Linear Algebra and its Applications 437 (2012) 1040-1049

Generalized Cayley graphs associated to commutative rings Mojgan Afkhami^a, Kazem Khashyarmanesh^{b,*}, Khosro Nafar^b

^a Department of Mathematics, University of Neyshabur, P.O. Box 91136-899, Neyshabur, Iran

^b Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159-91775, Mashhad, Iran

ARTICLE INFO

Article history: Received 23 January 2012 Accepted 19 March 2012 Available online 25 April 2012

Submitted by Richard Brualdi

AMS classification: 05C10 13A99

Keywords: Cayley graph Genus Planar graph Toroidal graph

ABSTRACT

Let *R* be a commutative ring with identity element. For a natural number *n*, we associate a simple graph, denoted by Γ_R^n , with $R^n \setminus \{0\}$ as the vertex set and two distinct vertices *X* and *Y* in R^n being adjacent if and only if there exists an $n \times n$ lower triangular matrix *A* over *R* whose entries on the main diagonal are non-zero and such that $AX^T = Y^T$ or $AY^T = X^T$, where, for a matrix *B*, B^T is the matrix transpose of *B*. When we consider the ring *R* as a semigroup with respect to multiplication, then Γ_R^1 is the usual undirected Cayley graph (over a semigroup). Hence Γ_R^n is a generalization of Cayley graph. In this paper we study some basic properties of Γ_R^n . We also determine all isomorphic classes of finite commutative rings whose generalized Cayley graph has genus at most three.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The definition of *Cayley graph* was introduced by Arthur Cayley in 1878 to explain the concept of abstract groups which are described by a set of generators. In the last 50 years, the theory of Cayley graphs has been grown into a substantial branch in algebraic graph theory. Cayley graphs have found many useful applications in solving and understanding a variety of problems of scientific interest (see the survey [8] and the monograph [6]). For a semigroup *H* and a subset *S* of *H*, the Cayley graph Cay(*H*, *S*) of *H* relative to *S* is defined as the graph with vertex set *H* and edge set *E*(*H*, *S*) consisting of those ordered pairs (*x*, *y*) such that *sx* = *y* for some $s \in S$ (cf. [7]). In the undirected Cayley graph Cay(*H*, *S*) we assume that *x* is adjacent to *y* if and only if (*x*, *y*) or (*y*, *x*) is an element of *E*(*H*, *S*), defined above.

* Corresponding author.

0024-3795/\$ - see front matter @ 2012 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.laa.2012.03.017

E-mail addresses: mojgan.afkhami@yahoo.com (M. Afkhami), khashyar@ipm.ir (K. Khashyarmanesh), khosronafar@yahoo.com (K. Nafar).

Let *R* be a commutative ring with identity element. In [12], Sharma and Bhatwadekar defined the *comaximal graph* on *R*, denoted by $\Gamma(R)$, with all elements of *R* being the vertices of $\Gamma(R)$, where two distinct vertices *a* and *b* are adjacent if and only if aR + bR = R. In [9,13], the authors considered a subgraph $\Gamma_2(R)$ of $\Gamma(R)$ consisting of non-unit elements of *R*, and studied several properties of the comaximal graph. Also the comaximal graph of a non-commutative ring was defined and studied in [14]. Recently in [1], the comaximal graph of a finite bounded lattice was introduced and studied. Note that the subgraph of the undirected Cayley graph $\overline{Cay}(R \setminus \{0\}, R \setminus \{0\})$ consisting of non-unit vertices is a subgraph of the complement of the comaximal graph $\Gamma_2(R)$. Moreover, the two subgraphs of the undirected Cayley graph $\overline{Cay}(R \setminus \{0\}, R \setminus \{0\})$ and the comaximal graph $\Gamma(R)$ consisting of unit elements of *R*, are isomorphic.

In this paper, for a natural number n and a commutative ring R with identity element, we associate a simple graph, denoted by Γ_R^n , with $R^n \setminus \{0\}$ as the vertex set and two distinct vertices X and Y in R^n being adjacent if and only if there exists an $n \times n$ lower triangular matrix A over R whose entries on the main diagonal are non-zero such that $AX^T = Y^T$ or $AY^T = X^T$. (We use T to denote matrix transpose.) In the case that n = 1, the resulting graph is the undirected graph $\overline{\text{Cay}}(H, S)$, where $H = S = R \setminus \{0\}$. Therefore, we assume that n > 1, in the rest of the paper. In Section 2, we study some basic properties of Γ_R^n . In Section 3, we investigate the genus number of the generalized Cayley graph Γ_R^n .

Now, we recall some definitions of graph theory which are necessary in this paper. Let G be a graph. We say that G is a *connected* graph if there is a path between each pair of distinct vertices of G. For two vertices x and y, we define d(x, y) to be the length of the shortest path between x and y (we let $d(x, y) = \infty$ if there is no such path). The *diameter* of a graph G is diam(G) = sup{d(a, b) : a and b are distinct vertices of G. The girth of G is the length of the shortest cycle in G, denoted by gr(G) (we let $gr(G) = \infty$ if G has no cycles). The graph G is *complete* if each pair of distinct vertices is joined by an edge. We use K_n to denote the complete graph with *n* vertices. The *degree* of a vertex *a* is the number of the edges of the graph G incident with a. A clique of a graph is a complete subgraph of it and the number of vertices in a largest clique of G is called the *clique number* of G and is denoted by $\omega(G)$. For a positive integer r, an r-partite graph is one whose vertex set can be partitioned into r subsets, so that no edge has both ends in any one subset. A complete r-partite graph is one in which each vertex is joined to every vertex that is not in the same part. The complete bipartite graph (2-partite graph) with part sizes m and n is denoted by $K_{m,n}$. Let G_1 and G_2 be subgraphs of G. We say that G_1 and G_2 are disjoint if they have no vertex and no edge in common. The union of two disjoint graphs G_1 and G_2 , which is denoted by $G_1 \cup G_2$, is a graph with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. The genus of a graph is the minimal integer t such that the graph can be drawn without crossing itself on a sphere with t handles (that is an oriented surface of genus t). Thus a planar graph has genus zero, because it can be drawn on a sphere without self-crossing. A genus one graph is called a toroidal graph. In other words, a graph G is toroidal if it can be embedded on the torus, this means that, the graph's vertices can be placed on a torus such that no edges cross. Usually, it is assumed that G is also non-planar. A subdivision of a graph is any graph that can be obtained from the original graph by replacing edges by paths. A remarkable simple characterization of the planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$ (cf. [2, p. 153]).

2. Basic properties

In this section, we observe the connectivity, diameter and girth of the graph Γ_R^n , where *n* is a positive integer with n > 1. We also investigate the clique number of this graph. Recall that an element *x* is a *unit* in *R* if there exists an element *y* in *R* such that *xy* is the identity element. We denote the set of zero-divisors and unit elements of *R* by *Z*(*R*) and *U*(*R*), respectively. Also the Jacobson radical of *R*, the set *R*\{0} and the ideal generated by an element *a* in *R* are denoted by *J*(*R*), *R*^{*} and *aR*, respectively.

We begin with the following lemma.

Lemma 2.1. Let $X = (x_1, x_2, ..., x_n)$ be a vertex whose first component is a unit and $Y = (y_1, y_2, ..., y_n)$ be a vertex whose first component is non-zero. Then X and Y are adjacent in Γ_R^n .

Proof. Consider the $n \times n$ lower triangular matrix A whose entries satisfy the following equations:

 $\begin{array}{l} a_{11} = {x_1}^{-1} y_1, \\ a_{ii} = 1, \, {\rm for} \, i > 1, \\ a_{i1} = {x_1}^{-1} (-x_i + y_i), \, {\rm for} \, i > 1, \\ a_{ij} = 0, \, {\rm for} \, i \neq j \, {\rm and} \, j > 1. \end{array}$

Then all entries in the main diagonal of *A* are non-zero. It is easy to see that $AX^T = Y^T$, and so the result follows. \Box

The following corollaries follow from Lemma 2.1.

Corollary 2.2. The induced subgraph of all vertices whose first components are units is a complete graph.

Corollary 2.3. Suppose that $p = |U(R)| |R|^{n-1}$ and $q = |R^* \setminus U(R)| |R|^{n-1}$. Then the graph Γ_R^n contains the bipartite graph $K_{p,q}$. Moreover, Γ_R^n contains a copy of $K_{p-i,q+i}$ for i with $1 \le i \le p-1$.

Proof. Let V_1 be the set of all vertices whose first components are units and let V_2 be the set of all vertices whose first components are non-unit elements of R^* . By Lemma 2.1, each vertex in V_1 is adjacent to each vertex in V_2 , and so the first statement holds. The last statement is clear by deleting some vertices in V_1 and adding them to V_2 . \Box

In the rest of the paper, for *i* with $1 \le i \le n$, we use the notation C_i to denote the set of all vertices whose first non-zero components are in the *i*th place. Also E_i is a vertex whose *i*th component is 1 and the other components are zero.

By using a method similar to the one we used in the proof of Lemma 2.1, one can obtain the following Lemma.

Lemma 2.4. Assume that $X \in C_i$ such that its ith component is unit. Then X is adjacent to Y for all $Y \in C_i$.

Recall that a graph on $n \ge 1$ vertices such that n - 1 of the vertices have degree one, all of which are adjacent only to the remaining vertex a, is called a *star graph* with center a. Also, a *refinement* of a graph H is a graph G such that the vertex sets of G and H are the same and every edge in H is an edge in G.

In the following theorem, we study the connectivity of Γ_R^n , where *R* is an integral domain.

Theorem 2.5. If *R* is an integral domain, then Γ_R^n is disconnected. Moreover, Γ_R^n has *n* components and every component is a refinement of a star graph.

Proof. Suppose that X_i is an arbitrary element in C_i . It is not hard to see that if $i \neq j$, then X_i and X_j are not adjacent, where $X_j \in C_j$. In addition, there is no path between them. Since X_i can be considered as the *i*th column of some lower triangular matrix A with non-zero entries on the main diagonal, E_i is adjacent to X_i , for each *i*. By Lemma 2.4, it is clear that every C_i is a component of Γ_R^n . Also each C_i is a refinement of a star graph with center E_i . \Box

The next corollary follows from Lemma 2.4 and Theorem 2.5.

Corollary 2.6. Let \mathbb{F} be a field. Then $\Gamma_{\mathbb{F}}^n$ is a union of n complete graphs.

Lemma 2.7. Suppose that *R* is not an integral domain and $X = (x_1, x_2, ..., x_n)$, $Y = (y_1, y_2, ..., y_n) \notin C_1$. Then there is a vertex in C_1 which is adjacent to both *X* and *Y*.

Proof. Let *x* and *z* be non-zero elements in *R* such that xz = 0. Let Z = (z, 1, ..., 1) and consider the lower triangular matrix *A* whose entries satisfy the following equations:

1042

 $a_{11} = x$. For $i \ge 2$ and $x_i \ne 0$ we put $a_{i1} = 0, ..., a_{i(i-1)} = 0, a_{ii} = x_i$. For $i \ge 2$ and $x_i = 0$ we put $a_{i1} = -1, a_{i2} = 0, ..., a_{i(i-1)} = 0, a_{ii} = z$.

So we have that $AZ^T = X^T$.

Similarly there exists a lower triangular matrix *B* such that all entries on the main diagonal are non-zero and $BZ^T = Y^T$. \Box

In the next theorem, we investigate the connectivity of Γ_R^n , where *R* is not an integral domain.

Theorem 2.8. If R is not an integral domain, then the graph Γ_R^n is connected and diam $(\Gamma_R^n) \in \{2, 3\}$.

Proof. Let $X = (x_1, x_2, ..., x_n)$ and $Y = (y_1, y_2, ..., y_n)$ be arbitrary non-adjacent vertices. We have the following cases:

- (a) If x_1 is unit and $y_1 \neq 0$, then, by Lemma 2.1, d(X, Y) = 1.
- (b) If $x_1 = y_1 = 0$, then, by Lemma 2.7, $d(X, Y) \le 2$.
- (c) If $x_1 = 0$ and y_1 is unit, then, by Lemma 2.7, there exists a vertex *T* in C_1 which is adjacent to *X*. Now, by Lemma 2.1, *T* is adjacent to *Y*. So $d(X, Y) \leq 2$.
- (d) If $x_1 = 0$ and y_1 is non-zero and non-unit, then again, by Lemma 2.7, there exists a vertex *T* in C_1 which is adjacent to *X*. Hence we have the path $X T E_1 Y$. Therefore $d(X, Y) \leq 3$.
- (e) If x_1 and y_1 are non-zero and non-unit elements, then, by Lemma 2.1, we have the path $X E_1 Y$. So d(X, Y) ≤ 2 .

Hence, by considering the above situations, we have that diam(Γ_R^n) ≤ 3 . On the other hand, if $x_1 = 0$ and y_1 is unit, then X and Y are not adjacent. So the graph Γ_R^n is never complete. Hence the result holds. \Box

Remark 2.9. Let $X = (x_1, x_2, ..., x_n)$ be a vertex with $x_1 \neq 0$. Then X is adjacent to $Z = (x_1, 1, ..., 1)$. To prove this, it is sufficient to consider the lower triangular matrix A whose entries satisfy the following equations:

 $a_{11} = 1.$ For $i \ge 2$ and $x_i \ne 0$ put $a_{i1} = 0, ..., a_{i(i-1)} = 0, a_{ii} = x_i.$ For $i \ge 2$ and $x_i = 0$ put $a_{i1} = -1, a_{i2} = 0, ..., a_{i(i-1)} = 0, a_{ii} = x_1.$

So we have $AZ^T = X^T$.

In the following theorem we determine the rings *R* for which, the diameter of Γ_R^n is exactly 2 or 3.

Theorem 2.10. Assume that R is not an integral domain. If $R = Z(R) \cup U(R)$, then diam $(\Gamma_R^n) = 2$. Otherwise, diam $(\Gamma_R^n) = 3$.

Proof. Let $X = (x_1, x_2, ..., x_n)$ and $Y = (y_1, y_2, ..., y_n)$ be two non-adjacent vertices. By the proof of Theorem 2.8, $d(X, Y) \leq 2$ unless we have that $x_1 = 0$ and that y_1 is non-zero and non-unit. In this situation, we have $d(X, Y) \leq 3$. Now if $R = Z(R) \cup U(R)$, then y_1 is a zero-divisor. So, by the proof of Lemma 2.7, $Z = (y_1, 1, ..., 1)$ is adjacent to *X*. Now, by Remark 2.9, *Y* and *Z* are adjacent. Hence d(X, Y) = 2. Thus whenever $R = Z(R) \cup U(R)$, we have that diam $(\Gamma_R^n) = 2$.

Now, suppose that $R \neq Z(R) \cup U(R)$ and that y_1 is not a zero-divisor in R. We let $x_2 = 1$ and $y_2 = y_1$. Then we claim that d(X, Y) = 3. Assume to the contrary that d(X, Y) = 2. Then there exists a vertex Z which is adjacent to both X and Y. So there are $n \times n$ lower triangular matrices A and B over R with entries on the main diagonal are non-zero, and we have the following situations.

- (i) $AX^T = Z^T$ and $BZ^T = Y^T$. So $a_{11}0 = z_1$ and $b_{11}z_1 = y_1$. Consequently $y_1 = 0$, which is impossible.
- (ii) $AX^T = Z^T$ and $BY^T = Z^T$. So $a_{11}0 = z_1$ and $b_{11}y_1 = z_1$. Consequently $b_{11}y_1 = 0$, which is impossible.
- (iii) $AZ^T = X^T$ and $BZ^T = Y^T$. So $a_{11}z_1 = 0$ and $b_{11}z_1 = y_1$. Consequently $a_{11}y_1 = 0$, which is impossible.
- (iv) $AZ^T = X^T$ and $BY^T = Z^T$. So $a_{21}z_1 + a_{22}z_2 = x_2$ and $b_{21}y_1 + b_{22}y_2 = z_2$.

Thus $a_{21}b_{11}y_1 + a_{22}(b_{21}y_1 + b_{22}y_2) = x_2$. Since y_1 is non-unit, we have that $y_1 \in \mathfrak{m}$, for some maximal ideal m. Now, since $x_2 = 1$ and $y_2 = y_1$, we have that $1 \in m$, which is impossible.

Therefore we have d(X, Y) = 3. Thus, by Theorem 2.8, we have that $diam(\Gamma_R^n) = 3$, whenever $R \neq Z(R) \cup U(R)$.

We recall that the dimension of R, denoted by $\dim(R)$, is the supremum of the length of all chains of prime ideals in R.

Corollary 2.11. If R is a ring with $\dim(R) = 0$ (in particular an Artinian ring), which is not an integral domain, then diam $(\Gamma_R^n) = 2$.

Proof. By [5, Theorem 91], we have $R = Z(R) \cup U(R)$, and so the result follows from Theorem 2.10.

Example 2.12. Let \mathbb{R} and \mathbb{C} be the sets of all real and complex numbers, respectively. It is easy to see that $\Gamma^{\hat{n}}_{\mathbb{R}} \cong \Gamma^{\hat{n}}_{\mathbb{C}}$.

In the following proposition, we study the rings whose generalized Cayley graphs are isomorphic.

Proposition 2.13. Let R and R' be two rings. Then the following statements hold:

- (a) If $\Gamma_R^n \cong \Gamma_{R'}^n$ and R is an integral domain, then R' is also an integral domain. (b) If $\Gamma_R^n \cong \Gamma_{R'}^n$ and R is a field, then R' is also a field.

Proof. (a) Assume to the contrary that R' is not an integral domain. So, by Theorem 2.8, $\Gamma_{p'}^n$ is connected. On the other hand, by Theorem 2.5, Γ_R^n is disconnected, which is a contradiction.

(b) If R is a field, then, by Part (a), R' is an integral domain. By Corollary 2.6, every connected component of Γ_R^n is complete. Thus every connected component of $\Gamma_{R'}^n$ is complete. Now, suppose to the contrary that R' is not a field and that m is a non-zero maximal ideal in R'. Also assume that m is a non-zero element in m. Since the vertices $X = (m^2, 1, 1, \dots, 1)$ and $Y = (m, m, 1, \dots, 1)$ are adjacent in $\Gamma_{R'}^n$, there exists a lower triangular matrix A over R' whose entries on the main diagonal are non-zero, and so $AX^T = Y^T$ or $AY^T = X^T$. If $AX^T = Y^T$, then $a_{11}m = 1$ which is impossible. Also, if $AY^T = X^T$, then $(a_{21} + a_{22})m = 1$ which is again impossible. Hence the vertices X and Y are not adjacent which is the required contradiction. \Box

The next corollary follows immediately from Proposition 2.13 in conjunction with Moore's Theorem which says that every two finite fields of the same cardinality are isomorphic.

Corollary 2.14. If *R* is a commutative ring such that $\Gamma_R^n \cong \Gamma_{R'}^n$, for some finite field *R'*, then $R \cong R'$.

In the following example, we show that Proposition 2.13 does not hold for n = 1.

Example 2.15. Let F be a field. It is well known that R = F[[x]] is a local ring with unique maximal ideal xR. Also one can easily see that every non-zero element in R is of the form $x^k u$, where u is a unit in R and $k \ge 0$. So, for every non-zero elements a and b in R, we have $a \in bR$ or $b \in aR$. Thus $\overline{Cay}(R^*, R^*)$ is a complete graph. Now, let $\mathbb R$ and $\mathbb Q$ be the sets of all real and rational numbers, respectively and

1044

 $S = \mathbb{Q}[[x]]$. It is easy to see that $\overline{Cay}(\mathbb{R}^*, \mathbb{R}^*) \cong \overline{Cay}(S^*, S^*)$. Hence Proposition 2.13 does not hold in the case that n = 1.

Lemma 2.16. Let *R* be a ring such that, for every non-zero elements *a* and *b* in *R*, $a \in bR$ or $b \in aR$. Then *R* is a local ring.

Proof. Consider the element x in R with $x \neq 0, 1, -1$. So $x + 1 \neq 0$. Therefore, by our hypothesis, $x \in (x + 1)R$ or $x + 1 \in xR$. If $x \in (x + 1)R$, then, by considering t = x + 1, we have that $t - 1 \in tR$. So there exists an element k' in R such that t - 1 = k't. Thus t = x + 1 is unit. Also, if $x + 1 \in xR$, then again one can easily see that x is unit. Therefore, for every element x in R, x is unit or x + 1 is unit. Suppose that z is a non-unit element in R. Therefore az is not unit, for every $a \in R$, and consequently 1 + az is unit. So $z \in J(R)$. Hence, the union of all maximal ideals is J(R) which implies that R is local. \Box

The next result follows from Lemma 2.16.

Corollary 2.17. Let R be a field and R' be a ring. If $\overline{\text{Cay}}(R^*, R^*) \cong \overline{\text{Cay}}(R'^*, R'^*)$, then R' is local.

In the next result we study the girth of Γ_R^n .

Proposition 2.18. gr(Γ_R^n) = 3 if and only if $n \ge 3$ or $R \ne \mathbb{Z}_2$.

Proof. If $n \ge 3$, then, by Lemma 2.1, the vertices (1, 1, 1, 0, ..., 0), (1, 1, 0, ..., 0) and (1, 0, ..., 0) form a triangle. If n = 2 and $R \ne \mathbb{Z}_2$, then the vertices (1, 0), (1, 1) and (1, a) form a triangle, where $a \ne 0$, 1. Otherwise, we have that n = 2 and $R = \mathbb{Z}_2$. In this situation $\Gamma_R^n \cong K_2 \cup K_1$, and so its girth is infinity.

The converse statement is clear. \Box

In the following proposition we investigate the clique number of Γ_R^n .

Proposition 2.19. We have the following statements.

- (a) If R is a field, then $\omega(\Gamma_R^n) = |\mathsf{U}(R)| |R|^{n-1}$.
- (b) If R is not a field, then $\omega(\Gamma_R^n) \ge |U(R)| |R|^{n-1} + 1$.

Proof. (a) If *R* is a field, then, every non-zero element of *R* is unit, and so, by Lemmas 2.1 and 2.4, our claim holds.

(b) If *R* is not a field, then one can choose a non-zero and non-unit element *z* in *R*. Let X = (z, 1, 1, ..., 1). Let *C* be the set of all vertices whose first component is unit. Now, by Lemma 2.1, it is easy to see that the set $C \cup \{X\}$ forms a clique, and so the result follows. \Box

Example 2.20. If $R = \mathbb{Z}_2$, then clearly, by Proposition 2.19(a), $\omega(\Gamma_R^n) = 2^{n-1}$.

Example 2.21. If $R = \mathbb{Z}_2 \times \mathbb{Z}_2$, then $\omega(\Gamma_R^2) = 8$ and Γ_R^2 has 68 edges.

Proof. Put

$$\begin{aligned} X_1 &= ((1, 1), (1, 0)), \quad X_2 &= ((1, 1), (0, 1)), \quad X_3 &= ((1, 1), (0, 0)), \quad X_4 &= ((1, 1), (1, 1)), \\ X_5 &= ((0, 1), (1, 0)), \quad X_6 &= ((0, 1), (0, 1)), \quad X_7 &= ((0, 1), (0, 0)), \quad X_8 &= ((0, 1), (1, 1)). \end{aligned}$$

By Lemma 2.1, the vertices X_1, X_2, X_3 and X_4 form the graph K_4 . Also, by Lemma 2.1, these four vertices are adjacent to all vertices X_i , for $5 \le i \le 8$. The following equations show that the vertices X_5, X_6, X_7, X_8 form the graph K_4 too. Put

M. Afkhami et al. / Linear Algebra and its Applications 437 (2012) 1040-1049

$$A =: \begin{pmatrix} (1, 1) & (0, 0) \\ (1, 1) & (1, 1) \end{pmatrix}, \quad B =: \begin{pmatrix} (1, 1) & (0, 0) \\ (1, 0) & (0, 1) \end{pmatrix}, \quad C =: \begin{pmatrix} (1, 1) & (0, 0) \\ (1, 1) & (0, 1) \end{pmatrix}.$$

Now, we have the following equalities.

$$AX_6^T = X_7^T, \ AX_5^T = X_8^T, \ BX_5^T = X_7^T, \ BX_8^T = X_6^T, \ CX_5^T = X_6^T, \ CX_8^T = X_7^T.$$

It is not hard to see that there is no vertex which is adjacent to all vertices X_1, \ldots, X_8 . Also one can easily check that the cardinality of all cliques is not greater than eight. Thus $\omega(\Gamma_R^2) = 8$.

Now we calculate the number of edges in Γ_R^2 . Put

$$X_{9} = ((1, 0), (1, 0)), \quad X_{10} = ((1, 0), (0, 1)), \quad X_{11} = ((1, 0), (0, 0)), \quad X_{12} = ((1, 0), (1, 1)),$$

$$X_{13} = ((0, 0), (1, 0)), \quad X_{14} = ((0, 0), (0, 1)), \quad X_{15} = ((0, 0), (1, 1)).$$

By a similar argument as in the first paragraph of this proof, the vertices X_9 , X_{10} , X_{11} and X_{12} form the graph K_4 . By Lemma 2.1, the vertices X_1 , X_2 , X_3 and X_4 are adjacent to each of the vertices X_9 , X_{10} , X_{11} and X_{12} . One can also easily see that X_{13} is adjacent to X_5 , X_8 , X_9 , X_{10} , X_{11} and X_{12} . Similarly, X_{14} is adjacent to X_5 , X_6 , X_7 , X_8 , X_{10} and X_{12} . Also X_{15} is adjacent to X_5 , X_8 , X_{10} , X_{12} , X_{13} and X_{14} .

Therefore Γ_R^2 has 68 edges. \Box

Recall that a Hamilton cycle in a graph G is a cycle that contains every vertex of G. Moreover G is called Hamiltonian if it contains a Hamilton cycle.

We end this section with the following theorem which study the Hamiltonian generalized Cayley graphs.

Theorem 2.22. Assume that R is a finite ring such that Γ_R^n is connected for some $n \ge 1$. Then Γ_R^n is Hamiltonian, whenever $|Z^*(R)| \le |U(R)|$.

Proof. Since Γ_R^n is connected, we have that *R* is not an integral domain and therefore $|Z^*(R)| \ge 1$. Suppose that $Z^*(R) = \{z_1, z_2, ..., z_p\}$ and $U(R) = \{u_1, u_2, ..., u_q\}$, where $p \le q$. First we consider the case that n = 1. Then we have the following Hamilton cycle in the graph $\overline{\text{Cay}}(R^*, R^*)$.

$$u_1 - z_1 - u_2 - z_2 - \cdots - u_p - z_p - u_{p_{i+1}} - \cdots - u_q - u_1.$$

Now, suppose that $n \ge 2$. For each $1 \le i \le n$, let $p_i = p|R|^{n-i}$ and $q_i = q|R|^{n-i}$. Let $\mathcal{Z}_i = \{Z_j^i \mid 1 \le j \le p_i\}$ be the subset of \mathcal{C}_i such that the *i*th components of its elements are non-zero zero divisors and $\mathcal{U}_i = \{U_j^i \mid 1 \le j \le q_i\}$ be the subset of \mathcal{C}_i such that the *i*th components of its elements are units. Obviously, for each $1 \le i \le n$, we have the path \mathcal{P}_i in \mathcal{C}_i ,

$$\mathcal{P}_i: \ U_1^i - Z_1^i - U_2^i - Z_2^i - \dots - U_{p_i}^i - Z_{p_i}^i - U_{p_{i+1}}^i - \dots - U_{q_i}^i,$$

where $Z_1^i = (x_1, x_2, ..., x_n)$ and $Z_2^i = (y_1, y_2, ..., y_n)$ such that $x_i = z_1, x_{i+1} = \cdots = x_n = u_1$ and $y_i = z_1, y_{i+1} = \cdots = y_n = u_2$.

Now, we construct a Hamiltonian cycle in Γ_R^n . First we consider the paths $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n$ and delete the edges $Z_1^i - U_2^i$ and $Z_2^i - U_2^i$, for $i = 1, \ldots, n - 1$. Now, by considering the following edges, one can easily see that Γ_R^n contains a Hamilton cycle.

$$Z_1^1 - U_1^2, Z_1^2 - U_1^3, \dots, Z_1^{n-1} - U_1^n,$$

$$U_2^1 - U_{q_1}^1, U_2^2 - U_{q_2}^2, \dots, U_2^{n-1} - U_{q_{n-1}}^{n-1},$$

$$Z_2^1 - U_2^2, Z_2^2 - U_2^3, \dots, Z_2^{n-2} - U_2^{n-1},$$

$$U_1^1 - U_2^1, Z_2^{n-1} - U_{q_n}^n. \square$$

Corollary 2.23. Suppose that Γ_R^n is connected, for some $n \ge 1$, and that R is finite. If Z(R) is an ideal of R, then Γ_R^n is Hamiltonian. In particular, if R is local, then Γ_R^n is Hamiltonian.

1046

3. On the genus and crosscap numbers of Γ_R^n

It is well known that any compact surface is either homeomorphic to a sphere, or to a connected sum of g tori, or to a connected sum of k projective planes (see [10, Theorem 5.1]). We denote by S_g the surface formed by a connected sum of g tori, and by N_k the one formed by a connected sum of k projective planes. The number g is called the genus of the surface S_g and k is called the crosscap of N_k . When considering the orientability, the surfaces S_g and sphere are among the orientable class and the surfaces N_k are among the non-orientable one.

A simple graph which can be embedded in S_g but not in S_{g-1} is called a graph of *genus g*. Similarly, if it can be embedded in N_k but not in N_{k-1} , then we call it a graph of *crosscap k*. The notations $\gamma(G)$ and $\overline{\gamma}(G)$ are denoted for the genus and crosscap of a graph *G*, respectively. It is easy to see that $\gamma(H) \leq \gamma(G)$ and $\overline{\gamma}(H) \leq \overline{\gamma}(G)$, for all subgraph *H* of *G*. Also a graph *G* is called planar if $\gamma(G) = 0$, and it is called toroidal if $\gamma(G) = 1$.

Recall that, for a rational number q, $\lceil q \rceil$ is the first integer number greater or equal than q. In the following lemma we bring some well-known formulas for genus of a graph (see [16,15]).

Lemma 3.1. The following statements hold:

- (a) For $n \ge 3$, we have $\gamma(K_n) = \lceil \frac{1}{12}(n-3)(n-4) \rceil$.
- (b) For $m, n \ge 2$, we have $\gamma(\mathbf{K}_{m,n}) = \lceil \frac{1}{4}(m-2)(n-2) \rceil$.

According to Lemma 3.1, we have $\gamma(K_n) = 0$, for $1 \le n \le 4$, and $\gamma(K_n) = 1$, for $5 \le n \le 7$, and, for other values of $n, \gamma(K_n) \ge 2$.

The following lemma, which is from [17], is needed in the rest of the paper.

Lemma 3.2. Let *G* be a simple graph with *n* vertices $(n \ge 4)$ and *m* edges. Then $\gamma(G) \ge \lceil \frac{1}{6}(m-3n)+1 \rceil$.

In the following theorem we determine all isomorphic classes of finite commutative rings *R* whose Γ_R^n has genus at most three.

Theorem 3.3. The following statements hold:

- (a) $\gamma(\Gamma_R^n) = 0$ if and only if $R = \mathbb{Z}_2$ and n = 2 or 3.
- (b) $\gamma(\Gamma_R^n) = 1$ if and only if $R = \mathbb{Z}_3$ and n = 2.
- (c) $\gamma(\Gamma_R^n) = 2$ if and only if $R = \mathbb{Z}_2$ and n = 4.
- (d) There is no ring R with $\gamma(\Gamma_R^n) = 3$.

Proof. We consider the following cases:

Case 1. $n \ge 4$. If $R \ne \mathbb{Z}_2$, then, by Proposition 2.19, $\omega(\Gamma_R^n) \ge 28$, and so, by Lemma 3.1, $\gamma(\Gamma_R^n) \ge 50$. If $R = \mathbb{Z}_2$, then $\omega(\Gamma_R^4) = 8$ and $\omega(\Gamma_R^5) = 16$. Hence, by Lemma 3.1, $\gamma(\Gamma_R^4) = 2$ and $\gamma(\Gamma_R^5) = 13$.

Case 2. n=3. If $|R| \ge 3$, then, by Proposition 2.19, $\omega(\Gamma_R^n) \ge 10$, and so, by Lemma 3.1, $\gamma(\Gamma_R^n) \ge 4$. If |R| = 2, then $\omega(\Gamma_R^n) = 4$. Since $\Gamma_R^n = K_4 \cup K_2 \cup K_1$, we have that $\gamma(\Gamma_R^4) = 0$.

Case 3. n=2. If $|R| \ge 9$, then, by Proposition 2.19, $\omega(\Gamma_R^n) \ge 10$, and so, by Lemma 3.1, $\gamma(\Gamma_R^n) \ge 4$. If |R| = 8, then, by [4, p. 687], *R* is one of the following rings.

$$R_1 = \mathbf{F}_8, \quad R_2 = \frac{\mathbb{Z}_2[x, y]}{\langle x, y \rangle^2}, \quad R_3 = \frac{\mathbb{Z}_2[x]}{\langle x^3 \rangle}, \quad R_4 = \frac{\mathbb{Z}_4[x]}{\langle 2x, x^2 \rangle}, \quad R_5 = \frac{\mathbb{Z}_4[x]}{\langle 2x, x^2 - 2 \rangle},$$
$$R_6 = \mathbb{Z}_2 \times \mathbb{Z}_4, \quad R_7 = \mathbb{Z}_2 \times \frac{\mathbb{Z}_2[x]}{\langle x^2 \rangle}, \quad R_8 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2.$$

For R_1 , by Proposition 2.19, we have $\omega(\Gamma_{R_1}^n) \ge 56$, and so, by Lemma 3.1, $\gamma(\Gamma_R^n) \ge 230$. For other rings of order 8 we have $|R^* \setminus U(R)| \ge 2$. Thus, by Corollary 2.3, Γ_R^n contains a K_{8,16}. Hence, by Lemma 3.1, $\gamma(\Gamma_R^n) \ge 21$.

If |R| = 7, then R is a field, and so, by Proposition 2.19, $\omega(\Gamma_R^n) = 42$. Hence, by Lemma 3.1, $\gamma(\Gamma_R^n) \ge 124.$

If |R| = 6, then R is a field or $R = \mathbb{Z}_6$. If R is a field, then, by Proposition 2.19, $\omega(\Gamma_R^n) \ge 30$, and so, by Lemma 3.1, $\gamma(\Gamma_R^n) \ge 59$. If $R = \mathbb{Z}_6$, then, by Proposition 2.19, $\omega(\Gamma_R^n) \ge 13$, and so, by Lemma 3.1,

 $\gamma(\Gamma_R^n) \ge 8.$ If |R| = 5, then *R* is a field. So, by Proposition 2.19, $\omega(\Gamma_R^n) \ge 20$. Thus, by Lemma 3.1, $\gamma(\Gamma_R^n) \ge 23$. If *R* is local with |R| = 4, then, by [4, p. 687], *R* is a field or *R* is one of the rings \mathbb{Z}_4 or $\frac{\mathbb{Z}_2[x]}{\sqrt{2}}$. If $R = \mathbb{Z}_4$

or $\frac{\mathbb{Z}_2[x]}{\langle x^2 \rangle}$, then |U(R)| = 2. So, by Corollary 2.3, Γ_R^n contains a K_{6,6}. Thus, by Lemma 3.1, $\gamma(\Gamma_R^n) \ge 4$. If *R* is a field and |R| = 4, then, by Proposition 2.19, we have $\omega(\Gamma_R^n) = 12$, and so, by Lemma 3.1, $\gamma(\Gamma_R^n) \ge 6$. If *R* is not local and |R| = 4, then $R = \mathbb{Z}_2 \times \mathbb{Z}_2$. Now, by Example 2.21, Γ_R^n has 68 edges. Hence, by Lemma 3.2, $\gamma(\Gamma_R^n) \ge 5$.

If |R| = 3, then $\Gamma_R^n = K_6 \cup K_2$. Hence $\gamma(\Gamma_R^n) = 1$.

If |R| = 2, then obviously $\gamma(\Gamma_R^n) = 0$.

Now by considering the above cases, the results hold. \Box

The following two results about the crosscap formulae of a complete graph and a complete bipartite graph are very useful in the proof of next theorem (see [3] or [11]).

Lemma 3.4. The following statements hold:

(a)
$$\overline{\gamma}(\mathbf{K}_n) = \begin{cases} \lceil \frac{1}{6}(n-3)(n-4) \rceil & \text{if } n \ge 3 \text{ and } n \ne 7, \\ 3 & \text{if } n = 7. \end{cases}$$

(b) $\overline{\gamma}(\mathbf{K}_{m,n}) = \lceil \frac{1}{2}(m-2)(n-2) \rceil.$

By slight modifications in the proof of Theorem 3.3 in conjunction with Lemma 3.4, one can prove the following theorem.

Theorem 3.5. The following statements hold:

- (a) $\overline{\gamma}(\Gamma_R^n) = 0$ if and only if $R = \mathbb{Z}_2$ and n = 2 or 3. (b) $\overline{\gamma}(\Gamma_R^n) = 1$ if and only if $R = \mathbb{Z}_3$ and n = 2. (c) $\overline{\gamma}(\Gamma_R^n) = 4$ if and only if $R = \mathbb{Z}_2$ and n = 4. (d) There is no ring R with $\overline{\gamma}(\Gamma_R^n) = 2$ or 3.

Acknowledgments

The authors are deeply grateful to the referee for careful reading of the manuscript and helpful suggestions.

References

- [1] M. Afkhami, K. Khashyarmanesh, The comaximal graph of a lattice, Bull. Malaysian Math. Soc., in press.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
- [3] A. Bouchet, Orientable and nonorientable genus of the complete bipartite graph, J. Combin. Theory Ser. B 24 (1978) 24–33.
- [4] B. Corbas, G.D. Williams, Rings of order p⁵. I. Nonlocal rings, J. Algebra 231 (2) (2000) 677–690.
- [5] I. Kaplansky, Commutative Rings, University of Chicago Press, Chicago, 1974.
- [6] A.V. Kelarev, Graph Algebras and Automata, Marcel Dekker, New York, 2003.
- [7] A.V. Kelarev, C.E. Praeger, On transitive Cayley graphs of groups and semigroups, European J. Combin. 24 (2003) 59-72.
- [8] A.V. Kelarev, J. Ryan, J. Yearwood, Cayley graphs as classifiers for data mining: the influence of asymmetries, Discrete Math. 309 (2009) 5360-5369.
- [9] H.R. Maimani, M. Salimi, A. Sattari, S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319 (2008) 1801-1808.
- [10] W. Massey, Algebric Topology: An Introduction, Harcourt, Brace & World, Inc., New York, 1967.
- [11] G. Ringel, Map Color Theorem, Springer-Verlag, New York/Heidelberg, 1974.
- [12] P.K. Sharma, S.M. Bhatwadekar, A note on graphical representation of rings, J. Algebra 176 (1995) 124-127.

- [13] H.J. Wang, Graphs associated to co-maximal ideals of commutative rings, J. Algebra 320 (2008) 2917–2933.
- [14] H.J. Wang, Co-maximal graph of non-commutative rings, Linear Algebra Appl. 430 (2009) 633–641.
- [15] A.T. White, The genus of the Cartesian product of two graphs, J. Combin. Theory Ser. B 11 (1971) 89–94.
- [16] A.T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam, 1973.
- [17] R.J. Wilson, Introduction to Graph Theory, Longman Scientific and Technical, New York, 1987.