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Chronolog(MC) is an extension of logic programming based on a linear-time temporal
logic with multiple granularity of time called TLC . A Chronolog(MC) program consists
of a clock definition, a clock assignment and a program body. Each predicate symbol
appearing in the program body is associated with a local clock through the clock defini-
tion and assignment. This paper investigates the logical basis of the language, presents a
clocked temporal resolution where time-matching is essential, and in particular proposes
three algorithms for time-matching. The paper also discusses the declarative semantics
of Chronolog(MC) programs in terms of clocked temporal Herbrand models. It is shown
that Chronolog(MC) programs also satisfy the minimum model semantics. The language
can be used to model a wide range of simulation systems and other relevant tasks where
the notion of dynamic change is central.
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1. Introduction

An important activity in computer science is the invention, analysis and application
of formal logics which are designed to specify, reason about and represent algorithms,
programs and systems. Recently, there is a substantial interest in temporal logic which
has been widely used as a formalism for program specification and verification ( .Manna
and .Pnueli, .1981), reasoning about time ( .Sadri, .1987) and modeling temporal databases
( .Chomicki, .1994; .Gabbay and .McBrien .1991; .Gagné and .Plaice, .1995).

Some researchers have recently suggested that temporal logic can be directly used as a
programming language. For instance, Tokio (.Aoyagi .et al., .1986) is a logic programming
language based on interval temporal logic; Templog ( .Abadi and .Manna, .1989; .Baudinet,
.1992) and Chronolog ( .Orgun and .Wadge, .1992) are based on linear-time temporal logics;
Temporal Prolog ( .Gabbay, .1987, .1991) is based on linear and branching time tempo-
ral logics; and Metatem ( .Fisher, 1994; .Fisher and .Reynolds, .1995) is a framework for
the direct execution of temporal logics within which programs are represented as sets
of temporal rules of a particular form. There are also a number of other temporal logic
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programming languages ( .Brzoska, .1995; .Hrycej, .1993; .Frühwirth, .1995). For more infor-
mation, we refer the reader to the extensive surveys of .Fisher and .Owens .(1995), and

.Orgun and .Ma .(1994).

1.1. chronolog with multiple clocks

Chronolog is suitable for specifying time-dependent properties of certain problems
in a natural way (.Orgun and .Wadge, .1992; .Liu and .Orgun, .1995). It is based on a
linear-time temporal logic ( .Goldblatt, .1987; .Rescher and .Urquhart, .1971) in which the
collection of moments in time is modeled by the set of natural numbers with its usual
ordering relation <. The temporal logic has two temporal operators, first and next.
The intuitive meanings of these operators are as follows:

- first A: A is true at the initial moment in time,
- next A: A is true at the next moment in time.

In Chronolog, all predicates are actually considered to be defined on the global clock,
i.e. the sequence of natural numbers 〈0, 1, 2, . . .〉. However, in some applications one may
find that it is necessary to consider “local times”. For instance, in analysis of distributed
computations, complications arise when it is time to decide how a process is to perform its
function and when it does an action. The processes involved in such a computation have
their own local time. A process only “sees” local events, such as sending a message to and
receiving a message from other processes through its buffers (in the case of asynchronous
communication). That is, one process is not always defined at all the moments in time
on the global clock. To describe such systems, it is more natural to introduce multiple
granularity of time or provide local clocks to model the behavior of processes.

Granularity of time is also a key issue in temporal databases. In some applications,
the granularity is days, in others it can be seconds or years, or a combination of multiple
granularity. .Wiederhold .et al. .(1991) also recognized the problem, and provided an alge-
bra in which data with multiple granularities were converted to a uniform model of data
based on time intervals. Such an approach requires interpolation of data with multiple
granularities over intervals, using a history operator H, based on certain assumptions.
Granularity of time is also important in ecological modeling (.Mota et al., .1995), where
we may need to consider how a number of actions performed at different levels of time
interact with each other.

We propose to extend Chronolog by introducing multiple clocks (.Liu, .1995; .Liu and
.Orgun, .1995) so that it can be used in applications such as above which require multiple
granularity of time. The resulting language is called Chronolog with Multiple Clocks,
or Chronolog(MC) for short. It is based on a linear-time temporal logic called TLC
(for Temporal Logic with Clocks) in which there is a local clock associated with each
predicate symbol. In TLC , each formula is also clocked, determined by the clocks of
predicate symbols which appear in the formula. A Chronolog(MC) program consists of
three parts—a clock definition, a clock assignment and a program body—and these parts
can be viewed as independent Chronolog programs. Each predicate symbol appearing
in the program body is associated with a local clock through the clock definition and
assignment.

The clocked extension has brought an essential change on the meanings of the temporal
operators of Chronolog. In the extension, the temporal operators next and first keep
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their intuitive meanings “the initial moment in time” and “the next moment in time”
respectively, but these meanings depend on the actual clocks given.

Chronolog(MC) can be used in applications where the notion of dynamic change is cen-
tral, and it can be applied to the specification of a wide range of simulation systems and
other relevant tasks ( .Liu and .Orgun, .1995). For instance, we can simulate a distributed
computation with local clocks defined for all the processes involved in it, so that we can
make analysis using scheduling theory to determine its timing properties in relation to
its use of computational resources ( .Liu and .Orgun, .1996).

1.2. structure of the paper

In this paper, we study the logical basis of Chronolog(MC). In particular, we also
propose a clocked temporal resolution as a refutation procedure for the execution of
Chronolog(MC) programs. .Orgun and .Wadge .(1993) have shown that Chronolog admits
a sound and complete proof procedure, called TiSLD-resolution, and established the
equivalence of the declarative and operational semantics of Chronolog programs. This
paper discusses the operational semantics of Chronolog(MC) programs in terms of the
new temporal resolution, and presents the declarative semantics for such programs in
terms of clocked temporal Herbrand models by extending their results.

2. Temporal Logic TLC

In this section, we introduce the temporal logic TLC , which is a clocked extension of
the underlying logic TL of the original Chronolog.

2.1. formulae

Any formula of classical first-order logic is also a formula of TLC . In addition to
the formation rules of first-order logic, we have a new formation rule to produce new
formulae: any TLC formula A may be prefixed by a temporal operator to form a new
formula of the form first A or next A.

A formula of TLC is also called a temporal formula. Particularly, if A is an atomic
formula of first-order logic, then we say that A is a temporal atomic formula, or simply,
an atom of TLC; and if A is an atom of TLC , so are first A and next A. We also say
that an atom is pure if it does not contain any temporal operators.

2.2. clocks

In TLC , the set ω of natural numbers models the collection of moments in time, and
clocks are sequences over ω. Formally, we define that the global clock is the increasing
sequence of all natural numbers: 〈0, 1, 2, . . .〉, and a local clock is a subsequence of the
global clock. In other words, a local clock is a strictly increasing sequence of natural
numbers, either infinite or finite: 〈t0, t1, t2, . . .〉. In particular, the empty sequence 〈〉
which does not contain any moments in time is also a local clock, called the empty clock.
By definition, the global clock is also a local clock.

Let CK denote the set of all local clocks. We now define an ordering relation on the
elements of CK as follows: for any ck1, ck2 ∈ CK, ck1 v ck2 iff for all t ∈ ck1, we have
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t ∈ ck2, where the expression t ∈ cki denotes the fact that t is a moment in time on the
clock cki. It is easy to show that (CK,v) is a complete lattice. Thus, we can define

ck1 u ck2
def= g.l.b.{ck1, ck2} ck1 t ck2

def= l.u.b.{ck1, ck2}

where ck1, ck2 ∈ CK, g.l.b. stands for “greatest lower bound” and l.u.b. for “least upper
bound” under the relation v. The definitions can be extended to any given set of clocks.

We now give the definition of a clock assignment, which assigns local clocks for all
predicate symbols.

Definition 2.1. A clock assignment ck of TLC is a map from the set SP of predicate
symbols to the set CK of clocks, i.e. ck ∈ [SP → CK]. The notation ck(p) denotes the
clock which is associated with a predicate symbol p on a given clock assignment ck.

We now extend the notion of a clock assignment to formulae.

Definition 2.2. Let A and B be formulae, p(x1, x2, . . . , xn) a pure atomic formula,
and ck a clock assignment. We define a clock assignment ck∗ on formulae of TLC as
follows:

ck∗(p(x1, x2, . . . , xn)) = ck(p) ck∗(¬A) = ck∗(A)
ck∗(A ∧B) = ck∗(A) u ck∗(B) ck∗(A ∨B) = ck∗(A) u ck∗(B)
ck∗(first A) = ck∗(A) ck∗(next A) = ck∗(A)
ck∗((∀x)A) = ck∗(A) ck∗((∃x)A) = ck∗(A).

We now establish the result that every formula of TLC can be clocked. The proof of
the lemma is straightforward by induction on the structure of formulae.

Lemma 2.1. Let A be a formula of TLC , SPA the set of predicate symbols occurring
in A, and ck a clock assignment. Then ck∗(A) = up∈SPAck(p) (i.e., every formula of
TLC can be clocked).

Since ck∗(A) is completely determined by the given clock assignment ck, we refer to
the clock of A under ck simply as ck(A). In notation, ck(A) = up∈SPAck(p).

In the following, we always use ck to represent a clock assignment and simply call
it a clock, and we also use the notation ck(A), ck(B), . . . , ck0, ck1, . . . to represent local
clocks. Particularly, we denote the global clock as gck.

Definition 2.3. (rank) Given a local clock cki = 〈t0, t1, t2, . . .〉. We define the rank
of tn on cki to be n, written as rank(tn, cki) = n. Inversely, we write tn = ck

(n)
i , which

means that tn is the moment in time on cki whose rank is n.

Obviously, for the global clock, we have that rank(t, gck) = t and gck(t) = t.

2.3. temporal interpretations, semantics

In TLC , at a given time t ∈ ω, the value of a formula can be true, false or undefined,
depending on the clocks of predicate symbols appearing in it. The meaning of a predicate
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symbol p is actually a partial mapping from ω to P (Dn) where n is the arity of p, D is
the domain of discourse, Dn is the n-folded Cartesian product of D, and P (Dn) is the
power set of Dn. For any t ∈ ck(p), the mapping is naturally defined, i.e., there will be
a corresponding subset of Dn; otherwise the image is undefined.

A temporal interpretation together with a clock assignment assigns meanings to all
the basic elements of TLC .

Definition 2.4. A temporal interpretation I on a given clock ck of TLC comprises a
non-empty set D, called the domain of the interpretation, over which the variables range,
together with for each variable, an element of D; for each n-ary function symbol, an
element of [Dn → D]; and for each n-ary predicate symbol p, an element of [ck(p) →
P (Dn)].

Now we give the definition of the satisfaction relation |=. In the following, the notation
|=I,ck,t A denotes the fact that a formula A is true at moment t(∈ ck(A)) under I on ck.

Definition 2.5. Let I be a temporal interpretation on a given clock ck of TLC , and A
and B formulae of TLC . The semantics of elements of TLC are given inductively by the
following:

(1) If f(e0, . . . , en−1) is a term, then I(f(e0, . . . , en−1)) = I(f)(I(e0), . . . , I(en−1)).
(2) For any n-ary predicate symbol p and terms e0, . . . , en−1 and any t ∈ ck(p), |=I,ck,t

p(e0, . . . , en−1) iff 〈I(e0), . . . , I(en−1)〉 ∈ I(p)(t).
(3) For any t ∈ ck(A), |=I,ck,t ¬A iff it not the case that |=I,ck,t A.
(4) For any t ∈ ck(A ∧B), |=I,ck,t (A ∧B) iff |=I,ck,t A and |=I,ck,t B.
(5) For any t ∈ ck(A), |=I,ck,t (∀x)A iff |=I[d/x],ck,t A for all d ∈ D where the inter-

pretation I[d/x] is just like I except that the varible x is assigned the value d in
I[d/x].

(6) For any t ∈ ck(A), |=I,ck,t first A iff |=I,ck,ck(A)(0) A.
(7) For any t ∈ ck(A), |=I,ck,t next A iff |=I,ck,ck(A)(i+1) A, where i = rank(t, ck(A)).

Let |=I,ck A denote the fact that A is true under I on ck, in other words, |=I,ck A if
and only if |=I,ck,t A for all t ∈ ck(A). Let |=ck A denote the fact that A is true in any
temporal interpretation on ck and |= A denote the fact that A is true in any temporal
interpretation on any clock. If |=I,ck A, then we say that the temporal interpretation I
on ck is a model on ck of the formula A.

2.4. axioms and inference rules

Let A be a formula of TLC and ck a clock. We write

` A: A is a theorem of TLC
`ck A: A is a theorem on ck of TLC
`ck,t A: A is a theorem at moment t(∈ ck(A)) on ck of TLC .

The following axioms (theorems) related to the temporal operators state some impor-
tant properties of the extended language. Let A and B be formulae of the language.
Read ↔ as “if and only if”.

Axioms
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A1. ` first first A↔ first A.
A2. ` first (¬A)↔ ¬(first A).
A3. ` next (¬A)↔ ¬(next A).
A4. ` first (∀x)(A)↔ (∀x)(first A).
A5. ` next (∀x)(A)↔ (∀x)(next A).
A6. `ck first (A ∧B)↔ (first A)∧(first B), where ck(A)(0) = ck(B)(0).
A7. `ck next (A ∧B)↔ (next A)∧(next B), where ck(A) = ck(B).

Inference rules

In addition to substitution and Modus Ponens(MP), we have the following rules:

R1. If `ck A, then `ck first A, when ck(A) is a non-empty clock.
R2. If `ck A, then `ck next A, when ck(A) is infinite.
R3. If `ck B → A, `ck,t B and t ∈ ck(B → A), then `ck,t A.

R1 and R2 are called the temporal operator introduction rules. The rule R2 holds only
when there is always a next moment in time on the clock ck(A). Using R3, we are allowed
to consider the case when ck(A) 6= ck(B).

In this paper, we do not attempt to discuss the completeness of the axiomatic system for
TLC . However, the correctness (soundness) of the axioms and the rules is straightforward.

Lemma 2.2. The axioms A1–A7 and the rules R1–R3 are valid with respect to the se-
mantics scheme for TLC .

2.5. clocked atoms

We say that an atom is fixed-time if it has an application of first followed by a
number of applications of next. Any fixed-time atom is fixed to some moment in time on
the local clock associated with the formula which the atom is currently involved in. For
example, suppose that p(x) appears in formula A and ck(A) = 〈2, 5, 8, . . .〉. Then, for
ck(A), first p(x) is fixed to moment 2, first next p(x) is fixed to moment 5 and so
on. Since different formulae may have different local clocks, the same predicate appearing
in different formulae may have different fixed forms even when it is fixed to the same
moment in time in the different formulae. Therefore we need the following definition.

Definition 2.6. Let Q be a pure atom, cki a local clock, t ∈ cki, cki v ck(Q), and n =
rank(t, cki). Then first next(n)Q is a fixed-time atom on cki, fixed to the moment t
in time. Furthermore we call first next(n)Q|tcki a clocked fixed-time atom on cki and t
the current time of the clocked fixed-time atom.

Lemma 2.3. Let Q be a pure atom appearing in a formula A and t ∈ ck(A). Then

first next(n)Q is true on ck(A) iff first next(m)Q is true on ck(Q)

where n = rank(t, ck(A)) and m = rank(t, ck(Q)).

Proof. We first show the following assertion by induction on n. For any given n,

first next(n)Q is true on ck(A) iff Q is true at time ck(A)(n).
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For n = 0, according to the satisfaction relation given by Definition 2.5 and the fact
that Q is a subformula of A, we have that first Q is true on ck(A) iff Q is true at time
ck(A)(0), and the assertion is obviously true.

Assume the assertion is true for n = k. By the inductive hypothesis, first next(k)
next Q is true on ck(A) iff next Q is true at time ck(A)(k). Moreover, by Definition 2.5,
next Q is true at time ck(A)(k) iff Q is true at time ck(A)(k+1). Therefore we have that
first next(k) next Q, i.e. first next(k+1) Q is true on ck(A) iff Q is true at time
ck(A)(k+1), which proves the assertion.

Similarly, for any given m, we can also show that

first next(m) Q is true on ck(Q) iff Q is true at time ck(Q)(m).

By Definition 2.2 and from the assumption that t ∈ ck(A) and Q is a pure atom in A,
we have t ∈ ck(Q). Let n = rank(t, ck(A)) and m = rank(t, ck(Q)), then we have
ck(A)(n) = t = ck(Q)(m). Therefore,

first next(n) Q is true on ck(A) iff first next(m) Q is true on ck(Q).

2

The lemma can simply be reformulated as:

first next(n) Q|tck(A) is true iff first next(m) Q|tck(Q) is true.

It actually forms the basis of the clocked TiSLD-resolution (see Section 4).

3. Program Structure in Chronolog(MC)

A Chronolog(MC) program consists of three components: P = Pc 1 Pa 1 Pb where Pc,
Pa and Pb are the clock definition, the clock assignment and the program body of the
program P , respectively. The symbol 1 means “jointing”, that is, Pc, Pa and Pb jointly
form the program P . Pc and Pa can be viewed as two independent programs. The clock ck
of P is totally determined by Pc and Pa.
Pc is an ordinary Chronolog program which specifies all the local clocks involved in

the program body. Program clauses in Pc are of the form A <- B0, . . . , Bn−1 where A
and all Bi’s are (temporal) atomic formulae. Informally, any given local clock cki can be
represented as a meta-Chronolog program, which specifies the predicate cki that is true
at all the moments in time appearing on the clock cki:

first cki(cki(0)).

next cki(S) <- cki(T), K=rank(T,cki), S is cki(K+1).

Since Pc is an ordinary Chronolog program, the definition of each cki may or may
not “represent” an actual clock. We stipulate that each cki satisfy the following clock
constraints:

Definition 3.1. (clock constraints)

- For any successful query first next(m) cki(X), we have that m ≤ X.
- For any pair of successful queries first next(m) cki(X) and first next(m)
cki(Y), we have that X = Y.
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- For any pair of successful queries first next(m) cki(X) and first next(n)
cki(Y), if m < n, then X < Y.

The intuitive meaning of these constraints are as follows. The first one says that the
rank of a moment on a clock is not greater than the moment. The second one says that
clocks are single-valued at each moment. When the second constraint is relaxed, we have
branching time. The third one says that clocks can only tick forwards, that is, cki defined
by the representation is monotonic. In short, the last two constraints ensure that clocks
are linear. The main motivation for the first constraint is computational (see Section 4).

Now the problem is that we have, in general, no way of checking whether clock con-
straints are satisfied by each clock definition. We can include some axioms in Pc formaliz-
ing the clock constraints, but then the semantics of clock definitions will be complicated.
In this paper we impose a syntactic restriction on clock definitions. Program clauses
which are allowed to appear in clock definitions for any given local clock cki can be only
of the following form:

first cki(n).
next cki(N) <- cki(M), N is E(M), N > M.

where n ∈ ω is the initial value of the clock, and E(X) is a single-valued function from ω
to ω. The second clause specifies the “next” value of the clock using its current value.
The declarative semantics of clock definitions are given in Section 5.
Pa is a typical Prolog program, which assigns local clocks for all the predicate symbols

in the program body. It consists of several facts written in a simplified form such as

is-ck(p,cki).

The clause says that cki is the local clock associated with the predicate symbol p,
where cki is defined in Pc and p appears in Pb. Note that there is only one clock as-
signment for any given predicate symbol. In short, Pa is the glue that binds a clock
definition and a program body.

The program body Pb consists of rules and facts. It looks like an ordinary Chronolog
program, but the meanings of all the program clauses appearing in Pb depend on a given
clock, i.e. the clock definition Pc and clock assignment Pa. Two programs with different
clock definitions or different clock assignments may give different results even when they
have the same program body.

3.1. an example program

The following is a simple Chronolog(MC) program, which we call the Cat-and-Mouse
(CAM) system. Suppose that there is a room where it is quiet only at odd moments in
time when nobody occupies it, and the room is occupied at even moments in time by a
cat and a mouse in turns. Also, there is an alarm set in the room. It makes a long sound
and a short sound alternately, and the interval between two sounds is 3 time units. The
first sound made by the alarm is short.

We define three predicates:

occupies(X): X occupies the room.
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quiet: it is quiet in the room.
alarm(X): The alarm makes X sound, where X is either long or short.

In the following program, the clock definition defines three local clocks, i.e. ck1, ck2, ck3;
and the clock assignment assigns clocks for three predicate symbols in the program body.
Note that the global clock is not included in the clock definition; it is accessible using
the symbol gck. When the clock of a predicate symbol is not assigned, it is assumed to
be the global clock.

% CLOCK DEFINITION (ck1, ck2, ck3) %
first ck1(0).
next ck1(N) <- ck1(M), N is M+2.
first ck2(1).
next ck2(N) <- ck2(M), N is M+2.
first ck3(1).
next ck3(N) <- ck3(M), N is M+3.

% CLOCK ASSIGNMENT (ck) %
is-ck(occupies,ck1).
is-ck(quiet,ck2).
is-ck(alarm,ck3).

% PROGRAM BODY %
first occupies(mouse).
next occupies(cat) <- occupies(mouse).
next occupies(mouse) <- occupies(cat).
first quiet.
next quiet <- quiet.
first alarm(short).
next alarm(long) <- alarm(short).
next alarm(short) <- alarm(long).

Note that ck1, ck2, and ck3 all satisfy the syntactic restriction on clock definitions
stated above. We omit the condition N > M from the clock definitions, because it is satisfied
trivially.

Given the above program, suppose that we want to find who occupies the room at the
next (even) moment in time after the initial moment 0. The query can be represented as
the fixed-time goal:

<- first next occupies(X).

The answer to the goal is X = cat at time 2.
Goals can be fixed-time as above or open. If all atoms of a goal are fixed-time, then

the goal is a fixed-time goal; otherwise it is an open goal. An open goal stands for a series
of independent fixed-time goals. For example, the open goal <- occupies(X) stands for
a series of independent fixed-time goals of form <- first next(n) occupies(X) for all
n ∈ {0, 1, 2, 3, . . .}.

In principle, any number of fixed-time goals can be executed in parallel. We call
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this form of parallelism “context parallelism”, which is exploited in the parallel exe-
cution model for Chronolog (.Liu et al., .1995). We are studying an extension of the
model for Chronolog(MC), incorporating the time-matching algorithms (see below).
Chronolog(MC) programs keep all forms of parallelism of original Chronolog programs.
Furthermore, because of introducing multiple clocks, reasoning about time can also be
performed in parallel.

4. Clocked TiSLD-Resolution

TiSLD-resolution (.Orgun and Wadge, 1993) is a proof procedure for Chronolog, which
is applied to a set of canonical (fixed-time) program clauses and goal clauses. The cor-
rectness of TiSLD-resolution is based on the idea that the value of a given formula can be
expressed in terms of the values of its canonical instances. In this section, we propose a
clocked TiSLD-resolution for the execution of Chronolog(MC) programs as an extension
of TiSLD-resolution.

4.1. temporal-unification

We need the notion of a canonical instance of a formula A. A canonical instance of A
is a formula whose value is an invariant of time, that is, a formula which is fixed to a
particular moment in time with respect to a given clock ck.

Definition 4.1. Let A be a formula, and ck a clock. For any moment t ∈ ck(A), the
canonical instance of A fixed to that moment is first next(rank(t, ck(A))) A.

Canonical instances of a formula can be obtained by the rules of inference.
The value of a given formula in a temporal interpretation can be expressed in terms of

its canonical instances. The intuitive idea is that, for any given moment in time on the
local clock ck(A), we can find a canonical instance of the formula fixed to that moment
in time and then combine the values of the canonical instances.

Lemma 4.1. Let A be a formula, I a temporal interpretation, and ck a clock of TLC .
Then |=I,ck A if and only if |=I,ck At for all canonical instances At of A on ck(A).

Proof. |=I,ck A iff |=I,ck,t A for all t ∈ ck(A), iff |=I,ck,t first next(rank(t, ck(A))) A,
for all t ∈ ck(A), iff |=I,ck first next(rank(t, ck(A))) A, for all t ∈ ck(A), because the
value of the initial truths first next(t, rank(A))) A are invariants of the moments on
ck(A), iff |=I,ck At for all canonical instances At of A, for all t ∈ ck(A). 2

By Lemma 2.3, if two clocked fixed-time atoms have the same pure atom and the same
current time, then they have the same truth value. Therefore, we have the following
definition.

Definition 4.2. Let A|tck1
and B|sck2

be two clocked fixed-time temporal atoms. If t = s
and the pure atoms contained in A and B can be unified, then we say that A|tck1

and
B|sck2

can be unified, and the substitution θ, which unifies the pure atoms, is a substitution
unifying A|tck1

and B|sck2
.
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Note that there may be a difference between the numbers of applications of next’s in
A|tck1

θ and B|sck2
θ. But, we are still allowed to write that A|tck1

θ = B|sck2
θ to express the

fact that they are unified. For example, suppose that we have ck1 = {0, 1, 2, 3, . . .} and
ck2 = {0, 2, 4, . . .}, then the temporal atoms first next next p(30)|2ck1

and first
next p(X)|2ck2

can be unified by the substitution {X/30}. The result of the substitu-
tion can be either first next next p(30)|2ck1

or first next p(30)|2ck2
. The user can

choose either one of them as the result in a proof procedure.
Thus, in Chronolog(MC), the concept of temporal-unification has been extended, so

that we are allowed to make unification on different local clocks.

4.2. algorithms for time-matching

In Chronolog(MC), temporal-matching involves the matching of a selected clocked
temporal atom from the current goal and the variant of a program clause. The matching
includes two aspects: (i) matching the pure atoms, and (ii) matching the current time.

The matching of pure atoms is trivial; while time-matching is involved in the execution
of clock definitions and clock assignments. Therefore, in executing a Chronolog(MC)
program, time-matching, or reasoning about time in the refutation procedure is essential.
Suppose that we are given a Chronolog(MC) program P = Pc 1 Pa 1 Pb. The following
three algorithms are used for time-matching.

Algorithm A is used to find all local clocks (different from the global clock) associated
with the predicate symbols appearing in any given clause in Pb. Let SP denote a set of
predicate symbols and SC a set of local clocks.

Algorithm A (find local clocks for a given clause A0 <- A1, . . . , An.)

(1) Initialization. Set SP = {}, SC = {} and i = 0.
(2) Get the predicate symbol p from Ai.
(3) If p ∈ SP , go to step 5.
(4) Given the query <- is-ck(p, X), execute the clock assignment Pa using a standard

Prolog implementation to obtain the answer. If the execution is successful and the
answer is X = ckj, set SP = SP ∪ {p} and SC = SC ∪ {ckj}.

(5) Set i = i+ 1. If i ≤ n, go to step 2.
(6) Output SC, then stop.

A given clock assigns a unique local clock for each predicate symbol appearing in the
program body. For any predicate symbol p, if there is a clause in the form of is-ck(p, X)
in the clock assignment of the program, then X is its local clock, otherwise it is assumed
that its local clock is the global clock gck.

Suppose that p1, p2, . . . , pr are all the predicate symbols appearing in a given clause C,
which have a local clock different from the global clock, and ck(p1) = ck1, ck(p2) =
ck2, . . . , ck(pr) = ckr, then the following clauses: is-ck(p1, ck1), is-ck(p2, ck2), . . . ,
is-ck(pr, ckr) should be included in the clock assignment of the program. Therefore,
by running Algorithm A, we may obtain SC={ck1,ck2,. . .,ckr}. If SC is the empty set,
then all predicate symbols have the global clock gck as their local clock.

Thus, by Definition 2.2, we have ck(C) = ck1 u ck2 u . . . u ckr u gck. The global
clock gck is there because there may be other predicate symbols in C running on it. In
addition, by Lemma 2.1, we can show that, for any t ∈ ω, t ∈ ck(C) if and only if t ∈ cki
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for all cki ∈ SC. In other words, ck(C) is totally determined by the set of local clocks
in SC.

Given any t ∈ ω, Algorithm B is used to determine whether t ∈ cki for any given local
clock cki which has been defined in the clock definition of a program.

Algorithm B (Check whether t ∈ cki.)

(1) Set k = t.
(2) Given the query <- first next(k) cki(t), execute the clock definition using a

standard Chronolog implementation to obtain the answer. If the execution is suc-
cessful, i.e. the answer is “Yes”, go to step 5.

(3) Set k = k − 1. If k ≥ 0, go to step 2.
(4) Output “the fact that t ∈ cki is not true”, then stop.
(5) Output “t ∈ cki”, then stop.

The constraints on clock definitions proposed in Section 3 together with the correctness
of the Chronolog implementation ( .Orgun and .Wadge, .1993) guarantee the correctness of
Algorithm B. If t ∈ cki, then Algorithm B terminates and gives the fact that t ∈ cki;
if t does not belong to cki, then Algorithm B terminates and gives the fact that t ∈ cki
is not true. In fact, the first constraint ensures that the search space for the given query
is finite, and therefore the algorithm terminates.

Algorithm C is used to find the rank of a time-value on the local clock ck(C) for any
given clause C of the program body of a program.

Algorithm C (Given SC = {ck1, ck2, . . . , ckr} by Algorithm A and t ∈ ck(C), find
rank(t, ck(C)))

(1) Let RANK = t and i = RANK − 1
(2) If i < 0, go to step 8.
(3) Set j = 1.
(4) Check whether i ∈ ckj (by Algorithm B). If so, go to step 6.
(5) let RANK = RANK − 1, go to step 7.
(6) Set j = j + 1. If j ≤ r go to step 4.
(7) Let i = i− 1. Go to step 2.
(8) Output rank(t, ck(C)) = RANK , then stop.

Based on the correctness of Algorithm B, the correctness of Algorithm C can be proved
by induction on t. Note that if SC is the empty set, then the algorithm terminates
immediately with the result t = rank(t, ck(C)).

Consider the matching of a selected clocked temporal atom, say A|tck0
, from the current

goal and the variant of a program clause, say C = H <- B1, . . . , Bn. Suppose A|tck0
and H

contain the same predicate symbol and their pure atoms have been matched. Because
t ∈ ck0, to check if the current time is matched, we only need to check whether t ∈ ck(C)
is true or not.

To do this, we can first find all the local clocks (different from the global clock) as-
sociated with the predicate symbols appearing in C by Algorithm A. Suppose we have
obtained SC = {ck1, ck2, . . . , ckr}. Then, we need to check whether t ∈ cki for all i,
1 ≤ i ≤ r by Algorithm B. If so, then we have t ∈ ck(C).
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The fact that t ∈ ck(C) means that the current time can be matched. In other words,
there exists a canonical instance of C, whose head can be matched with A|tck0

.
Suppose that A|tck0

and the head H of the clause C has been matched, then we have
to find rank(t, ck(C)), and obtain the clocked form of the canonical instance of C. This
task can be performed by Algorithm C.

4.3. proof procedure

We know that, to obtain the answer to an open goal, we have to obtain the answers from
all fixed-time subgoals of that goal, which are regarded as independent computations.

By Lemma 2.1, every clause (formula) in a given Chronolog(MC) program can be
clocked, so can every goal. Let P be a Chronolog(MC) program and G =<- L0, . . . , Ls a
fixed-time goal. Since G can be clocked, by Definition 2.6, we may rewrite the goal as

<- L0|
tL0
ck(G), . . . , Ls|

tLs
ck(G).

The clocked fixed-time form for G is called its rewritten form.

Definition 4.3. Given a Chronolog(MC) program P and a fixed goal G =<- L0, . . . , Ls.
A clocked TiSLD-derivation of P ∪ {G} is a sequence of triples with the following form:

E = {〈G0, C0, θ0〉, 〈G1, C1, θ1〉, . . .}

where G0 is the rewritten form of G as above and G0, G1, . . . are goal clauses whose atoms
are all clocked fixed-time; C0, C1, . . . the variants (renamed and clocked) of canonical
instances of program clauses in P ; and θ0, θ1, . . . the substitutions.

In the refutation procedure of Chronolog(MC), when a clocked temporal atom from the
goal is selected, it is matched against program clauses by the clocked temporal matching
and unification. A new goal is produced after replacing the selected atom in the goal
by the body of the matching canonical instance and then substitution (i.e. the variable
bindings) obtained from unification is applied to the new goal.

Suppose that at a step of a proof procedure, we have the TiSLD-derivation

E = {E0, E1, . . . , Ei}

where Ek = 〈Gk, Ck, θk〉, k = 0, . . . , i. In particular, suppose that we have

Ei = 〈(<- A0|
tA0
ck0

, . . . , Al|
tAl
ckl
, . . . , As−1|

tAs−1
cks−1

), (A <- B0, . . . , Bm−1), θi〉

and at the next step, Al is the selected temporal atom in the clocked fixed-time goal Gi via
the computation rules, and it is shown that tAl ∈ ck(Ck) by time-matching Algorithms A
and B, and furthermore we have Al|

tAl
ckl
θi = A|tAlck(Ck)θi with mgu θi, then

Ei+1 = 〈Gi+1, Ci+1, θi+1〉

where

Gi+1

= (<- A0|
tA0
ck0

, . . . , Al−1|
tAl−1
ckl−1

, B0|
tB0
ck(Ck), . . . , Bm−1|

tBm−1

ck(Ck), Al+1|
tAl+1
ckl+1

, . . . , As−1|
tAs−1
cks−1

)θi.

Note that the clocked fixed-time atoms B0|
tB0
ck(Ck), . . . , Bm−1|

tBm−1

ck(Ck) are all obtained by
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the time-matching algorithm C, based on the canonical instance of the formula Ck whose
head is matched with Al|

tAl
ckl

. Now the TiSLD-derivation we obtain is

E = {E0, E1, . . . , Ei, Ei+1}.
For any list E associated with a successful TiSLD-derivation, we have that for some n ≥ 0,
Gn = <-, in which case the list E has length n with the last element 〈Gn−1, Cn−1, θn−1〉.

An essential difference between the Clocked TiSLD-resolution and the original TiSLD-
resolution is that at every step of a clocked TiSLD-derivation all atoms in the goal clause
and the selected canonical instances (variant) of a program clause are clocked.

Recall the CAM system. Suppose that we are given the fixed-time goal G:

<- first occupies(X), first alarm(Y).

From the clock definition and assignment of the program, we have ck(occupies) =
ck1, ck(alarm) = ck3, ck1 = 〈0, 2, 4, 6, 8, 10, . . .〉 and ck3 = 〈1, 4, 7, 10, . . .〉, so ck(G) =
〈4, 10, . . .〉. Therefore, the rewritten form of the goal G is:

<- first occupies(X)|4ck(G), first alarm(Y)|4ck(G).

The proof of the goal is as follows:

G0 = <- first occupies(X)|4ck(G), first alarm(Y)|4ck(G).

C0 = first next next occupies(mouse)|4ck1

<- first next occupies(cat)|2ck1.

θ0 = {X/mouse}.
G1 = <- first next occupies(cat)|2ck1, first alarm(Y)|4ck(G) θ0.

C1 = first next occupies(cat)|2ck1 <- first occupies(mouse)|0ck1.

θ1 = {X/mouse}.
G2 = <- first occupies(mouse)|0ck1, first next alarm(y)|4ck(G) θ1.

C2 = first occupies(mouse)|0ck1.

θ2 = {X/mouse}.
G3 = <- first alarm(Y)|4ck(G) θ2.

C3 = first next alarm(long)|4ck3 <- first alarm(short)|1ck3.

θ3 = {X/mouse, Y/long}.
G4 = <- first alarm(short)|1ck3 θ3.

C4 = first alarm(short)|1ck3.

θ4 = {X/mouse, Y/long}.

When the selected temporal atom in G4 is replaced by the body of C4, we have that G5 =
<-, meaning that the refutation is successful. The answer to the goal is X = mouse,
Y = long.

Based on clock constraints (Definition 3.1) and the correctness of time-matching al-
gorithms, the soundness of clocked TiSLD-resolution can be proved by induction on the
length of a refutation. To show the completeness of clocked TiSLD-resolution, we need
to consider the fact that a given Chronolog(MC) program (body) can be expressed as
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the set of all canonical instances of program clauses in the program (body). Therefore
we can first show that clocked TiSLD-resolution is a complete proof procedure when
restricted to canonical ground instances of program clauses, then lift a ground clocked
TiSLD-refutation to a clocked TiSLD-refutation. Proofs of the analogous results from
.Orgun and .Wadge .(1993) can be adapted for the purpose.

5. Declarative Semantics

The program body is the main component of a Chronolog(MC) program, and its
semantics is therefore naturally presented as the declarative semantics of the program.
However, the clock definition and assignment of a Chronolog(MC) program can be viewed
as procedures attached to the program body; as independent programs, they naturally
have their own semantics. Therefore, the semantics for the entire program depends on
the semantics of the clock definition and assignment.

5.1. the semantics of clock definitions

Let P = Pc 1 Pa 1 Pb be a Chronolog(MC) program. The clock assignment Pa is a
set of Horn clauses, i.e. a Prolog program. The semantics results for Prolog programs
can be found from a number of references, such as .van Emden and .Kowalski .(1976) and

.Lloyd .(1987). Pc is an ordinary Chronolog program, therefore we can directly obtain the
declarative semantics of clock definitions from the declarative semantics of Chronolog
programs; .Orgun and .Wadge .(1992, .1993) showed that the minimum temporal Herbrand
model of a Chronolog program exists, and it is characterized by the intersection of all
the temporal Herbrand models of the program.
Pc, as an ordinary Chronolog program, has the property that all predicates run on the

global clock 〈0, 1, 2, 3, . . .〉. The declarative semantics of Pc can be developed in terms
of temporal Herbrand models as follows. Herbrand universe of Pc, denoted by UPc , is
generated by constants and function symbols that appear in Pc. The Herbrand base BPc
of Pc consists of all those canonical temporal atoms generated by predicate symbols
appearing in Pc with terms in UPc used as arguments. Subsets of BPc are regarded as
temporal Herbrand interpretations of Pc.

Let I be a temporal interpretation of Pc with UPc as its domain. Then I is identified
with a subset H of BPc by the following:

〈e0, . . . , en−1〉 ∈ I(p)(t) iff first next(t) p(e0, . . . , en−1) ∈ H, t ∈ ω.

Thus, we have the following results which are implied by the analogous results for
Chronolog (.Orgun and .Wadge, .1992, .1993).

Theorem 5.1. Let P = Pc 1 Pa 1 Pb be a Chronolog(MC) program. Then

(1) |=BPc
Pc.

(2) ∩Mc = ∩α∈ScIα is a temporal Herbrand model of Pc where Mc = {Iα}α∈Sc be a
non-empty set of temporal Herbrand models of Pc.

(3) MMOD(Pc)
def= ∩α∈ScIα is the minimum temporal Herbrand model of Pc, where

{Iα | |=Iα Pc}α∈Sc is the set of temporal Herbrand models of Pc.
(4) MMOD(Pc) = {A ∈ BPc | Pc |= A}.
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Recall that clock definitions have a restricted form of Chronolog clauses. We need to
show that all the clocks defined in Pc satisfy the clock constraints given in Section 3.

Lemma 5.1. Let Pc be a clock definition. For each predicate symbol cki defined in Pc,
cki satisfies the clock constraints with respect to MMOD(Pc).

Proof. The lemma can be proved by induction, based on the form of the syntactic
restrictions for clock definitions (see Section 3).

We first show, by induction on m, that cki satisfies the first constraint: for any element
first next(m) cki(X) in MMOD(Pc), we have that m ≤ X.

For m = 0, according to the restriction on the clock definition, we have X ∈ ω, so m ≤ X,
and therefore cki satisfies the constraint.

Assume cki satisfies the constraint when m = k. Consider the case when m = k + 1.
The fact that first next(k+1) cki(X) belongs to MMOD(Pc) means that it matches
a canonical instance of the second clause of the restriction with the following form:

first next(k+1) cki(X) <-
first next(k) cki(Y),
first next(k) X is E(Y),
first next(k) X > Y.

and first next(k) cki(Y), first next(k) X is E(Y), first next(k) X > Y are
all successful queries. Hence first next(k) cki(Y) also belongs to MMOD(Pc), and
therefore, by the inductive hypothesis, we have k ≤ Y. Thus, from the facts that first
next(k) X is E(Y), and first next(k) X > Y are successful queries and E is a single-
valued function from ω to ω, we have that k + 1 ≤ Y + 1 ≤ X, which proves the assertion
that cki satisfies the first constraint.

Based on the requirement that E is a single-valued function within the restriction on
clock definitions, we can similarly show, by induction on m, that cki satisfies the second
clock constraint.

To prove that cki satisfies the third clock constraint, i.e. to prove that, for any
pair first next(m) cki(X) and first next(n) cki(Y) in MMOD(Pc), if m < n, then
X < Y, we need adopt a double-induction on m and n. We omit the details of the proof
because of space limitations. 2

The lemma implies that the clock represented by each cki can be recovered as follows:

〈t | first next(k) cki(t) ∈ MMOD(Pc)〉k∈ω.

5.2. clocked temporal Herbrand models

Let P = Pc 1 Pa 1 Pb be a Chronolog(MC) program. Since the predicate symbols
appearing in the program body Pb have their own local clocks, the semantics of P depends
on the given clock ck. We know that P is true in a temporal interpretation I on a given
clock ck if and only if all program clauses in Pb are true in I on ck. By Lemma 4.1,
a program clause is true in I on ck if and only if all canonical instances of the clause
are true in I on ck. Therefore, as far as the declarative semantics is concerned, we can
regard P as the set of all canonical instances of the program clauses in Pb.
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In the program, the given clock ck is determined by Pc and Pa. To discuss clocked
temporal Herbrand models, we have to know how to obtain ck. For a given predicate
symbol p appearing in Pb, we want to know how to find ck(p). Formally, we have:

Definition 5.1. Let P = Pc 1 Pa 1 Pb be a Chronolog(MC) program and SP the set
of all predicate symbols appearing in Pb. Then the clock ck of Pb is obtained as follows:
For all p ∈ SP ,

- ck(p) = 〈t | first next(k) cki(t) ∈ MMOD(Pc)〉k∈ω if is-ck(p, cki) ∈ Pa;
- ck(p) = 〈0, 1, 2, 3, . . .〉 = gck if p is not assigned a local clock in Pa.

Let UP denote the clocked Herbrand universe of P which is generated by constants
and function symbols that appear in Pb. The clocked temporal Herbrand base BP of P
consists of all those canonical temporal atoms generated by predicate symbols appearing
in Pb with terms in UP used as arguments. We regard subsets of BP as clocked temporal
Herbrand interpretations of P . Let I be a temporal interpretation on the clock ck of P
with UP as its domain. Then I is identified with a subset H of BP by the following:

〈e0, . . . , en−1〉 ∈ I(p)(t) iff first next(rank(t, ck(p)))p(e0, . . . , en−1) ∈ H, t ∈ ck(p).

Thus we have the result:

Lemma 5.2. Let P = Pc 1 Pa 1 Pb be a Chronolog(MC) program, and ck the clock
determined by Pc and Pa. Then |=BP ,ck Pb.

Proof. For any program clause C ∈ Pb, we want to show that |=BP ,ck C. In other
words, we want to show, by Lemma 4.1, that |=BP ,ck Ct for all canonical instances Ct
of C on ck(C). To do this, we need only to prove that any ground canonical instance
of C is true under the interpretation BP on ck.

Assume (A <- B0, . . . , Bn−1) is a ground canonical instance ofC, whereA,B0, . . . , Bn−1

are all temporal atoms. By Definition 2.2, the clock for a ground canonical instance of
a given program clause is the same clock for that clause. Therefore, we can rewrite the
ground canonical instance as (A|tAck(C) <- B0|

tB0
ck(C), . . . , Bn−1|

tBn−1

ck(C) ).
Consider A|tAck(C). Assume

A|tAck(C) = first next(rank(tA, ck(C)))p(e0, . . . , ei−1)|tAck(C),

where p(e0, . . . , ei−1) is a pure ground atom. Since tA ∈ ck(C), again by Definition 2.2,
we have tA ∈ ck(p). Also, by Lemma 2.3, we have

first next(rank(tA, ck(C)))p(e0, . . . , ei−1)|tAck(C)

= first next(rank(tA, ck(p)))p(e0, . . . , ei−1)|tAck(p).

According to the definition of BP , first next(rank(ck(p), tA))p(e0, . . . , e(i−1))|tAck(p) ∈
BP , i.e. its truth value is true under the interpretation BP on ck. Therefore A|tAck(C) is
true under BP on ck, so is the ground canonical instance of C. 2

The above lemma says that the entire clocked temporal Herbrand base BP of a program
P = Pc 1 Pa 1 Pb is a clocked temporal model of the program (program body). The
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following lemma shows that the set of clocked temporal Herbrand models of a given
Chronolog(MC) program is also closed under intersection.

Lemma 5.3. Let P = Pc 1 Pa 1 Pb be a Chronolog(MC) program, ck the clock deter-
mined by Pc and Pa, and M = {Iα}α∈Sb a non-empty set of clocked temporal Herbrand
models of Pb. Then ∩M = ∩α∈SbIα is a clocked temporal Herbrand model of Pb.

Proof. Obviously, ∩M is a clocked Herbrand interpretation of P . We now show, by
contradiction, that it is a model of Pb.

Suppose ∩M is not a model of Pb. Then there exists at least one clause of Pb, say C,
which is false under the interpretation ∩M . That means that there exists at least a
ground canonical instance of C, say (A <- B0, . . . , Bn−1), which is false under ∩M . We
therefore have that B0 and . . . and Bn−1 are all true but A is false under ∩M .

We rewrite the ground canonical instance as (A|tAck(C) <- B0|
tB0
ck(C), . . . , Bn−1|

tBn−1

ck(C) ). As
in the above lemma, we can assume that

A|tAck(C) = first next(rank(tA, ck(C)))p(e0, . . . , ei−1)|tAck(C)

= first next(rank(tA, ck(p)))p(e0, . . . , ei−1)|tAck(p).

B0|
tB0
ck(C) = first next(rank(tB0 , ck(C)))p0(r0, . . . , ri0−1)|tB0

ck(C)

= first next(rank(tB0 , ck(p0)))p0(r0, . . . , ri0−1)|tB0
ck(p0).

. . .

Bn−1|
tBn−1

ck(C) = first next(rank(tBn−1 , ck(C)))pn−1(s0, . . . , si(n−1)−1)|tB0
ck(C)

= first next(rank(tBn−1 , ck(pn−1)))pn−1(s0, . . . , si(n−1)−1)|tBn−1

ck(pn−1).

where p(e0, . . . , ei−1), p0(r0, . . . , ri0−1), . . . , pn−1(s0, . . . , si(n−1)−1) are pure ground atoms.

Since B0|
tB0
ck(C), . . . , Bn−1|

tBn−1

ck(C) all are true under ∩M ,

first next(rank(tB0 , ck(p0)))p0(r0, . . . , ri0−1)|tB0
ck(p0),

. . .

first next(rank(tBn−1 , ck(pn−1)))pn−1(s0, . . . , si(n−1)−1)|tBn−1

ck(pn−1)

all belong to ∩M , and therefore they all belong to any model Iα, Iα ∈M . On other side,
since A|tAck(C) is false under ∩M , first next(rank(tA, ck(p)))p(e0, . . . , ei−1)|tAck(p) does
not belong to ∩M . Therefore there exists at least one model in M , say I, such that first
next(rank(tA, ck(p)))p(e0, . . . , ei−1)|tAck(p) does not belong to I. Thus, we have that C is
false under I, which contradicts our assumption that I is a model of Pb. 2

Theorem 5.2. Let P = Pc 1 Pa 1 Pb be a Chronolog(MC) program, ck the clock
determined by Pc and Pa, and M = {Iα | |=Iα,ck P}α∈Sb the set of clocked temporal

Herbrand models of Pb. Then MMOD(Pb)
def= ∩α∈SbIα is the minimum clocked temporal

Herbrand model of Pb.

Proof. By Lemma 5.2, M is non-empty. Furthermore, by Lemma 5.3, ∩M = ∩α∈SbIα
is a clocked temporal Herbrand model of Pb, and it is therefore the minimum clocked
temporal Herbrand model. 2
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The following theorem says that the minimum clocked temporal Herbrand model of
any Chronolog(MC) program consists of all ground canonical temporal atoms that are
logical consequences of the program. Its proof is adapted from an analogous proof for
Chronolog.

Theorem 5.3. Let P = Pc 1 Pa 1 Pb be a Chronolog(MC) program, and ck the clock
determined by Pc and Pa. Then MMOD(Pb) = {A ∈ BP | P |=ck A}.

Proof. A is a logical consequence of P on ck
iff Pb ∪ {¬A} is unsatisfiable on ck
iff Pb ∪ {¬A} have no clocked temporal Herbrand models
iff ¬A is false under all clocked temporal Herbrand models of Pb
iff A is true under all clocked temporal Herbrand models of Pb
iff A ∈ MMOD(Pb). 2

The minimum clocked temporal Herbrand model of a Chronolog(MC) program can
also be characterized by fixpoint theory. To do this, we may need discuss the fixpoint
semantics in two levels (the clock definition level and the program body level). Because
of space limitations, no details for the fixpoint semantics are given in this paper.

6. Conclusions

Chronolog(MC) is based on the temporal logic TLC which allows predicate symbols,
and formulae, to be defined on different clocks. We have presented its logical basis and
discussed the declarative semantics of Chronolog(MC) programs in terms of clocked tem-
poral Herbrand models. We have proposed a clocked TiSLD-resolution as the proof pro-
cedure for executing Chronolog(MC) programs.

One application of Chronolog(MC) is simulation (.Liu and .Orgun, .1995, .1996). In
describing a simulation system, we may consider that there are two parts which can
been split semantically: one describing the functional aspects of the processes involved
in the system, and the other describing their temporal aspects. The program body of
a Chronolog(MC) program can be used for describing the functional aspects of each
process involved in the system; and the clock definition and assignment together give the
description of timing properties about the behavior of those processes.

There are a number of papers dealing with granularity of time. .Ciapessoni et al. .(1993)
define a many-sorted first order logic language, whose semantics includes a temporal uni-
verse which consists of a finite set of disjoint and differently grained “temporal domains”.
Each temporal domain contains temporal instances expressed in the corresponding gran-
ularity. .Cukierman et al. .(1995) propose “time units classes” which are actually related
with the time domains defined in .Ciapessoni et al. .(1993). .Ladkin .(1986) proposed a
representation of time by non-convex intervals and introduced a standard form for an
interval which represents an instance of one of various time units. .Badaloni and .Berati

.(1994) use different time scales for temporal planning systems to reduce the complexity of
a real problem. In their notion of temporal granularity, a set of disjoint temporal domains
T1, . . . , Tn, which are characterized by metrics, is defined and for any i, the domain Ti+1

is a refinement of Ti. Mota et al. (1995) proposed a new time granularity theory based
on modular temporal clauses, which is suitable for the specification of ecological models;

.Euzenat .(1995) gives an algebraic approach to granularity in time representation, which
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uses granularity change operators for converting (upward and downward) qualitative
time relationship from one granularity to another. Also, .Hobbs .(1985) proposes a formal
characterization of the general notion of granularity, but gives no special attention to
time granularity.

In TLC , local clocks can be any subsequences of the global clock. In other words, it does
not require every granularity is a refinement of another one. The multiple granularity of
time therefore is more flexible in time representation and describing timing properties of
systems. Furthermore, in Chronolog(MC) the presentation of multiple granularity of time
in a program is explicitly given by a clock definition and a clock assignment. The user is
free to choose the granularity for each predicate symbol through clock assignments and
definitions. Also, when the second clock constraint is relaxed, branching time is obtained.
Then, given a goal, executing the clock definition involves finding a branch of time in
which the goal can be proved.

There are also a number of papers that discuss branching time logics. .Rescher and
.Urquhart .(1971) considered different axiomatizations of branching-time structures.
.Abrahamson .(1979) proposed additional ideas about branching time logics; then .Ben-
Ari et al. .(1981) defined the unified branching time system (UB) which was extended by
defining the computation tree logic (CTL) (.Clark et al., .1981, .1983). For more informa-
tion on branching time logics, we refer the reader to the survey of .Penczek .(1995).

Future work includes completing a theoretical study about TLC , including the com-
pleteness of clocked TiSLD-resolution and the computational complexity of the time-
matching algorithms. We are also considering a more general form of clock definitions in
which clock constraints are expressed as additional axioms. Another extension is to allow
the definition of clocks in terms of the same or other clocks. For example, the following
clock definition specifies a Fibonacci-like clock 〈1, 2, 3, 5, 8, . . .〉:

% CLOCK DEFINITION (ckf) %
first ckf(1).
first next ckf(2).
next(2) ckf(N) <- next ckf(X), ckf(Y), N is X+Y.

Although Chronolog(MC) does not allow the addition of new clocks of finer granularity
as a dense temporal logic might, it is possible to relax the requirement that each predicate
symbol is assigned a clock in a given program. In other words, we may designate a set
of predicate symbols as “input” predicates whose clocks are determined at run-time by
the external environment. Such an extension may be useful when the clocks of some
predicate symbols cannot be determined in advance and hence cannot be programmed
into the program.

We may also enrich TLC with two standard temporal operators, 2 and 3, defined as
follows:

2A
def= first A ∧2(next A)

3A
def= first A ∨3(next A).

We read 2 as “always” and 3 as “sometime”. The recursive definition of temporal oper-
ators 2 and 3 gives the following informal semantics: a formula of the form 2A is true
at time t in a clocked temporal interpretation I just in the case A is true at all moments
in time on the local clock ck(A); a formula of the form 3A is true at time t in a clocked
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temporal interpretation I just in the case A is true at some moments in time on the local
clock ck(A). These new operators can improve the modeling power of TLC .
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