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Let R be a commutative ring with identity element. For a natural

number n, we associate a simple graph, denoted by �n
R , with Rn\{0}

as the vertex set and two distinct vertices X and Y in Rn being

adjacent if and only if there exists an n × n lower triangular ma-

trix A over R whose entries on the main diagonal are non-zero and

such that AXT = YTor AYT = XT , where, for a matrix B, BT is

the matrix transpose of B. When we consider the ring R as a semi-

groupwith respect tomultiplication, then�1
R is the usual undirected

Cayley graph (over a semigroup).Hence�n
R is a generalizationof Cay-

ley graph. In this paper we study some basic properties of �n
R . We

also determine all isomorphic classes of finite commutative rings

whose generalized Cayley graph has genus at most three.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The definition of Cayley graph was introduced by Arthur Cayley in 1878 to explain the concept of

abstract groups which are described by a set of generators. In the last 50 years, the theory of Cayley

graphs has been grown into a substantial branch in algebraic graph theory. Cayley graphs have found

many useful applications in solving and understanding a variety of problems of scientific interest

(see the survey [8] and the monograph [6]). For a semigroup H and a subset S of H, the Cayley graph

Cay(H, S) of H relative to S is defined as the graph with vertex set H and edge set E(H, S) consisting

of those ordered pairs (x, y) such that sx = y for some s ∈ S (cf. [7]). In the undirected Cayley graph

Cay(H, S)weassume that x is adjacent to y if and only if (x, y) or (y, x) is an element of E(H, S), defined
above.
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Let R be a commutative ring with identity element. In [12], Sharma and Bhatwadekar defined the

comaximal graph on R, denoted by �(R), with all elements of R being the vertices of �(R), where two

distinct vertices a and b are adjacent if and only if aR + bR = R. In [9,13], the authors considered a

subgraph �2(R) of �(R) consisting of non-unit elements of R, and studied several properties of the

comaximal graph. Also the comaximal graph of a non-commutative ring was defined and studied in

[14]. Recently in [1], the comaximal graph of a finite bounded lattice was introduced and studied. Note

that the subgraph of the undirected Cayley graph Cay(R\{0}, R\{0}) consisting of non-unit vertices

is a subgraph of the complement of the comaximal graph �2(R). Moreover, the two subgraphs of the

undirected Cayley graph Cay(R\{0}, R\{0}) and the comaximal graph�(R) consisting of unit elements

of R, are isomorphic.

In this paper, for a natural number n and a commutative ring Rwith identity element, we associate

a simple graph, denoted by �n
R , with Rn\{0} as the vertex set and two distinct vertices X and Y in Rn

being adjacent if and only if there exists an n×n lower triangularmatrix A over Rwhose entries on the

main diagonal are non-zero such that AXT = YTor AYT = XT . (We use T to denote matrix transpose.)

In the case that n = 1, the resulting graph is the undirected graph Cay(H, S), where H = S = R\{0}.
Therefore, we assume that n > 1, in the rest of the paper. In Section 2, we study some basic properties

of �n
R . In Section 3, we investigate the genus number of the generalized Cayley graph �n

R .

Now, we recall some definitions of graph theorywhich are necessary in this paper. Let G be a graph.

We say that G is a connected graph if there is a path between each pair of distinct vertices of G. For

two vertices x and y, we define d(x, y) to be the length of the shortest path between x and y (we let

d(x, y) = ∞ if there is no such path). The diameter of a graph G is diam(G) = sup{d(a, b) : a and b are

distinct vertices of G}. The girth of G is the length of the shortest cycle in G, denoted by gr(G) (we let

gr(G) = ∞ if G has no cycles). The graph G is complete if each pair of distinct vertices is joined by an

edge. We use Kn to denote the complete graph with n vertices. The degree of a vertex a is the number

of the edges of the graph G incident with a. A clique of a graph is a complete subgraph of it and the

number of vertices in a largest clique of G is called the clique number of G and is denoted byω(G). For a
positive integer r, an r-partite graph is onewhose vertex set can be partitioned into r subsets, so that no

edge has both ends in any one subset. A complete r-partite graph is one inwhich each vertex is joined to

every vertex that is not in the same part. The complete bipartite graph (2-partite graph)with part sizes

m and n is denoted by Km,n. Let G1 and G2 be subgraphs of G. We say that G1 and G2 are disjoint if they

have no vertex and no edge in common. The union of two disjoint graphs G1 and G2, which is denoted

by G1 ∪G2, is a graphwith V(G1 ∪G2) = V(G1)∪V(G2) and E(G1 ∪G2) = E(G1)∪E(G2). The genus of
a graph is the minimal integer t such that the graph can be drawn without crossing itself on a sphere

with t handles (that is an oriented surface of genus t). Thus a planar graph has genus zero, because it

can be drawn on a sphere without self-crossing. A genus one graph is called a toroidal graph. In other

words, a graph G is toroidal if it can be embedded on the torus, this means that, the graph’s vertices

can be placed on a torus such that no edges cross. Usually, it is assumed that G is also non-planar. A

subdivision of a graph is any graph that can be obtained from the original graph by replacing edges by

paths. A remarkable simple characterization of the planar graphs was given by Kuratowski in 1930.

Kuratowski’s Theorem says that a graph is planar if and only if it contains no subdivision of K5 or K3,3

(cf. [2, p. 153]).

2. Basic properties

In this section,we observe the connectivity, diameter and girth of the graph�n
R , where n is a positive

integer with n > 1. We also investigate the clique number of this graph. Recall that an element x is

a unit in R if there exists an element y in R such that xy is the identity element. We denote the set of

zero-divisors and unit elements of R by Z(R) and U(R), respectively. Also the Jacobson radical of R, the

set R\{0} and the ideal generated by an element a in R are denoted by J(R), R∗ and aR, respectively.

We begin with the following lemma.

Lemma 2.1. Let X = (x1, x2, . . . , xn) be a vertex whose first component is a unit and Y = (y1, y2, . . . ,
yn) be a vertex whose first component is non-zero. Then X and Y are adjacent in �n

R.
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Proof. Consider the n×n lower triangular matrix Awhose entries satisfy the following equations:

a11 = x1
−1y1,

aii = 1, for i > 1,

ai1 = x1
−1(−xi + yi), for i > 1,

aij = 0, for i �= j and j > 1.

Then all entries in the main diagonal of A are non-zero. It is easy to see that AXT = YT , and so the

result follows. �

The following corollaries follow from Lemma 2.1.

Corollary 2.2. The induced subgraph of all vertices whose first components are units is a complete graph.

Corollary 2.3. Suppose that p = |U(R)| |R|n−1 and q = |R∗�U(R)| |R|n−1. Then the graph �n
R contains

the bipartite graph Kp,q. Moreover, �n
R contains a copy of Kp−i,q+i for i with 1 � i � p − 1.

Proof. Let V1 be the set of all vertices whose first components are units and let V2 be the set of all

vertices whose first components are non-unit elements of R∗. By Lemma 2.1, each vertex in V1 is

adjacent to each vertex in V2, and so the first statement holds. The last statement is clear by deleting

some vertices in V1 and adding them to V2. �

In the rest of the paper, for iwith 1 � i � n, we use the notation Ci to denote the set of all vertices

whose first non-zero components are in the ith place. Also Ei is a vertex whose ith component is 1 and

the other components are zero.

By using amethod similar to the oneweused in theproof of Lemma2.1, one canobtain the following

Lemma.

Lemma 2.4. Assume that X ∈ Ci such that its ith component is unit. Then X is adjacent to Y for all Y ∈ Ci.

Recall that a graph on n � 1 vertices such that n − 1 of the vertices have degree one, all of which

are adjacent only to the remaining vertex a, is called a star graphwith center a. Also, a refinement of a

graph H is a graph G such that the vertex sets of G and H are the same and every edge in H is an edge

in G.

In the following theorem, we study the connectivity of �n
R , where R is an integral domain.

Theorem 2.5. If R is an integral domain, then �n
R is disconnected. Moreover, �n

R has n components and

every component is a refinement of a star graph.

Proof. Suppose that Xi is an arbitrary element in Ci. It is not hard to see that if i �= j, then Xi and Xj are

not adjacent, where Xj ∈ Cj . In addition, there is no path between them. Since Xi can be considered

as the ith column of some lower triangular matrix Awith non-zero entries on the main diagonal, Ei is

adjacent to Xi, for each i. By Lemma 2.4, it is clear that every Ci is a component of �n
R . Also each Ci is a

refinement of a star graph with center Ei. �

The next corollary follows from Lemma 2.4 and Theorem 2.5.

Corollary 2.6. Let F be a field. Then �n
F is a union of n complete graphs.

Lemma 2.7. Suppose that R is not an integral domain and X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , yn) /∈
C1. Then there is a vertex in C1 which is adjacent to both X and Y.

Proof. Let x and z be non-zero elements in R such that xz = 0. Let Z = (z, 1, . . . , 1) and consider the

lower triangular matrix A whose entries satisfy the following equations:
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a11 = x.

For i�2 and xi �= 0 we put ai1 = 0, . . . , ai(i−1) = 0, aii = xi.

For i�2 and xi = 0 we put ai1 = −1, ai2 = 0, . . . , ai(i−1) = 0, aii = z.

So we have that AZT = XT .

Similarly there exists a lower triangular matrix B such that all entries on the main diagonal are

non-zero and BZT = YT . �

In the next theorem, we investigate the connectivity of �n
R , where R is not an integral domain.

Theorem 2.8. If R is not an integral domain, then the graph �n
R is connected and diam(�n

R) ∈ {2, 3}.
Proof. Let X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) be arbitrary non-adjacent vertices.We have

the following cases:

(a) If x1 is unit and y1 �= 0, then, by Lemma 2.1, d(X, Y) = 1.

(b) If x1 = y1 = 0, then, by Lemma 2.7, d(X, Y) � 2.

(c) If x1 = 0 and y1 is unit, then, by Lemma 2.7, there exists a vertex T in C1 which is adjacent to X .

Now, by Lemma 2.1, T is adjacent to Y . So d(X, Y) � 2.

(d) If x1 = 0 and y1 is non-zero and non-unit, then again, by Lemma 2.7, there exists a vertex T in

C1 which is adjacent to X . Hence we have the path X − T − E1 − Y . Therefore d(X, Y) � 3.

(e) If x1 and y1 arenon-zero andnon-unit elements, then, by Lemma2.1,wehave thepathX−E1−Y .

So d(X, Y) � 2.

Hence, by considering the above situations, we have that diam(�n
R) � 3. On the other hand, if

x1 = 0 and y1 is unit, then X and Y are not adjacent. So the graph �n
R is never complete. Hence the

result holds. �

Remark 2.9. Let X = (x1, x2, . . . , xn) be a vertex with x1 �= 0. Then X is adjacent to Z = (x1, 1,
. . . , 1). To prove this, it is sufficient to consider the lower triangular matrix A whose entries satisfy

the following equations:

a11 = 1.

For i � 2 and xi �= 0 put ai1 = 0, . . . , ai(i−1) = 0, aii = xi.

For i � 2 and xi = 0 put ai1 = −1, ai2 = 0, . . . , ai(i−1) = 0, aii = x1.

So we have AZT = XT .

In the following theorem we determine the rings R for which, the diameter of �n
R is exactly 2 or 3.

Theorem 2.10. Assume that R is not an integral domain. If R = Z(R) ∪ U(R), then diam(�n
R) = 2.

Otherwise, diam(�n
R) = 3.

Proof. Let X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) be two non-adjacent vertices. By the proof

of Theorem 2.8, d(X, Y) � 2 unless we have that x1 = 0 and that y1 is non-zero and non-unit. In this

situation, we have d(X, Y) � 3. Now if R = Z(R) ∪ U(R), then y1 is a zero-divisor. So, by the proof

of Lemma 2.7, Z = (y1, 1, . . . , 1) is adjacent to X . Now, by Remark 2.9, Y and Z are adjacent. Hence

d(X, Y) = 2. Thus whenever R = Z(R) ∪ U(R), we have that diam(�n
R) = 2.

Now, suppose that R �= Z(R)∪U(R) and that y1 is not a zero-divisor in R.We let x2 = 1 and y2 = y1.

Then we claim that d(X, Y) = 3. Assume to the contrary that d(X, Y) = 2. Then there exists a vertex

Z which is adjacent to both X and Y . So there are n × n lower triangular matrices A and B over R with

entries on the main diagonal are non-zero, and we have the following situations.
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(i) AXT = ZT and BZT = YT . So a110 = z1 and b11z1 = y1. Consequently y1 = 0, which is

impossible.

(ii) AXT = ZT and BYT = ZT . So a110 = z1 and b11y1 = z1. Consequently b11y1 = 0, which is

impossible.

(iii) AZT = XT and BZT = YT . So a11z1 = 0 and b11z1 = y1. Consequently a11y1 = 0, which is

impossible.

(iv) AZT = XT and BYT = ZT . So a21z1 + a22z2 = x2 and b21y1 + b22y2 = z2.

Thus a21b11y1+a22(b21y1+b22y2) = x2. Since y1 is non-unit, we have that y1 ∈ m, for somemaximal

ideal m. Now, since x2 = 1 and y2 = y1, we have that 1 ∈ m, which is impossible.

Therefore we have d(X, Y) = 3. Thus, by Theorem 2.8, we have that diam(�n
R) = 3, whenever

R �= Z(R) ∪ U(R). �

We recall that the dimension of R, denoted by dim(R), is the supremum of the length of all chains

of prime ideals in R.

Corollary 2.11. If R is a ring with dim(R) = 0 (in particular an Artinian ring), which is not an integral

domain, then diam(�n
R) = 2.

Proof. By [5, Theorem 91], we have R = Z(R)∪U(R), and so the result follows from Theorem 2.10. �

Example 2.12. Let R and C be the sets of all real and complex numbers, respectively. It is easy to see

that �n
R

∼= �n
C.

In the following proposition, we study the rings whose generalized Cayley graphs are isomorphic.

Proposition 2.13. Let R and R′ be two rings. Then the following statements hold:

(a) If �n
R

∼= �n
R′ and R is an integral domain, then R′ is also an integral domain.

(b) If �n
R

∼= �n
R′ and R is a field, then R′ is also a field.

Proof. (a)Assumeto thecontrary thatR′ is not an integraldomain. So, byTheorem2.8,�n
R′ is connected.

On the other hand, by Theorem 2.5, �n
R is disconnected, which is a contradiction.

(b) If R is a field, then, by Part (a), R′ is an integral domain. By Corollary 2.6, every connected

component of �n
R is complete. Thus every connected component of �n

R′ is complete. Now, suppose to

the contrary that R′ is not a field and that m is a non-zero maximal ideal in R′. Also assume that m

is a non-zero element in m. Since the vertices X = (m2, 1, 1, . . . , 1) and Y = (m,m, 1, . . . , 1) are

adjacent in �n
R′ , there exists a lower triangular matrix A over R′ whose entries on the main diagonal

are non-zero, and so AXT = YT or AYT = XT . If AXT = YT , then a11m = 1 which is impossible. Also,

if AYT = XT , then (a21 + a22)m = 1 which is again impossible. Hence the vertices X and Y are not

adjacent which is the required contradiction. �

The next corollary follows immediately fromProposition 2.13 in conjunctionwithMoore’s Theorem

which says that every two finite fields of the same cardinality are isomorphic.

Corollary 2.14. If R is a commutative ring such that �n
R

∼= �n
R′ , for some finite field R′, then R ∼= R′.

In the following example, we show that Proposition 2.13 does not hold for n = 1.

Example 2.15. Let F be a field. It is well known that R = F[[x]] is a local ring with unique maximal

ideal xR. Also one can easily see that every non-zero element in R is of the form xku, where u is a unit in

R and k � 0. So, for every non-zero elements a and b in R, we have a ∈ bR or b ∈ aR. Thus Cay(R∗, R∗)
is a complete graph. Now, let R and Q be the sets of all real and rational numbers, respectively and
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S = Q[[x]]. It is easy to see that Cay(R∗, R∗) ∼= Cay(S∗, S∗). Hence Proposition 2.13 does not hold in

the case that n = 1.

Lemma 2.16. Let R be a ring such that, for every non-zero elements a and b in R, a ∈ bR or b ∈ aR. Then

R is a local ring.

Proof. Consider the element x in R with x �= 0, 1, −1. So x + 1 �= 0. Therefore, by our hypothesis,

x ∈ (x + 1)R or x + 1 ∈ xR. If x ∈ (x + 1)R , then, by considering t = x + 1, we have that t − 1 ∈ tR.

So there exists an element k′ in R such that t − 1 = k′t. Thus t = x + 1 is unit. Also, if x + 1 ∈ xR,

then again one can easily see that x is unit. Therefore, for every element x in R, x is unit or x+ 1 is unit.

Suppose that z is a non-unit element in R. Therefore az is not unit, for every a ∈ R, and consequently

1+az is unit. So z ∈ J(R). Hence, the union of allmaximal ideals is J(R)which implies that R is local. �

The next result follows from Lemma 2.16.

Corollary 2.17. Let R be a field and R′ be a ring. If Cay(R∗, R∗) ∼= Cay(R′∗, R′∗), then R′ is local.

In the next result we study the girth of �n
R .

Proposition 2.18. gr(�n
R) = 3 if and only if n � 3 or R �= Z2.

Proof. Ifn � 3, then, by Lemma2.1, thevertices (1, 1, 1, 0, . . . , 0), (1, 1, 0, . . . , 0) and (1, 0, . . . , 0)
form a triangle. If n = 2 and R �= Z2, then the vertices (1, 0), (1, 1) and (1, a) form a triangle, where

a �= 0, 1. Otherwise, we have that n = 2 and R = Z2. In this situation �n
R

∼= K2 ∪ K1, and so its girth

is infinity.

The converse statement is clear. �

In the following proposition we investigate the clique number of �n
R .

Proposition 2.19. We have the following statements.

(a) If R is a field, then ω(�n
R) = |U(R)| |R|n−1.

(b) If R is not a field, then ω(�n
R) � |U(R)| |R|n−1 + 1.

Proof. (a) If R is a field, then, every non-zero element of R is unit, and so, by Lemmas 2.1 and 2.4, our

claim holds.

(b) If R is not a field, then one can choose a non-zero and non-unit element z in R. Let X =
(z, 1, 1, . . . , 1). Let C be the set of all vertices whose first component is unit. Now, by Lemma 2.1,

it is easy to see that the set C ∪ {X} forms a clique, and so the result follows. �

Example 2.20. If R = Z2, then clearly, by Proposition 2.19(a), ω(�n
R) = 2n−1.

Example 2.21. If R = Z2 × Z2, then ω(�2
R) = 8 and �2

R has 68 edges.

Proof. Put

X1 = ((1, 1), (1, 0)), X2 = ((1, 1), (0, 1)), X3 = ((1, 1), (0, 0)), X4 = ((1, 1), (1, 1)),

X5 = ((0, 1), (1, 0)), X6 = ((0, 1), (0, 1)), X7 = ((0, 1), (0, 0)), X8 = ((0, 1), (1, 1)).

By Lemma 2.1, the vertices X1, X2, X3 and X4 form the graph K4. Also, by Lemma 2.1, these four vertices

are adjacent to all vertices Xi, for 5 � i � 8. The following equations show that the vertices X5, X6, X7,

X8 form the graph K4 too. Put
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A =:
⎛
⎝ (1, 1) (0, 0)

(1, 1) (1, 1)

⎞
⎠, B =:

⎛
⎝ (1, 1) (0, 0)

(1, 0) (0, 1)

⎞
⎠, C =:

⎛
⎝ (1, 1) (0, 0)

(1, 1) (0, 1)

⎞
⎠ .

Now, we have the following equalities.

AXT
6 = XT

7 , AXT
5 = XT

8 , BXT
5 = XT

7 , BXT
8 = XT

6 , CXT
5 = XT

6 , CXT
8 = XT

7 .

It is not hard to see that there is no vertex which is adjacent to all vertices X1, . . . , X8. Also one can

easily check that the cardinality of all cliques is not greater than eight. Thus ω(�2
R) = 8.

Now we calculate the number of edges in �2
R . Put

X9=((1, 0), (1, 0)), X10 = ((1, 0), (0, 1)), X11=((1, 0), (0, 0)), X12 = ((1, 0), (1, 1)),

X13 = ((0, 0), (1, 0)), X14 = ((0, 0), (0, 1)), X15 = ((0, 0), (1, 1)).

By a similar argument as in the first paragraph of this proof, the vertices X9, X10, X11 and X12 form

the graph K4. By Lemma 2.1, the vertices X1, X2, X3 and X4 are adjacent to each of the vertices X9, X10,

X11 and X12. One can also easily see that X13 is adjacent to X5, X8, X9, X10, X11 and X12. Similarly, X14 is

adjacent to X5, X6, X7, X8, X10 and X12. Also X15 is adjacent to X5, X8, X10, X12, X13 and X14.

Therefore �2
R has 68 edges. �

Recall that a Hamilton cycle in a graph G is a cycle that contains every vertex of G. Moreover G is

called Hamiltonian if it contains a Hamilton cycle.

We end this section with the following theorem which study the Hamiltonian generalized Cayley

graphs.

Theorem 2.22. Assume that R is a finite ring such that �n
R is connected for some n � 1. Then �n

R is

Hamiltonian, whenever |Z∗(R)| � |U(R)|.
Proof. Since �n

R is connected, we have that R is not an integral domain and therefore |Z∗(R)| � 1.

Suppose that Z∗(R) = {z1, z2, . . . , zp} and U(R) = {u1, u2, . . . , uq}, where p � q. First we consider

the case that n = 1. Then we have the following Hamilton cycle in the graph Cay(R∗, R∗).
u1 − z1 − u2 − z2 − · · · − up − zp − upi+1

− · · · − uq − u1.

Now, suppose that n � 2. For each 1 � i � n, let pi = p|R|n−i and qi = q|R|n−i. Let Zi = {Zij |
1 � j � pi} be the subset of Ci such that the ith components of its elements are non-zero zero divisors

and Ui = {Ui
j | 1 � j � qi} be the subset of Ci such that the ith components of its elements are units.

Obviously, for each 1 � i � n, we have the path Pi in Ci,
Pi : Ui

1 − Zi1 − Ui
2 − Zi2 − · · · − Ui

pi
− Zipi − Ui

pi+1
− · · · − Ui

qi
,

where Zi1 = (x1, x2, . . . , xn) and Zi2 = (y1, y2, . . . , yn) such that xi = z1, xi+1 = · · · = xn = u1 and

yi = z1, yi+1 = · · · = yn = u2.

Now,we construct a Hamiltonian cycle in�n
R . First we consider the pathsP1,P2, . . . ,Pn and delete

the edges Zi1 − Ui
2 and Zi2 − Ui

2, for i = 1, . . . , n − 1. Now, by considering the following edges, one

can easily see that �n
R contains a Hamilton cycle.

Z11 − U2
1 , Z

2
1 − U3

1 , . . . , Z
n−1
1 − Un

1 ,

U1
2 − U1

q1
,U2

2 − U2
q2

, . . . ,Un−1
2 − Un−1

qn−1
,

Z12 − U2
2 , Z

2
2 − U3

2 , . . . , Z
n−2
2 − U

n−1
2 ,

U1
1 − U1

2 , Z
n−1
2 − Un

qn
. �

Corollary 2.23. Suppose that �n
R is connected, for some n � 1, and that R is finite. If Z(R) is an ideal of R,

then �n
R is Hamiltonian. In particular, if R is local, then �n

R is Hamiltonian.
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3. On the genus and crosscap numbers of �n
R

It is well known that any compact surface is either homeomorphic to a sphere, or to a connected

sum of g tori, or to a connected sum of k projective planes (see [10, Theorem 5.1]). We denote by Sg
the surface formed by a connected sum of g tori, and by Nk the one formed by a connected sum of k

projective planes. The number g is called the genus of the surface Sg and k is called the crosscap of Nk .

When considering the orientability, the surfaces Sg and sphere are among the orientable class and the

surfaces Nk are among the non-orientable one.

A simple graph which can be embedded in Sg but not in Sg−1 is called a graph of genus g. Similarly,

if it can be embedded in Nk but not in Nk−1, then we call it a graph of crosscap k. The notations γ (G)
and γ (G) are denoted for the genus and crosscap of a graph G, respectively. It is easy to see that

γ (H) � γ (G) and γ (H) � γ (G), for all subgraph H of G. Also a graph G is called planar if γ (G) = 0,

and it is called toroidal if γ (G) = 1.

Recall that, for a rational number q, 	q
 is the first integer number greater or equal than q. In the

following lemma we bring some well-known formulas for genus of a graph (see [16,15]).

Lemma 3.1. The following statements hold:

(a) For n � 3, we have γ (Kn) = 	 1
12

(n − 3)(n − 4)
.
(b) For m, n � 2, we have γ (Km,n) = 	 1

4
(m − 2)(n − 2)
.

According to Lemma 3.1, we have γ (Kn) = 0, for 1 � n � 4, and γ (Kn) = 1, for 5 � n � 7, and,

for other values of n, γ (Kn) � 2.

The following lemma, which is from [17], is needed in the rest of the paper.

Lemma 3.2. Let G be a simple graphwith n vertices (n � 4) andm edges. Then γ (G) � 	 1
6
(m−3n)+1
.

In the following theoremwe determine all isomorphic classes of finite commutative rings Rwhose

�n
R has genus at most three.

Theorem 3.3. The following statements hold:

(a) γ (�n
R) = 0 if and only if R = Z2 and n = 2 or 3.

(b) γ (�n
R) = 1 if and only if R = Z3 and n = 2.

(c) γ (�n
R) = 2 if and only if R = Z2 and n = 4.

(d) There is no ring R with γ (�n
R) = 3.

Proof. We consider the following cases:

Case 1.n � 4. IfR �= Z2, then, by Proposition 2.19,ω(�n
R) � 28, and so, by Lemma3.1,γ (�n

R) � 50.

If R = Z2, then ω(�4
R) = 8 and ω(�5

R) = 16. Hence, by Lemma 3.1, γ (�4
R) = 2 and γ (�5

R) = 13.

Case 2. n=3. If |R| � 3, then, by Proposition 2.19, ω(�n
R) � 10, and so, by Lemma 3.1, γ (�n

R) � 4.

If |R| = 2, then ω(�n
R) = 4. Since �n

R = K4 ∪ K2 ∪ K1, we have that γ (�4
R) = 0.

Case 3. n=2. If |R| � 9, then, by Proposition 2.19, ω(�n
R) � 10, and so, by Lemma 3.1, γ (�n

R) � 4.

If |R| = 8, then, by [4, p. 687], R is one of the following rings.

R1 = F8, R2 = Z2[x, y]
〈x, y〉2 , R3 = Z2[x]

〈x3〉 , R4 = Z4[x]
〈2x, x2〉 , R5 = Z4[x]

〈2x, x2 − 2〉 ,

R6 = Z2 × Z4, R7 = Z2 × Z2[x]
〈x2〉 , R8 = Z2 × Z2 × Z2.

For R1, by Proposition 2.19, we have ω(�n
R1

) � 56, and so, by Lemma 3.1, γ (�n
R) � 230. For other

rings of order 8 we have |R∗�U(R)| � 2. Thus, by Corollary 2.3,�n
R contains a K8,16. Hence, by Lemma

3.1, γ (�n
R) � 21.



1048 M. Afkhami et al. / Linear Algebra and its Applications 437 (2012) 1040–1049

If |R| = 7, then R is a field, and so, by Proposition 2.19, ω(�n
R) = 42. Hence, by Lemma 3.1,

γ (�n
R) � 124.

If |R| = 6, then R is a field or R = Z6. If R is a field, then, by Proposition 2.19, ω(�n
R) � 30, and so,

by Lemma 3.1, γ (�n
R) � 59. If R = Z6, then, by Proposition 2.19, ω(�n

R) � 13, and so, by Lemma 3.1,

γ (�n
R) � 8.

If |R| = 5, then R is a field. So, by Proposition 2.19, ω(�n
R) � 20. Thus, by Lemma 3.1, γ (�n

R) � 23.

If R is local with |R| = 4, then, by [4, p. 687], R is a field or R is one of the ringsZ4 or
Z2[x]
〈x2〉 . If R = Z4

or
Z2[x]
〈x2〉 , then |U(R)| = 2. So, by Corollary 2.3, �n

R contains a K6,6. Thus, by Lemma 3.1, γ (�n
R) � 4.

If R is a field and |R| = 4, then, by Proposition 2.19, we have ω(�n
R) = 12, and so, by Lemma 3.1,

γ (�n
R) � 6. If R is not local and |R| = 4, then R = Z2 × Z2. Now, by Example 2.21, �n

R has 68 edges.

Hence, by Lemma 3.2, γ (�n
R) � 5.

If |R| = 3, then �n
R = K6 ∪ K2. Hence γ (�n

R) = 1.

If |R| = 2, then obviously γ (�n
R) = 0.

Now by considering the above cases, the results hold. �

The following two results about the crosscap formulae of a complete graph and a complete bipartite

graph are very useful in the proof of next theorem (see [3] or [11]).

Lemma 3.4. The following statements hold:

(a) γ (Kn) =
⎧⎨
⎩

	 1
6
(n − 3)(n − 4)
 if n � 3 and n �= 7,

3 if n = 7.

(b) γ (Km,n) = 	 1
2
(m − 2)(n − 2)
.

By slight modifications in the proof of Theorem 3.3 in conjunction with Lemma 3.4, one can prove

the following theorem.

Theorem 3.5. The following statements hold:

(a) γ (�n
R) = 0 if and only if R = Z2 and n = 2 or 3.

(b) γ (�n
R) = 1 if and only if R = Z3 and n = 2.

(c) γ (�n
R) = 4 if and only if R = Z2 and n = 4.

(d) There is no ring R with γ (�n
R) = 2 or 3.
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