[Linear Algebra and its Applications 437 \(2012\) 1040–1049](http://dx.doi.org/10.1016/j.laa.2012.03.017)

Generalized Cayley graphs associated to commutative rings Mojgan Afkhami ^a, Kazem Khashyarmanesh ^{b,}*, Khosro Nafar ^b

^a *Department of Mathematics, University of Neyshabur, P.O. Box 91136-899, Neyshabur, Iran* ^b *Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159-91775, Mashhad, Iran*

ARTICLE INFO ABSTRACT

Article history: Received 23 January 2012 Accepted 19 March 2012 Available online 25 April 2012

Submitted by Richard Brualdi

AMS classification: 05C10 13A99

Keywords: Cayley graph Genus Planar graph Toroidal graph

Let *R* be a commutative ring with identity element. For a natural number *n*, we associate a simple graph, denoted by Γ_R^n , with $R^n \setminus \{0\}$ as the vertex set and two distinct vertices *X* and *Y* in R^n being adiacent if and only if there exists an $n \times n$ lower triangular matrix *A* over *R* whose entries on the main diagonal are non-zero and such that $AX^T = Y^T$ or $AY^T = X^T$, where, for a matrix *B*, B^T is the matrix transpose of *B*. When we consider the ring *R* as a semigroup with respect to multiplication, then Γ_R^1 is the usual undirected Cayley graph (over a semigroup). Hence Γ_R^n is a generalization of Cayley graph. In this paper we study some basic properties of Γ_R^n . We also determine all isomorphic classes of finite commutative rings whose generalized Cayley graph has genus at most three.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The definition of *Cayley graph* was introduced by Arthur Cayley in 1878 to explain the concept of abstract groups which are described by a set of generators. In the last 50 years, the theory of Cayley graphs has been grown into a substantial branch in algebraic graph theory. Cayley graphs have found many useful applications in solving and understanding a variety of problems of scientific interest (see the survey [\[8](#page-8-0)] and the monograph [\[6](#page-8-1)]). For a semigroup *H* and a subset *S* of *H*, the Cayley graph Cay(*H*, *S*) of *H* relative to *S* is defined as the graph with vertex set *H* and edge set *E*(*H*, *S*) consisting of those ordered pairs (x, y) such that $sx = y$ for some $s \in S$ (cf. [\[7\]](#page-8-2)). In the undirected Cayley graph $\overline{Cay}(H, S)$ we assume that *x* is adjacent to *y* if and only if (x, y) or (y, x) is an element of $E(H, S)$, defined above.

Corresponding author.

0024-3795/\$ - see front matter © 2012 Elsevier Inc. All rights reserved. <http://dx.doi.org/10.1016/j.laa.2012.03.017>

E-mail addresses: mojgan.afkhami@yahoo.com (M. Afkhami), khashyar@ipm.ir (K. Khashyarmanesh), khosronafar@yahoo.com (K. Nafar).

Let *R* be a commutative ring with identity element. In [\[12](#page-8-3)], Sharma and Bhatwadekar defined the $\it{comaximal graph}$ on R , denoted by $\Gamma(R)$, with all elements of R being the vertices of $\Gamma(R)$, where two distinct vertices *a* and *b* are adjacent if and only if $aR + bR = R$. In [\[9](#page-8-4)[,13\]](#page-9-0), the authors considered a

subgraph $\Gamma_2(R)$ of $\Gamma(R)$ consisting of non-unit elements of *R*, and studied several properties of the comaximal graph. Also the comaximal graph of a non-commutative ring was defined and studied in [\[14\]](#page-9-1). Recently in [\[1\]](#page-8-5), the comaximal graph of a finite bounded lattice was introduced and studied. Note that the subgraph of the undirected Cayley graph $\overline{Cay}(R\setminus\{0\}, R\setminus\{0\})$ consisting of non-unit vertices is a subgraph of the complement of the comaximal graph $\Gamma_2(R)$. Moreover, the two subgraphs of the undirected Cayley graph $\overline{\text{Cay}}(R\backslash\{0\},R\backslash\{0\})$ and the comaximal graph $\Gamma(R)$ consisting of unit elements of *R*, are isomorphic.

In this paper, for a natural number *n* and a commutative ring *R* with identity element, we associate a simple graph, denoted by Γ_R^n , with $R^n\setminus\{0\}$ as the vertex set and two distinct vertices *X* and *Y* in R^n being adjacent if and only if there exists an *n*×*n* lower triangular matrix *A* over *R* whose entries on the main diagonal are non-zero such that $AX^T = Y^T$ or $AY^T = X^T$. (We use T to denote matrix transpose.) In the case that $n = 1$, the resulting graph is the undirected graph $\overline{Cay}(H, S)$, where $H = S = R\{0\}$. Therefore, we assume that $n > 1$, in the rest of the paper. In Section [2,](#page-1-0) we study some basic properties of Γ_R^n . In Section [3,](#page-7-0) we investigate the genus number of the generalized Cayley graph Γ_R^n .

Now, we recall some definitions of graph theory which are necessary in this paper. Let *G* be a graph. We say that *G* is a *connected* graph if there is a path between each pair of distinct vertices of *G*. For two vertices *x* and *y*, we define d(*x*, *y*) to be the length of the shortest path between *x* and *y* (we let $d(x, y) = \infty$ if there is no such path). The *diameter* of a graph *G* is diam(*G*) = sup{ $d(a, b)$: *a* and *b* are distinct vertices of *G*}. The *girth* of *G* is the length of the shortest cycle in *G*, denoted by gr(*G*) (we let $gr(G) = \infty$ if *G* has no cycles). The graph *G* is *complete* if each pair of distinct vertices is joined by an edge. We use *Kn* to denote the complete graph with *n* vertices. The *degree* of a vertex *a* is the number of the edges of the graph *G* incident with *a*. A *clique* of a graph is a complete subgraph of it and the number of vertices in a largest clique of *G* is called the *clique number* of *G* and is denoted by ω(*G*). For a positive integer *r*, an *r-partite graph* is one whose vertex set can be partitioned into *r* subsets, so that no edge has both ends in any one subset. A *complete r-partite graph* is one in which each vertex is joined to every vertex that is not in the same part. The complete bipartite graph (2-partite graph) with part sizes *m* and *n* is denoted by K_m _n. Let G_1 and G_2 be subgraphs of *G*. We say that G_1 and G_2 are *disjoint* if they have no vertex and no edge in common. The *union* of two disjoint graphs G_1 and G_2 , which is denoted b y G_1 ∪ G_2 , is a graph with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. The genus of a graph is the minimal integer *t* such that the graph can be drawn without crossing itself on a sphere with *t* handles (that is an oriented surface of genus *t*). Thus a *planar graph* has genus zero, because it can be drawn on a sphere without self-crossing. A genus one graph is called a *toroidal graph*. In other words, a graph *G* is toroidal if it can be embedded on the torus, this means that, the graph's vertices can be placed on a torus such that no edges cross. Usually, it is assumed that *G* is also non-planar. A *subdivision* of a graph is any graph that can be obtained from the original graph by replacing edges by paths. A remarkable simple characterization of the planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$ (cf. [\[2](#page-8-6), p. 153]).

2. Basic properties

In this section, we observe the connectivity, diameter and girth of the graph Γ_R^n , where *n* is a positive integer with $n > 1$. We also investigate the clique number of this graph. Recall that an element *x* is a *unit* in *R* if there exists an element *y* in *R* such that *xy* is the identity element. We denote the set of zero-divisors and unit elements of *R* by *Z*(*R*) and *U*(*R*), respectively. Also the Jacobson radical of *R*, the set $R\setminus\{0\}$ and the ideal generated by an element *a* in *R* are denoted by $J(R)$, R^* and *aR*, respectively.

We begin with the following lemma.

Lemma 2.1. *Let* $X = (x_1, x_2, \ldots, x_n)$ *be a vertex whose first component is a unit and* $Y = (y_1, y_2, \ldots, y_n)$ y_n) be a vertex whose first component is non-zero. Then X and Y are adjacent in Γ_R^n .

Proof. Consider the $n \times n$ lower triangular matrix *A* whose entries satisfy the following equations:

 $a_{11} = x_1^{-1}y_1$ $a_{ii} = 1$, for $i > 1$, $a_{i1} = x_1^{-1}(-x_i + y_i)$, for $i > 1$, $a_{ii} = 0$, for $i \neq j$ and $j > 1$.

Then all entries in the main diagonal of *A* are non-zero. It is easy to see that $AX^T = Y^T$, and so the result follows. \Box

The following corollaries follow from Lemma [2.1.](#page-1-1)

Corollary 2.2. *The induced subgraph of all vertices whose first components are units is a complete graph.*

Corollary 2.3. Suppose that $p = |U(R)| |R|^{n-1}$ and $q = |R^* \setminus U(R)| |R|^{n-1}$. Then the graph Γ_R^n contains h e bipartite graph $K_{p,q}.$ Moreover, Γ_R^n contains a copy of $K_{p-i,q+i}$ for i with $1\leqslant i\leqslant p-1.$

Proof. Let V_1 be the set of all vertices whose first components are units and let V_2 be the set of all vertices whose first components are non-unit elements of R^* . By Lemma [2.1,](#page-1-1) each vertex in V_1 is adjacent to each vertex in V_2 , and so the first statement holds. The last statement is clear by deleting some vertices in V₁ and adding them to V₂. \Box

In the rest of the paper, for *i* with $1 \leq i \leq n$, we use the notation C_i to denote the set of all vertices whose first non-zero components are in the *i*th place. Also *Ei* is a vertex whose *i*th component is 1 and the other components are zero.

By using a method similar to the one we used in the proof of Lemma 2.1, one can obtain the following Lemma.

Lemma 2.4. *Assume that* $X \in C_i$ *such that its ith component is unit. Then* X *is adjacent to* Y for all $Y \in C_i$.

Recall that a graph on $n \geq 1$ vertices such that $n-1$ of the vertices have degree one, all of which are adjacent only to the remaining vertex *a*, is called a *star graph* with center *a*. Also, a *refinement* of a graph *H* is a graph *G* such that the vertex sets of *G* and *H* are the same and every edge in *H* is an edge in *G*.

In the following theorem, we study the connectivity of Γ_R^n , where *R* is an integral domain.

Theorem 2.5. If R is an integral domain, then Γ_R^n is disconnected. Moreover, Γ_R^n has n components and *every component is a refinement of a star graph.*

Proof. Suppose that X_i is an arbitrary element in C_i . It is not hard to see that if $i \neq j$, then X_i and X_i are not adjacent, where $X_i \in C_i$. In addition, there is no path between them. Since X_i can be considered as the *i*th column of some lower triangular matrix *A* with non-zero entries on the main diagonal, *Ei* is adjacent to X_i , for each *i*. By Lemma [2.4,](#page-2-0) it is clear that every C_i is a component of Γ_R^n . Also each C_i is a refinement of a star graph with center $E_i.$ $\;\;\Box$

The next corollary follows from Lemma [2.4](#page-2-0) and Theorem [2.5.](#page-2-1)

 $\mathop{\mathrm{Corollary}}$ 2.6. Let $\mathbb F$ be a field. Then $\Gamma^n_{\mathbb F}$ is a union of n complete graphs.

Lemma 2.7. Suppose that R is not an integral domain and $X = (x_1, x_2, \ldots, x_n)$, $Y = (y_1, y_2, \ldots, y_n) \notin$ C_1 . Then there is a vertex in C_1 which is adjacent to both X and Y.

Proof. Let *x* and *z* be non-zero elements in *R* such that $xz = 0$. Let $Z = (z, 1, \ldots, 1)$ and consider the lower triangular matrix *A* whose entries satisfy the following equations:

 $a_{11} = x$. For *i*≥2 and $x_i \neq 0$ we put $a_{i1} = 0, ..., a_{i(i-1)} = 0, a_{ii} = x_i$. For *i* \geq 2 and $x_i = 0$ we put $a_{i1} = -1$, $a_{i2} = 0$, ..., $a_{i(i-1)} = 0$, $a_{ii} = z$.

So we have that $AZ^T = X^T$.

Similarly there exists a lower triangular matrix *B* such that all entries on the main diagonal are non-zero and $BZ^T = Y^T$. \Box

In the next theorem, we investigate the connectivity of Γ_R^n , where R is not an integral domain.

Theorem 2.8. If R is not an integral domain, then the graph Γ_R^n is connected and diam $(\Gamma_R^n) \in \{2, 3\}$.

Proof. Let $X = (x_1, x_2, \ldots, x_n)$ and $Y = (y_1, y_2, \ldots, y_n)$ be arbitrary non-adjacent vertices. We have the following cases:

- (a) If x_1 is unit and $y_1 \neq 0$, then, by Lemma [2.1,](#page-1-1) $d(X, Y) = 1$.
- (b) If $x_1 = y_1 = 0$, then, by Lemma [2.7,](#page-2-2) $d(X, Y) \le 2$.
- (c) If $x_1 = 0$ and y_1 is unit, then, by Lemma [2.7,](#page-2-2) there exists a vertex *T* in C_1 which is adjacent to *X*. Now, by Lemma [2.1,](#page-1-1) *T* is adjacent to *Y*. So $d(X, Y) \le 2$.
- (d) If $x_1 = 0$ and y_1 is non-zero and non-unit, then again, by Lemma [2.7,](#page-2-2) there exists a vertex *T* in *C*₁ which is adjacent to *X*. Hence we have the path $X - T - E_1 - Y$. Therefore $d(X, Y) \leq 3$.
- (e) If *x*¹ and *y*¹ are non-zero and non-unit elements, then, by Lemma [2.1,](#page-1-1) we have the path *X*−*E*1−*Y*. So $d(X, Y) \leq 2$.

Hence, by considering the above situations, we have that $\text{diam}(\Gamma_R^n) \leqslant 3$. On the other hand, if $x_1 = 0$ and y_1 is unit, then *X* and *Y* are not adjacent. So the graph $\Gamma_R^{\hat{n}}$ is never complete. Hence the result holds. \Box

Remark 2.9. Let $X = (x_1, x_2, \ldots, x_n)$ be a vertex with $x_1 \neq 0$. Then *X* is adjacent to $Z = (x_1, 1, 1)$..., 1). To prove this, it is sufficient to consider the lower triangular matrix *A* whose entries satisfy the following equations:

 $a_{11} = 1.$ For *i* ≥ 2 and x_i ≠ 0 put $a_{i1} = 0, ..., a_{i(i-1)} = 0, a_{ii} = x_i$. For *i* \geq 2 and $x_i = 0$ put $a_{i1} = -1$, $a_{i2} = 0$, ..., $a_{i(i-1)} = 0$, $a_{ii} = x_1$.

So we have $AZ^T = X^T$.

In the following theorem we determine the rings *R* for which, the diameter of Γ_R^n is exactly 2 or 3.

Theorem 2.10. *Assume that R is not an integral domain. If R* = $Z(R) \cup U(R)$ *, then* diam(Γ_R^n) = 2*. Otherwise,* diam $(\Gamma_R^n) = 3$ *.*

Proof. Let $X = (x_1, x_2, \ldots, x_n)$ and $Y = (y_1, y_2, \ldots, y_n)$ be two non-adjacent vertices. By the proof of Theorem [2.8,](#page-3-0) $d(X, Y) \leq 2$ unless we have that $x_1 = 0$ and that y_1 is non-zero and non-unit. In this situation, we have $d(X, Y) \leq 3$. Now if $R = Z(R) \cup U(R)$, then y_1 is a zero-divisor. So, by the proof of Lemma [2.7,](#page-2-2) $Z = (y_1, 1, \ldots, 1)$ is adjacent to *X*. Now, by Remark [2.9,](#page-3-1) *Y* and *Z* are adjacent. Hence $d(X, Y) = 2$. Thus whenever $R = Z(R) \cup U(R)$, we have that diam(Γ_R^n) = 2.

Now, suppose that $R \neq Z(R) \cup U(R)$ and that y_1 is not a zero-divisor in R. We let $x_2 = 1$ and $y_2 = y_1$. Then we claim that $d(X, Y) = 3$. Assume to the contrary that $d(X, Y) = 2$. Then there exists a vertex *Z* which is adjacent to both *X* and *Y*. So there are *n* × *n* lower triangular matrices *A* and *B* over *R* with entries on the main diagonal are non-zero, and we have the following situations.

- (i) $AX^T = Z^T$ and $BZ^T = Y^T$. So $a_{11}0 = z_1$ and $b_{11}z_1 = y_1$. Consequently $y_1 = 0$, which is impossible.
- (ii) $AX^{T} = Z^{T}$ and $BY^{T} = Z^{T}$. So $a_{11}0 = z_1$ and $b_{11}y_1 = z_1$. Consequently $b_{11}y_1 = 0$, which is impossible.
- (iii) $AZ^T = X^T$ and $BZ^T = Y^T$. So $a_{11}z_1 = 0$ and $b_{11}z_1 = y_1$. Consequently $a_{11}y_1 = 0$, which is impossible.
- (iv) $AZ^T = X^T$ and $BY^T = Z^T$. So $a_{21}z_1 + a_{22}z_2 = x_2$ and $b_{21}y_1 + b_{22}y_2 = z_2$.

Thus $a_{21}b_{11}y_1 + a_{22}(b_{21}y_1 + b_{22}y_2) = x_2$. Since y_1 is non-unit, we have that $y_1 \in \mathfrak{m}$, for some maximal ideal m. Now, since $x_2 = 1$ and $y_2 = y_1$, we have that 1 ∈ m, which is impossible.

Therefore we have $d(X, Y) = 3$. Thus, by Theorem [2.8,](#page-3-0) we have that $diam(\Gamma_R^n) = 3$, whenever $R ≠ Z(R) \cup U(R)$. \Box

We recall that the dimension of R , denoted by $\dim(R)$, is the supremum of the length of all chains of prime ideals in *R*.

Corollary 2.11. *If R is a ring with* dim(*R*) = 0 *(in particular an Artinian ring), which is not an integral domain, then* diam $(\Gamma_R^n) = 2$ *.*

Proof. By [\[5,](#page-8-7) Theorem 91], we have $R = Z(R) ∪ U(R)$, and so the result follows from Theorem [2.10.](#page-3-2) $□$

Example 2.12. Let $\mathbb R$ and $\mathbb C$ be the sets of all real and complex numbers, respectively. It is easy to see that $\Gamma_{\mathbb{R}}^n \cong \Gamma_{\mathbb{C}}^n$.

In the following proposition, we study the rings whose generalized Cayley graphs are isomorphic.

Proposition 2.13. Let R and R' be two rings. Then the following statements hold:

- $f(a)$ *If* $\Gamma_R^n \cong \Gamma_{R'}^n$ and R is an integral domain, then R' is also an integral domain.
- $\hat{f}(b)$ *If* Γ_R^n $\cong \Gamma_{R'}^n$ and R is a field, then R' is also a field.

Proof. (a) Assume to the contrary that R' is not an integral domain. So, by Theorem [2.8,](#page-3-0) $\Gamma_{R'}^n$ is connected. On the other hand, by Theorem [2.5,](#page-2-1) Γ_R^n is disconnected, which is a contradiction.

(b) If *R* is a field, then, by Part (a), *R* is an integral domain. By Corollary [2.6,](#page-2-3) every connected component of Γ_R^n is complete. Thus every connected component of $\Gamma_{R'}^n$ is complete. Now, suppose to the contrary that *^R* is not a field and that ^m is a non-zero maximal ideal in *^R* . Also assume that *m* is a non-zero element in m . Since the vertices $X = (m^2, 1, 1, \ldots, 1)$ and $Y = (m, m, 1, \ldots, 1)$ are adjacent in $\Gamma_{R'}^n$, there exists a lower triangular matrix *A* over *R'* whose entries on the main diagonal are non-zero, and so $AX^T = Y^T$ or $AY^T = X^T$. If $AX^T = Y^T$, then $a_{11}m = 1$ which is impossible. Also, if $AY^T = X^T$, then $(a_{21} + a_{22})m = 1$ which is again impossible. Hence the vertices *X* and *Y* are not adjacent which is the required contradiction. $\;\;\Box$

The next corollary follows immediately from Proposition [2.13](#page-4-0) in conjunction with Moore's Theorem which says that every two finite fields of the same cardinality are isomorphic.

Corollary 2.14. If R is a commutative ring such that $\Gamma_R^n \cong \Gamma_{R'}^n$, for some finite field R', then $R \cong R'$.

In the following example, we show that Proposition [2.13](#page-4-0) does not hold for $n = 1$.

Example 2.15. Let *F* be a field. It is well known that $R = F[[x]]$ is a local ring with unique maximal ideal *xR*. Also one can easily see that every non-zero element in *R* is of the form *xku*, where *u* is a unit in *R* and $k \ge 0$. So, for every non-zero elements *a* and *b* in *R*, we have $a \in bR$ or $b \in aR$. Thus $\overline{Cay}(R^*, R^*)$ is a complete graph. Now, let $\mathbb R$ and $\mathbb Q$ be the sets of all real and rational numbers, respectively and

 $S = \mathbb{Q}[[x]]$. It is easy to see that $\overline{Cay}(\mathbb{R}^*, \mathbb{R}^*) \cong \overline{Cay}(S^*, S^*)$. Hence Proposition [2.13](#page-4-0) does not hold in the case that $n = 1$.

Lemma 2.16. *Let R be a ring such that, for every non-zero elements a and b in R,* $a \in bR$ *or* $b \in aR$ *. Then R is a local ring.*

Proof. Consider the element *x* in *R* with $x \neq 0, 1, -1$. So $x + 1 \neq 0$. Therefore, by our hypothesis, $x \in (x + 1)R$ or $x + 1 \in xR$. If $x \in (x + 1)R$, then, by considering $t = x + 1$, we have that $t - 1 \in tR$. So there exists an element *k'* in *R* such that $t - 1 = k't$. Thus $t = x + 1$ is unit. Also, if $x + 1 \in xR$, then again one can easily see that *x* is unit. Therefore, for every element *x* in *R*, *x* is unit or $x + 1$ is unit. Suppose that *z* is a non-unit element in *R*. Therefore *az* is not unit, for every $a \in R$, and consequently 1 + az is unit. So $z \in J(R)$. Hence, the union of all maximal ideals is $J(R)$ which implies that R is local. $□$

The next result follows from Lemma [2.16.](#page-5-0)

Corollary 2.17. Let R be a field and R' be a ring. If $\overline{Cay}(R^*, R^*) \cong \overline{Cay}(R^*, R^*)$, then R' is local.

In the next result we study the girth of Γ_R^n .

Proposition 2.18. $\text{gr}(\Gamma_R^n) = 3$ if and only if $n \geq 3$ or $R \neq \mathbb{Z}_2$.

Proof. If $n \ge 3$, then, by Lemma [2.1,](#page-1-1) the vertices $(1, 1, 1, 0, \ldots, 0)$, $(1, 1, 0, \ldots, 0)$ and $(1, 0, \ldots, 0)$ form a triangle. If $n = 2$ and $R \neq \mathbb{Z}_2$, then the vertices $(1, 0)$, $(1, 1)$ and $(1, a)$ form a triangle, where *a* \neq 0, 1. Otherwise, we have that *n* = 2 and *R* = \mathbb{Z}_2 . In this situation $\Gamma_R^n \cong K_2 \cup K_1$, and so its girth is infinity.

The converse statement is clear. \Box

In the following proposition we investigate the clique number of Γ_R^n .

Proposition 2.19. *We have the following statements.*

- *(a)* If R is a field, then $\omega(\Gamma_R^n) = |U(R)| |R|^{n-1}$.
- *(b)* If R is not a field, then $\omega(\Gamma_R^n) \geqslant |U(R)| |R|^{n-1} + 1$.

Proof. (a) If *R* is a field, then, every non-zero element of *R* is unit, and so, by Lemmas [2.1](#page-1-1) and [2.4,](#page-2-0) our claim holds.

(b) If *R* is not a field, then one can choose a non-zero and non-unit element *z* in *R*. Let $X =$ $(z, 1, 1, \ldots, 1)$. Let $\mathcal C$ be the set of all vertices whose first component is unit. Now, by Lemma [2.1,](#page-1-1) it is easy to see that the set $C \cup \{X\}$ forms a clique, and so the result follows. $□$

Example 2.20. If $R = \mathbb{Z}_2$, then clearly, by Proposition [2.19\(](#page-5-1)a), $\omega(\Gamma_R^n) = 2^{n-1}$.

Example 2.21. If $R = \mathbb{Z}_2 \times \mathbb{Z}_2$, then $\omega(\Gamma_R^2) = 8$ and Γ_R^2 has 68 edges.

Proof. Put

$$
X_1 = ((1, 1), (1, 0)), \quad X_2 = ((1, 1), (0, 1)), \quad X_3 = ((1, 1), (0, 0)), \quad X_4 = ((1, 1), (1, 1)),
$$

$$
X_5 = ((0, 1), (1, 0)), \quad X_6 = ((0, 1), (0, 1)), \quad X_7 = ((0, 1), (0, 0)), \quad X_8 = ((0, 1), (1, 1)).
$$

By Lemma [2.1,](#page-1-1) the vertices *X*1, *X*2, *X*³ and *X*⁴ form the graph *K*4. Also, by Lemma [2.1,](#page-1-1) these four vertices are adjacent to all vertices X_i , for $5 \leq i \leq 8$. The following equations show that the vertices X_5, X_6, X_7 , *X*⁸ form the graph *K*⁴ too. Put

1046 *M. Afkhami et al. / Linear Algebra and its Applications 437 (2012) 1040–1049*

$$
A =: \begin{pmatrix} (1, 1) & (0, 0) \\ (1, 1) & (1, 1) \end{pmatrix}, \quad B =: \begin{pmatrix} (1, 1) & (0, 0) \\ (1, 0) & (0, 1) \end{pmatrix}, \quad C =: \begin{pmatrix} (1, 1) & (0, 0) \\ (1, 1) & (0, 1) \end{pmatrix}.
$$

Now, we have the following equalities.

$$
AX_6^T = X_7^T, AX_5^T = X_8^T, BX_5^T = X_7^T, BX_8^T = X_6^T, CX_5^T = X_6^T, CX_8^T = X_7^T.
$$

It is not hard to see that there is no vertex which is adjacent to all vertices X_1, \ldots, X_8 . Also one can easily check that the cardinality of all cliques is not greater than eight. Thus $\omega(\Gamma_R^2) = 8$.

Now we calculate the number of edges in Γ_R^2 . Put

$$
X_9 = ((1, 0), (1, 0)), X_{10} = ((1, 0), (0, 1)), X_{11} = ((1, 0), (0, 0)), X_{12} = ((1, 0), (1, 1)),
$$

$$
X_{13} = ((0,0), (1,0)), X_{14} = ((0,0), (0,1)), X_{15} = ((0,0), (1,1)).
$$

By a similar argument as in the first paragraph of this proof, the vertices X_9, X_{10}, X_{11} and X_{12} form the graph K_4 . By Lemma [2.1,](#page-1-1) the vertices X_1 , X_2 , X_3 and X_4 are adjacent to each of the vertices X_9 , X_{10} , X_{11} and X_{12} . One can also easily see that X_{13} is adjacent to X_5 , X_8 , X_9 , X_{10} , X_{11} and X_{12} . Similarly, X_{14} is adjacent to *X*5, *X*6, *X*7, *X*8, *X*¹⁰ and *X*12. Also *X*¹⁵ is adjacent to *X*5, *X*8, *X*10, *X*12, *X*¹³ and *X*14.

Therefore Γ_R^2 has 68 edges. \Box

Recall that a *Hamilton cycle* in a graph *G* is a cycle that contains every vertex of *G*. Moreover *G* is called *Hamiltonian* if it contains a Hamilton cycle.

We end this section with the following theorem which study the Hamiltonian generalized Cayley graphs.

Theorem 2.22. Assume that R is a finite ring such that Γ_R^n is connected for some $n \geq 1$. Then Γ_R^n is *Hamiltonian, whenever* $|Z^*(R)| \leq |U(R)|$ *.*

Proof. Since Γ_R^n is connected, we have that *R* is not an integral domain and therefore $|Z^*(R)| \geq 1$. Suppose that $Z^*(R) = \{z_1, z_2, \ldots, z_p\}$ and $U(R) = \{u_1, u_2, \ldots, u_q\}$, where $p \leqslant q$. First we consider the case that *n* = 1. Then we have the following Hamilton cycle in the graph $\overline{Cay}(R^*, R^*)$.

$$
u_1 - z_1 - u_2 - z_2 - \cdots - u_p - z_p - u_{p_{i+1}} - \cdots - u_q - u_1.
$$

Now, suppose that $n \ge 2$. For each $1 \le i \le n$, let $p_i = p|R|^{n-i}$ and $q_i = q|R|^{n-i}$. Let $\mathcal{Z}_i = \{Z_j^i \mid j \in I\}$ $1 \leq j \leq p_i$ be the subset of C_i such that the *i*th components of its elements are non-zero zero divisors and $\mathcal{U}_i = \{U_j^i \mid 1 \leqslant j \leqslant q_i\}$ be the subset of \mathcal{C}_i such that the *i*th components of its elements are units. Obviously, for each $1 \leq i \leq n$, we have the path P_i in C_i ,

$$
\mathcal{P}_i: U_1^i - Z_1^i - U_2^i - Z_2^i - \cdots - U_{p_i}^i - Z_{p_i}^i - U_{p_{i+1}}^i - \cdots - U_{q_i}^i,
$$

where $Z_1^i = (x_1, x_2, \ldots, x_n)$ and $Z_2^i = (y_1, y_2, \ldots, y_n)$ such that $x_i = z_1, x_{i+1} = \cdots = x_n = u_1$ and $y_i = z_1, y_{i+1} = \cdots = y_n = u_2.$

Now, we construct a Hamiltonian cycle in Γ_R^n . First we consider the paths $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n$ and delete the edges $Z_1^i - U_2^i$ and $Z_2^i - U_2^i$, for $i = 1, \ldots, n-1$. Now, by considering the following edges, one can easily see that Γ_R^n contains a Hamilton cycle.

$$
Z_1^1 - U_1^2, Z_1^2 - U_1^3, \dots, Z_1^{n-1} - U_1^n,
$$

\n
$$
U_2^1 - U_{q_1}^1, U_2^2 - U_{q_2}^2, \dots, U_2^{n-1} - U_{q_{n-1}}^{n-1},
$$

\n
$$
Z_2^1 - U_2^2, Z_2^2 - U_2^3, \dots, Z_2^{n-2} - U_2^{n-1},
$$

\n
$$
U_1^1 - U_2^1, Z_2^{n-1} - U_{q_n}^n.
$$

Corollary 2.23. Suppose that Γ_R^n is connected, for some $n \geq 1$, and that R is finite. If $Z(R)$ is an ideal of R, t hen Γ_R^n *is Hamiltonian. In particular, if R is local, then* Γ_R^n *is Hamiltonian.*

3. On the genus and crosscap numbers of Γ_R^n

It is well known that any compact surface is either homeomorphic to a sphere, or to a connected sum of *g* tori, or to a connected sum of *k* projective planes (see [\[10](#page-8-8), Theorem 5.1]). We denote by *Sg* the surface formed by a connected sum of *g* tori, and by N_k the one formed by a connected sum of \vec{k} projective planes. The number *g* is called the genus of the surface *Sg* and *k* is called the crosscap of *Nk*. When considering the orientability, the surfaces S_g and sphere are among the orientable class and the surfaces N_k are among the non-orientable one.

A simple graph which can be embedded in *Sg* but not in *Sg*−¹ is called a graph of *genus g*. Similarly, if it can be embedded in *N_k* but not in *N_{k−1}*, then we call it a graph of *crosscap k*. The notations $\gamma(G)$ and $\overline{\gamma}(G)$ are denoted for the genus and crosscap of a graph *G*, respectively. It is easy to see that $\gamma(H) \leq \gamma(G)$ and $\overline{\gamma}(H) \leq \overline{\gamma}(G)$, for all subgraph *H* of *G*. Also a graph *G* is called planar if $\gamma(G) = 0$, and it is called toroidal if $\gamma(G) = 1$.

Recall that, for a rational number q , $\lceil q \rceil$ is the first integer number greater or equal than q . In the following lemma we bring some well-known formulas for genus of a graph (see [\[16](#page-9-2)[,15](#page-9-3)]).

Lemma 3.1. *The following statements hold:*

(a) For $n \ge 3$, we have $\gamma(K_n) = \lceil \frac{1}{12}(n-3)(n-4) \rceil$.

(b) For *m*, $n \ge 2$, we have γ (K_{*m*,*n*}) = $\lceil \frac{1}{4}(m-2)(n-2) \rceil$.

According to Lemma [3.1,](#page-7-1) we have $\gamma(K_n) = 0$, for $1 \leq n \leq 4$, and $\gamma(K_n) = 1$, for $5 \leq n \leq 7$, and, for other values of *n*, $\gamma(K_n) \geq 2$.

The following lemma, which is from [\[17\]](#page-9-4), is needed in the rest of the paper.

Lemma 3.2. Let G be a simple graph with n vertices ($n \geqslant 4$) and m edges. Then $\gamma(G) \geqslant \lceil \frac{1}{6}(m-3n)+1 \rceil$.

In the following theorem we determine all isomorphic classes of finite commutative rings *R* whose Γ_R^n has genus at most three.

Theorem 3.3. *The following statements hold:*

- *(a)* $\gamma(\Gamma_R^n) = 0$ *if and only if* $R = \mathbb{Z}_2$ *and n* = 2 *or* 3*.*
- *(b)* $\gamma(\Gamma_R^n) = 1$ *if and only if* $R = \mathbb{Z}_3$ *and n* = 2*.*
- *(c)* $\gamma(\Gamma_R^n) = 2$ *if and only if* $R = \mathbb{Z}_2$ *and n* = 4*.*
- *(d)* There is no ring R with $\gamma(\Gamma_R^n) = 3$.

Proof. We consider the following cases:

 $\mathsf{Case}\ 1\mathbf{.} n\geqslant 4\mathbf{.}$ If $R\neq\mathbb{Z}_2$, then, by Proposition [2.19,](#page-5-1) $\omega(\Gamma_R^n)\geqslant 28$, and so, by Lemma [3.1,](#page-7-1) $\gamma(\Gamma_R^n)\geqslant 50\mathbf{.}$ If $R=\mathbb{Z}_2$, then $\omega(\Gamma_R^4)=8$ and $\omega(\Gamma_R^5)=16$. Hence, by Lemma [3.1,](#page-7-1) $\gamma(\Gamma_R^4)=2$ and $\gamma(\Gamma_R^5)=13$.

Case 2. n=3. If $|R| \ge 3$, then, by Proposition [2.19,](#page-5-1) $\omega(\Gamma_R^n) \ge 10$, and so, by Lemma [3.1,](#page-7-1) $\gamma(\Gamma_R^n) \ge 4$. If $|R| = 2$, then $\omega(\Gamma_R^n) = 4$. Since $\Gamma_R^n = K_4 \cup K_2 \cup K_1$, we have that $\gamma(\Gamma_R^4) = 0$.

Case 3. n=2. If $|R| \ge 9$, then, by Proposition [2.19,](#page-5-1) $\omega(\Gamma_R^n) \ge 10$, and so, by Lemma [3.1,](#page-7-1) $\gamma(\Gamma_R^n) \ge 4$. If $|R| = 8$, then, by [\[4,](#page-8-9) p. 687], *R* is one of the following rings.

$$
R_1 = \mathbf{F}_8, \quad R_2 = \frac{\mathbb{Z}_2[x, y]}{\langle x, y \rangle^2}, \quad R_3 = \frac{\mathbb{Z}_2[x]}{\langle x^3 \rangle}, \quad R_4 = \frac{\mathbb{Z}_4[x]}{\langle 2x, x^2 \rangle}, \quad R_5 = \frac{\mathbb{Z}_4[x]}{\langle 2x, x^2 - 2 \rangle},
$$

$$
R_6 = \mathbb{Z}_2 \times \mathbb{Z}_4, \quad R_7 = \mathbb{Z}_2 \times \frac{\mathbb{Z}_2[x]}{\langle x^2 \rangle}, \quad R_8 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2.
$$

For R_1 , by Proposition [2.19,](#page-5-1) we have $\omega(\Gamma_{R_1}^n) \geqslant 56$, and so, by Lemma [3.1,](#page-7-1) $\gamma(\Gamma_R^n) \geqslant 230$. For other rings of order 8 we have $|R^*\setminus U(R)|\geqslant 2$. Thus, by Corollary [2.3,](#page-2-4) Γ_R^n contains a K_{8,16}. Hence, by Lemma [3.1,](#page-7-1) $\gamma(\Gamma_R^n) \geqslant 21$.

If $|R| = 7$, then *R* is a field, and so, by Proposition [2.19,](#page-5-1) $\omega(\Gamma_R^n) = 42$. Hence, by Lemma [3.1,](#page-7-1) $\gamma(\Gamma_R^n) \geqslant 124.$

If $|R| = 6$, then *R* is a field or $R = \mathbb{Z}_6$. If *R* is a field, then, by Proposition [2.19,](#page-5-1) $\omega(\Gamma_R^n) \geq 30$, and so, by Lemma [3.1,](#page-7-1) $\gamma(\Gamma_R^n) \geq 59$. If $R = \mathbb{Z}_6$, then, by Proposition [2.19,](#page-5-1) $\omega(\Gamma_R^n) \geq 13$, and so, by Lemma 3.1, $\gamma(\Gamma_R^n) \geqslant 8.$

 $\hat{F}[R]=5$, then *R* is a field. So, by Proposition [2.19,](#page-5-1) $\omega(\Gamma_R^n)\geqslant20$. Thus, by Lemma [3.1,](#page-7-1) $\gamma(\Gamma_R^n)\geqslant23$. If R is local with $|R|=4$, then, by [\[4](#page-8-9), p. 687], R is a field or R is one of the rings \mathbb{Z}_4 or $\frac{\mathbb{Z}_2[X]}{\langle x^2\rangle}$. If $R=\mathbb{Z}_4$

or $\frac{\mathbb{Z}_2[x]}{\langle x^2 \rangle}$, then $|U(R)| = 2$. So, by Corollary [2.3,](#page-2-4) Γ_R^n contains a K_{6,6}. Thus, by Lemma [3.1,](#page-7-1) $\gamma(\Gamma_R^n) \geqslant 4$. If *R* is a field and $|R| = 4$, then, by Proposition [2.19,](#page-5-1) we have $\omega(\Gamma_R^n) = 12$, and so, by Lemma [3.1,](#page-7-1) $\gamma(\Gamma_R^n) \geq 6$. If *R* is not local and $|R| = 4$, then $R = \mathbb{Z}_2 \times \mathbb{Z}_2$. Now, by Example [2.21,](#page-5-2) Γ_R^n has 68 edges. Hence, by Lemma [3.2,](#page-7-2) $\gamma(\Gamma_R^n) \geq 5$.

If $|R| = 3$, then $\Gamma_R^n = K_6 \cup K_2$. Hence $\gamma(\Gamma_R^n) = 1$. If $|R| = 2$, then obviously $\gamma(\Gamma_R^n) = 0$.

Now by considering the above cases, the results hold. \Box

The following two results about the crosscap formulae of a complete graph and a complete bipartite graph are very useful in the proof of next theorem (see [\[3\]](#page-8-10) or [\[11\]](#page-8-11)).

Lemma 3.4. *The following statements hold:*

(a)
$$
\overline{\gamma}(K_n) = \begin{cases} \lceil \frac{1}{6}(n-3)(n-4) \rceil & \text{if } n \ge 3 \text{ and } n \ne 7, \\ 3 & \text{if } n = 7. \end{cases}
$$

(b) $\overline{\gamma}(K_{m,n}) = \lceil \frac{1}{2}(m-2)(n-2) \rceil$.

By slight modifications in the proof of Theorem [3.3](#page-7-3) in conjunction with Lemma [3.4,](#page-8-12) one can prove the following theorem.

Theorem 3.5. *The following statements hold:*

(a) $\overline{\gamma}(\Gamma_R^n) = 0$ *if and only if* $R = \mathbb{Z}_2$ *and n* = 2 *or* 3*.*

(b) $\overline{\gamma}(\Gamma_R^{\hat{n}}) = 1$ *if and only if* $R = \mathbb{Z}_3$ *and n* = 2*.*

- *(c)* $\overline{\gamma}(\Gamma_R^n) = 4$ *if and only if* $R = \mathbb{Z}_2$ *and n* = 4*.*
- *(d)* There is no ring R with $\overline{\gamma}(\Gamma_R^n) = 2$ or 3.

Acknowledgments

The authors are deeply grateful to the referee for careful reading of the manuscript and helpful suggestions.

References

- [1] M. Afkhami, K. Khashyarmanesh, The comaximal graph of a lattice, Bull. Malaysian Math. Soc., in press.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
- [3] A. Bouchet, Orientable and nonorientable genus of the complete bipartite graph, J. Combin. Theory Ser. B 24 (1978) 24–33.
- [4] B. Corbas, G.D. Williams, Rings of order *p*5. I. Nonlocal rings, J. Algebra 231 (2) (2000) 677–690.
- [5] I. Kaplansky, Commutative Rings, University of Chicago Press, Chicago, 1974.
-
- [6] A.V. Kelarev, Graph Algebras and Automata, Marcel Dekker, New York, 2003. [7] A.V. Kelarev, C.E. Praeger, On transitive Cayley graphs of groups and semigroups, European J. Combin. 24 (2003) 59–72.
- [8] A.V. Kelarev, J. Ryan, J. Yearwood, Cayley graphs as classifiers for data mining: the influence of asymmetries, Discrete Math. 309 (2009) 5360–5369.
- [9] H.R. Maimani, M. Salimi, A. Sattari, S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319 (2008) 1801–1808.
- [10] W. Massey, Algebric Topology: An Introduction, Harcourt, Brace & World, Inc., New York, 1967.
- [11] G. Ringel, Map Color Theorem, Springer-Verlag, New York/Heidelberg, 1974.
- [12] P.K. Sharma, S.M. Bhatwadekar, A note on graphical representation of rings, J. Algebra 176 (1995) 124–127.

- [13] H.J. Wang, Graphs associated to co-maximal ideals of commutative rings, J. Algebra 320 (2008) 2917–2933.
-
- [14] H.J. Wang, Co-maximal graph of non-commutative rings, Linear Algebra Appl. 430 (2009) 633–641. [15] A.T. White, The genus of the Cartesian product of two graphs, J. Combin. Theory Ser. B 11 (1971) 89–94.
- [16] A.T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam, 1973.
- [17] R.J. Wilson, Introduction to Graph Theory, Longman Scientific and Technical, New York, 1987.