h_{1}}$ and $L_{h_{2}}$ with $a \in L_{h_{1}}, b \in L_{h_{2}}$ then

$$
\left[h_{1}^{-1}(a), a\right] \cup[a, b] \cup\left[b, h_{2}(b)\right] \subseteq L_{g}
$$

and $h_{1}^{-1}(a)<a<b<h_{2}(b)$ for the ordering of L_{g} defined after Lemma 1.5.
Proof. Assuming the contrary, consider $t \in L_{h_{1}} \cap L_{h_{2}}$ and $p=h_{1}^{-1}(t)$. Since $[p, g(p)] \subseteq\left[h_{1}^{-1}(t), t\right] \cup\left[t, h_{2}(t)\right]$, may find $q \in L_{g}$ such that $[q, g(q)] \subseteq\left[h_{1}^{-1}(t), t\right] \cup\left[t, h_{2}(t)\right]$.

Consider g_{0} such that $g_{0}^{6}=g$, and g_{0} conjugate to h_{1} or h_{1}^{-1}. Let $I=\left[q, g_{0}^{2}(q)\right]$. Since $L_{g_{0}}=L_{g}, I \subseteq L_{g_{0}}$ and $I \cup g_{0}^{2}(I) \cup g_{0}^{4}(I)=\left[q, g_{0}^{6}(q)\right] \subseteq\left[h_{1}^{-1}(t), t\right] \cup\left[t, h_{2}(t)\right]$. Either I or $g_{0}^{4}(I)$ is contained in $\left[h_{1}^{-1}(t), t\right]$ or in $\left[t, h_{2}(t)\right]$, say $I \subseteq\left[h_{1}^{-1}(t), t\right]$ for instance. Since $t \in L_{h_{1}}$, this contradicts Proposition 1.7(3).

To see the final statement note that L_{g} intersects $\left[h_{1}^{-1} h_{2}^{-1}(a), a\right]$ and $\left[b, h_{2} h_{1}(b)\right]$, hence contains the bridge between these segments, i.e. $[a, b]$. It follows that L_{g} contains $\left[h_{1}^{-1} h_{2}^{-1}(a), a\right] \supseteq\left[h_{1}^{-1}(a), a\right]$ and $\left[b, h_{2} h_{1}(b)\right] \supseteq\left[b, h_{2}(b)\right]$. The lemma follows.

Proof of Theorem 2.1. Let X be a conjugacy class of G which is comeagre in G. Then $X \cap X^{-1} \neq \emptyset$, but since X is a conjugacy class $X=X^{-1}$. Note that
$\left(^{*}\right)$ For every sequence $g_{1}, \ldots, g_{m} \in G$ there exist $h_{0}, h_{1}, \ldots, h_{m} \in X$ such that for every $1 \leq i \leq m, g_{i}=h_{0} h_{i}$.
Indeed, let $g_{1}, \ldots, g_{m} \in G$. Since X and $g_{i} X^{-1}$ are comeagre in G, all $g_{i} X^{-1}$ and X have a common element $h_{0} \in X$. Now there are $h_{1}, \ldots, h_{m} \in X$ such that for any $1 \leq i \leq m, g_{i}=h_{0} h_{i}$.

First assume that X consists of loxodromic elements, and argue towards a contradiction. Take $h \in X$ and consider $g=h^{6}$. By $\left(^{*}\right)$ above find $h_{0}, h_{1}, h_{2} \in X$ such that $g=h_{0} h_{1}$ and $g^{-1}=h_{0} h_{2}$.

Applying Lemma 2.4 to h_{0}, h_{1} and to h_{0}, h_{2}, we get that $L_{h_{0}} \cap L_{h_{1}}=\emptyset$ and $L_{h_{0}} \cap L_{h_{2}}=\emptyset$. Let $b \in L_{h_{0}}$ and $a \in L_{h_{1}}$ define the bridge between $L_{h_{0}}$ and $L_{h_{1}}$, and let $b^{\prime} \in L_{h_{0}}$ and $a^{\prime} \in L_{h_{2}}$ define the bridge between $L_{h_{0}}$ and $L_{h_{2}}$. Since $L_{g}=L_{g-1}$, by Lemma 2.4 we see that the segments $[a, b] \cup\left[b, h_{0}(b)\right]$ and $\left[a^{\prime}, b^{\prime}\right] \cup\left[b^{\prime}, h_{0}\left(b^{\prime}\right)\right]$ belong to L_{g}. Since L_{g} does not contain a tripod, $b=b^{\prime}$. Then $b<h_{0}(b)$ both with respect to the order defined by g and by g^{-1}. This is a contradiction, so X consists of elliptic elements.

Assume that some $g \in G$ is loxodromic, and argue towards a contradiction. Write $g=h^{\prime} \cdot h$ for some $h, h^{\prime} \in X$. Then $T^{h} \cap T^{h^{\prime}}=\emptyset$ and denote by I the bridge between T^{h} and $T^{h^{\prime}}$. By Proposition 1.7(2)I $\subseteq L_{g}$.

By (${ }^{*}$) there exist $h_{0}, h_{1}, h_{2}, h_{3} \in X$ such that $h=h_{0} h_{1}, h^{\prime}=h_{0} h_{2}$, and $g=h_{0} h_{3}$. By Proposition 1.7(2) there are $a_{1} \in T^{h_{0}} \cap T^{h}$ and $b_{1} \in T^{h_{0}} \cap T^{h^{\prime}}$. Then $I \subseteq\left[a_{1}, b_{1}\right] \subseteq T^{h_{0}}$. On the other hand, by Proposition 1.7(2) applied to h_{0} and h_{3}, the intersection $T^{h_{0}} \cap L_{g}$ is a singleton. Since I is contained in this intersection, this is a contradiction.

Acknowledgement

The second author is supported by KBN grant 2 P03A 00719.

References

[1] B.H. Bowditch, Treelike structures arising from continua and convergence groups, in: Memoirs Amer. Math. Soc., vol. 662, AMS, Providence, Rhode Island, 1999.
[2] I.M. Chiswell, Protrees and Λ-trees, in: P.H. Kropholler, et al. (Eds.), Geometry and cohomology in group theory, in: London Mathematical Society Lecture Notes, vol. 252, Cambridge University Press, 1995, pp. 74-87.
[3] M.J. Dunwoody, Groups acting on protrees, J. Lond. Math. Soc. 56 (2) (1997) 125-136.
[4] C. Drutu, M. Sapir, Groups acting on tree-graded spaces and splittings of relatively hyperbolic groups, Adv. Math. 217 (2007) 1313-1367.
[5] W. Hodges, I.M. Hodkinson, D. Lascar, S. Shelah, The small index property for ω-stable ω-categorical structures and for the random graph, J. Lond. Math. Soc. 48 (2) (1993) 204-218.
[6] A. Ivanov, Group actions on pretrees and definability, Comm. Algebra 32 (2004) 561-577.
[7] A. Kechris, Ch. Rosendal, Turbulence, amalgamation and generic automorphisms of homogenous structures, Proc. Lond. Math. Soc. 94 (2007) 302-350.
[8] G. Levitt, Non-nesting actions on real trees, Bull. Lond. Math. Soc. 30 (1998) 46-54.
[9] H.D. Macpherson, S. Thomas, Comeagre conjugacy classes and free products with amalgamation, Discrete Math. 291 (2005) 135-142.
[10] J.C. Mayer, L.G. Oversteegen, A topological characterization of \mathbb{R}-trees, Trans. Amer. Math. Soc. 320 (1990) 395-415.
[11] Ch. Rosendal, A topological version of the Bergman property, Forum Math. 21 (2) (2009) 299-332.
[12] Ch. Rosendal, S. Solecki, Automatic continuity of homomorphisms and fixed points on metric compacta, Israel J. Math. 162 (2007) $349-371$.
[13] J.P. Serre, Arbres, Amalgames, SL 2 , in: Astérisque, No. 46, Société Mathématique de France, Paris, 1977.
[14] J. Tits, A "theorem of Lie-Kolchin" for trees, in: H. Bass, P.J. Cassidy, J. Kovacic (Eds.), Contributon to Algebra: A Collection of Papers Dedicated to Ellis Kolchin, Academic Press, NY, 1977, pp. 377-388.

[^0]: * Corresponding author at: Institute of Mathematics, Wrocław University, pl. Grunwaldzki 2/4, 50-384, Wrocław, Poland. Fax: +48 713757429.

 E-mail addresses: vincent.guirardel@math.univ-toulouse.fr (V. Guirardel), ivanov@math.uni.wroc.pl (A. Ivanov).

