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Experimental alcohol-induced liver injury is exacerbated by a high polyunsaturated fat diet rich in linoleic
acid. We postulated that bioactive oxidized linoleic acid metabolites (OXLAMs) play a critical role in the
development/progression of alcohol-mediated hepatic inflammation and injury. OXLAMs are endogenous
ligands for transient receptor potential vanilloid 1 (TRPV1). Herein, we evaluated the role of signaling
through TRPV1 in an experimental animal model of alcoholic liver disease (ALD). Chronic binge alcohol
administration increased plasma OXLAM levels, specifically 9- and 13-hydroxy-octadecadienoic acids. This
effect was associated with up-regulation of hepatic TRPV1. Exposure of hepatocytes to these OXLAMs in vitro
resulted in activation of TRPV1 signal transduction with increased intracellular Ca2þ levels. Genetic
depletion of TRPV1 did not blunt hepatic steatosis caused by ethanol, but prevented hepatic injury. TRPV1
deficiency protected from hepatocyte death and prevented the increase in proinflammatory cytokine and
chemokine expression, including tumor necrosis factor-a, IL-6, macrophage inflammatory protein-2, and
monocyte chemotactic protein 1. TRPV1 depletion markedly blunted ethanol-mediated induction of
plasminogen activator inhibitor-1, an important alcohol-induced hepatic inflammation mediator, via
fibrin accumulation. This study indicates, for the first time, that TRPV1 receptor pathway may be involved
in hepatic inflammatory response in an experimental animal model of ALD. TRPV1-OXLAM interactions
appear to play a significant role in hepatic inflammation/injury, further supporting an important role for
dietary lipids in ALD. (Am J Pathol 2015, 185: 43e54; http://dx.doi.org/10.1016/j.ajpath.2014.09.007)
Supported by NIH grants R21 AA020849-01A1 (I.A.K.), DK082451
(A.E.F.), P01 AA017103 (C.J.M.), R01 AA023681 (C.J.M.), R01
AA018016 (C.J.M.), R37 AA010762 (C.J.M.), R01 AA018869 (C.J.M.),
and U01 AA022489 (A.E.F., C.J.M.), the Department of Veterans Affairs
grant BX000350 (C.J.M.), and the Intramural Program of the National
Institute on Alcohol Abuse and Alcoholism (C.E.R.).

Disclosures: None declared.
Alcohol consumption remains one of the most common and
important causes of liver disease in the United States and
worldwide. Alcoholic liver disease (ALD) ranges from
steatosis and steatohepatitis to advanced injury, such as
fibrosis, cirrhosis, and hepatocellular carcinoma. It has been
estimated that 15% to 30% of heavy drinkers develop
advanced ALD.1e3 Despite the significant progress made on
ALD pathogenesis, the specific mechanism(s) responsible
for ALD development and progression remain poorly un-
derstood. Due, in part, to this incomplete understanding of
the mechanisms by which alcohol damages the liver, there is
still no Food and Drug Administrationeapproved therapy
stigative Pathology.
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for this common and often devastating disease. Under-
standing the molecular mechanisms involved in the patho-
genesis of alcohol-induced liver injury may, therefore, lead
to the development of new therapeutic options and/or pre-
ventive interventions.
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Dietary fat is an important determinant of ALD development
and progression.4e7 Recent publications have shown that
experimental and clinical alcohol-induced liver steatosis and
injury were associated with elevated oxidized linoleic acid
metabolites (OXLAMs), specifically 9- and 13-hydroxy-octa-
decadienoic acids (9- and 13-HODEs).8,9 It has been reported
that 9- and 13-HODEs are natural endogenous ligands for the
transient receptor potential vanilloid 1 (TRPV1).10,11 The
TRPV1 receptor is a ligand-gated nonselective cation channel
with high permeability for Ca2þ,12 which is expressed in many
cells and tissues, including liver.13e22 The TRPV1 is a poly-
modal molecular detector of multiple stimuli responding to a
large variety of physical (eg, noxious heat), and chemical (eg,
Hþ ions) stimuli. In addition to HODEs, several exogenous and
endogenous TRPV1 agonists have been identified, including
capsaicin,12 cannabinoids,23 retinoids,24 and metabolites of
arachidonic acid.25

Accumulating evidence suggests an important role of
TRPV1 in several diseases and pathological conditions,
including chronic pain,26 neurogenic inflammation,27 dia-
betes,28,29 metabolic syndrome and obesity,19,30 and liver
diseases.13,31,32 To the best of our knowledge, there are no data
assessing the role of TRPV1 in ALD. The present study
evaluates the role of TRPV1 in the development of ethanol-
induced liver steatosis, inflammation, and injury using an
experimental animal model of ALD. Our findings collectively
indicate that the genetic deficiency of TRPV1 protects against
alcohol-induced liver inflammation and injury but not
steatosis. Our data point toward a role for TRPV1-OXLAM
receptor-ligand interactions as a potentially relevant pathway
contributing to alcohol-mediated steatohepatitis.

Materials and Methods

Animal Model of ALD

Animals were housed in a pathogen-free barrier facility
accredited by the Association for Assessment and Accredi-
tation of Laboratory Animal Care, and the study protocol
was approved by the University of Louisville (Louisville,
KY) Institutional Animal Care and Use Committee.
Eight-week-old male TRPV1 knockout mice (B6.129X1-
TRPV1tm1Jul/J, 11th backcross generation) and their genet-
ically unaltered wild-type (WT; C57Bl6/J) counterparts
were obtained from the Jackson Laboratory (Bar Harbor,
ME). Animals were fed Lieber-DeCarli control (isocaloric
maltose-dextrin) or ethanol (5% w/v) liquid diets ad libitum
for 10 days plus a single binge ethanol administration (5
g/kg, body weight, 20% ethanol) by gavage, whereas mice in
control groups were gavaged with isocaloric dextrin
maltose.33 Both diets were prepared fresh daily. In the
control group diet, the levels of protein, carbohydrate, and
fat were held constant at 17%, 43%, and 40% of total energy,
respectively. In the alcohol diet, ethanol (35% of total cal-
ories) was substituted for carbohydrate energy. The diet was
enriched in corn oil containing a high amount of
44
polyunsaturated linoleic fatty acid, and purchased from
Research Diet (New Brunswick, NJ). At the conclusion of
the experiment, the mice were anesthetized; and blood and
tissue samples were obtained. Plasma was stored at �80�C.
Portions of liver tissue were frozen immediately in liquid
nitrogen, whereas others were fixed in 10% neutral-buffered
formalin or embedded in frozen specimen medium (Tissue-
Tek OCT compound; Sakura Finetek, Torrance, CA).

Blood and Liver Biochemical Analysis

Plasma alanine transaminase (ALT) and aspartate transaminase
(AST) activity, cholesterol, triglycerides (TGs), glucose, high-
density lipoprotein (HDL), low-density lipoprotein (LDL), and
very LDL (VLDL) were determined by Lipid Panel Plus using
the Piccolo Xpress chemistry analyzer (Abaxis, Union City,
CA). Blood alcohol levels were measured using nicotinamide
adenine dinucleotide-alcohol dehydrogenase (NAD-ADH)
ReagentMultiple Test (Sigma, St. Louis, MO), according to the
manufacturer’s instructions. Plasma endotoxin levels were
measured with the Limulus Amoebocyte Lysate kit (Lonza,
Walkersville, MD). For the determination of hepatic lipid
levels, hepatic lipids were extracted with an aqueous extract
from chloroform andmethanol. Hepatic TGsweremeasured, as
previously described,34 using TG reagent (Thermo Fisher Sci-
entific Inc., Middletown, VA). Liver cholesterol was assayed
using reagents from Sigma.

Liver Histological Examination and Staining

For histological analysis, liver sections were fixed in 10%
buffered formalin and embedded in paraffin. Tissue sections (5
mm thick) were prepared and stained with hematoxylin and
eosin. Oil-Red-O staining was performed to evaluate hepatic
fat accumulation. Apoptotic cells were identified by terminal
deoxynucleotidyl transferase-mediated dUTP nick-end label-
ing (TUNEL) assay using the ApopTag Peroxidase In Situ
Apoptosis Detection kit (Millipore, Billerica, MA), according
to the manufacturer’s instructions. Neutrophil accumulation in
the livers was assessed by chloroacetate esterase (CAE)
staining using a commercially available kit (Sigma), according
to the manufacturer’s instructions. Immunofluorescence
detection of hepatic fibrin deposition was performed in frozen
tissue, as previously described.35

Hepatic Caspase-3 Activity Assessment

Caspase-3 activity was determined using 200 mg whole liver
protein with the caspase-3 colorimetric kit (Abcam, Cam-
bridge, MA), according to the manufacturer’s instructions.

RNA Isolation and Real-Time RT-PCR Assay

Total liver RNAwas isolated using TRIzol reagent (Invitrogen,
Carlsbad, CA), according to the manufacturer’s instructions.
Reverse transcription was performed with qScript cDNA
Supermix (Quanta Biosciences, Gaithersburg, MD) and
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Table 1 Primer Sequences for the Targeted Mouse Gene RT-qPCR Assay

Primer set Forward sequence Reverse sequence

18s 50-CTCAACACGGGAAACCTCAC-30 50-CGCTCCACCAACTAAGAACG-30

TRPV1 50-TGGACAGCTACAGTGAGATACTTTTC-30 50-CCATGGAAGCCACATACTCC-30

IL-6 50-TGGAAATGAGAAAAGAGTTGTGC-30 50-CCAGTTTGGTAGCATCCATCA-30

TNF-a 50-GTGATCGGTCCCCAAAGG-30 50-GGTGGTTTGCTACGACGTG-30

MIP-2 50-GCGCCCAGACAGAAGTCATA-30 50-TCCAGGTCAGTTAGCCTTGC-30

MCP-1 50-GGCTCAGCCAGATGCAGT-30 50-TGAGCTTGGTGACAAAAACTACAG-30

PAI-1 50-TCAATGACTGGGTGGAAAGG-30 50-AGGCGTGTCAGCTCGTCTAC-30

IL-1b 50-TTCATCTTTGAAGAAGAGCCCAT-30 50-TCGGAGCCTGTAGTGCAGTT-30

IL-1a 50-CAAGCAACGGGAAGATTCTG-30 50-CTGATCTGGGTTGGATGGTC-30

LCN2 50-ATGTCACCTCCATCCTGGTC-30 50-ACCTGAGGATACCTGTGCAT-30

TRPV1 Deficiency Ameliorates ALD
quantitative real-time RT-PCR (RT-qPCR) with Perfecta
SYBR Green FastMix (Quanta Biosciences) using an ABI
Prism 7500 sequence detection system (Applied Biosystems,
Foster City, CA). The reverse and forward specific primers are
presented in Table 1. Primers were designed using Primer3
software version 4.0.0 (http://bioinfo.ut.ee/primer3-0.4.0/
primer3).36 All primer pairs were validated by demonstrating
high-amplification efficiency, consistent single-peak dissocia-
tion patterns, and the presence of single products of the ex-
pected size on agarose gels. The relative gene expression was
normalized with 18s rRNA as the internal control, and calcu-
lated using the 2�DDCT method.

Western Blot Analysis

Western blot analysis was performed to evaluate the phosphoe
extracellular signal-regulated kinase (ERK) 1/2 (p42/44)
mitogen-activated protein kinase (MAPK) and nuclear phos-
phoeNF-kB p65 protein levels using commercially available
primary antibody from Cell Signaling (Danvers, MA). Equal
amounts of proteins were separated by SDS-PAGE and trans-
ferred to a polyvinylidene fluoride membrane. Immunoreactive
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signals were visualized using enhanced chemiluminescence
light detection reagents (GE Healthcare, Little Chalfont,
Buckinghamshire, UK). Band intensities were quantified using
ImageJ software version 1.49j (NIH, Bethesda, MD). The
protein content was normalized to total NF-kB p65 (for
pNF-kB p65) and b-actin [for pERK 1/2 (p42/44)MAPK]. The
results were expressed as the ratio of protein of interest/NF-kB
p65 or b-actin.

Plasma OXLAM Measurement

Lipid extraction from plasma and quantification of 9- and 13-
HODEs were performed as previously described.37,38

Briefly, plasma samples with antioxidant solution, internal
standards [synthetic 9(s)-HODE-d4; 13(s)-HODE-d4], and
potassium hydroxide were added to glass test tubes, and
overlaid with argon. After hydrolysis under argon atmo-
sphere, the released fatty acids were extracted twice into the
hexane layer by liquid/liquid extraction. The combined
hexane extracts were dried under nitrogen gas and resus-
pended in 85% methanol/water. Reconstituted lipid extracts
were analyzed by high-performance liquid chromatography.
 Fed EtOH

*

trol Capsaicin

2
*

Figure 1 Chronic binge ethanol (EtOH)
administration increases circulating OXLAM levels
associated with TRPV1 up-regulation. A: Plasma 9-
and 13-HODE levels. B: Hepatic TRPV1 mRNA up-
regulation in response to chronic binge alcohol
exposure. The relative mRNA expression was
measured by RT-qPCR. Gene expression was
normalized to 18s rRNA as an internal control.
CeE: Intracellular Ca2þ levels in HepG2 cells
determined by Cellomics. Cells were treated with
10 mmol/L 9-HODE, 10 mmol/L 13-HODE, and 10
mmol/L capsaicin for 24 hours. All stimulations
were performed in triplicate. Results are presented
as means � SEM (Student’s t-test). n Z 5 to 9
animals per group (A); n Z 5 to 6 animals per
group (B); n Z 3 animals per group (CeE).
*P < 0.05.
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Quantification of oxidized fatty acids was done on a triple
quadrupole mass spectrometer (model API 365; Applied
Biosystems, Foster City, CA) with Ionics EP 10þ upgrade
(Ionics Mass Spectrometry, Concord, ON, Canada) using
stable isotope dilution methods and multiple reaction moni-
toring with characteristic parent-to-daughter ion transitions.
Cell Culture and Treatments

HepG2, a human hepatoma cell line obtained from ATCC
(Manassas, VA), was used for in vitro experiments. Cells were
cultured in Dulbecco’s modified Eagle’s medium containing
10% fetal bovine serum and antibiotics (100 U/mL penicillin
and 100mg/mL streptomycin) at 37�C in a humidified 5%CO2,
95% air atmosphere. Cells were plated in 96-well plates at the
density of 25,000 cells per well. Cells were treated with 9-
HODE (10 mmol/L), 13-HODE (10 mmol/L), and capsaicin
(10 mmol/L) for 24 hours. The HODE concentration was
chosen on the basis of the observation that serum OXLAM
levels were up to 1000 nmol/L in our experimental model of
ALD, and the knowledge that HODEs can be found in human
blood in the low mmol/L range.39 HODEswere purchased from
Cayman Chemical Company (Ann Arbor, MI), capsaicin from
Sigma, and the dyes for Cellomics assays from Invitrogen. By
using the cell viability MTT assay, we have confirmed that
concentrations of up to 25 mmol/L of HODEs cause minimal
cell death in HepG2 cells (data not shown). After treatment,
cells were incubated for 1 hour in growth media containing the
following dyes: i) Hoechst (for nuclear fluorescence), ii) Fluo-4
(for free calcium), and iii) TOTO-3 (for cell membrane
permeability). Cellomics analysis was performed using a
Thermo Scientific Array Scan VTI HCS Reader (Thermo
Fisher Scientific Inc., Waltham, MA), as described by the
manufacturer. Cellomics Array Scan 60 software version
Table 2 Metabolic Characteristics of WT and TRPV1-Deficient Mice in
Liver Injury

Characteristic WT pair fed

Weight
Initial BW (g) 24.3 � 0.45
Final BW (g) 23.7 � 0.31
Liver/BW (%) 34 � 0.001
Food consumption (g per day per mouse) 9.4 � 0.13

Blood Biochemical Characteristics
LPS (EU/mL) 0.15 � 0.01
Blood alcohol levels (mg/dL) ND
Glucose (mg/dL) 165.6 � 29.2
TGs (mg/dL) 42.0 � 3.3
Cholesterol (mg/dL) 76.0 � 4.4
HDL (mg/dL) 55.8 � 1.7
LDL (mg/dL) 12.0 � 3.1
VLDL (mg/dL) 8.6 � 0.6

Values are expressed as means � SEM (n Z 5 to 9 animals per group).
*P < 0.05 for pair-fed versus EtOH-fed mice.
yP < 0.05 for WT-EtOH versus TRPV1�/� EtOH.
BW, body weight; EtOH, ethanol; ND, not determined.
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7.6.2.1-1.00x (Thermo Fisher Scientific Inc.) was used to
determine fluorescence intensities of the dyes. Well averages,
as well as individual cell data, were recorded and analyzed.

Statistical Analysis

The data were expressed as means � SEM. A Student’s t-test
(two tailed) was performed to evaluate significant differences
between alcohol- and pair-fed animals. Two-way analysis of
variance, followed by the Tukey’s multiple-comparison test,
was used to evaluate significant differences between experi-
mental groups (WTepair fed, WT-ethanol, TRPV1�/�e
pair fed, and TRPV1�/�-ethanol). P < 0.05 was considered
statistically significant. Statistical analysis was performed
using GraphPad Prism version 5.01 for Windows (GraphPad
Software, Inc., La Jolla, CA).

Results

Chronic Binge Ethanol Administration Increases
Circulating OXLAM Levels and Induces Hepatic TRPV1
Expression

Recent clinical and experimental studies have demonstrated that
alcohol-induced liver inflammation and injury are associated
with elevated levels of bioactive OXLAMs.8,9 Indeed, chronic
binge ethanol administration significantly elevated plasma
OXLAM levels, specifically 9- and 13-HODEs, compared with
their pair-fed controls (Figure 1A). A similar trend was found
for 9- and 13-oxo-octadecadenoic acids (oxoODEs) (data not
shown). OXLAMs, specifically 9- and 13-HODEs, have been
reported as endogenous activators/agonists of TRPV1,10,11 a
ligand-gated nonselective cation channelwith high permeability
for Ca2þ.12 On the basis of these observations, we examined
an Experimental Animal Model of Chronic Binge Alcohol-Induced

WT-EtOH TRPV1�/� pair fed TRPV1�/� EtOH

23.8 � 0.33 26.3 � 0.75 26.9 � 0.55
23.8 � 0.24 27.8 � 1.23 26.2 � 0.37
45 � 0.001* 32 � 0.001 44 � 0.001*
9.4 � 0.17 9.8 � 0.26 9.6 � 0.20

0.12 � 0.02 0.15 � 0.01 0.14 � 0.02
238.1 þ 10.4 ND 163.9 � 20.6y

160.7 � 6.1 149.3 � 19.6 131.1 � 12.5
42.8 � 4.1 35.5 � 1.2 46.5 � 2.4
92.5 � 2.9* 71.0 � 18.4 89.43 � 2.8
63.5 � 3.3 65.3 � 10.0 58.8 � 2.2
20.0 � 1.5 15.0 � 0.01 21.4 � 2.8
8.6 � 0.9 7.25 � 0.2 9.3 � 0.4
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Figure 2 Disruption of TRPV1 gene attenuates
chronic binge ethanol (EtOH)einduced liver
injury. A: Plasma ALT levels. B: Plasma AST
levels. There is a significant increase in ALT and
AST levels in response to ethanol in WT, but not
TRPV1�/�, animals. C: Representative image
of hepatic hematoxylin and eosin (H&E) staining.
D: Representative image of Oil-Red-O staining.
E: Liver TG levels. F: Liver cholesterol levels. A, B,
E, and F: Values are means � SEM. n Z 5 to 9
animals per group (A, B, E, and F). *P < 0.05
(two-way analysis of variance, followed by the
Tukey’s multiple-comparison test). Original
magnification: �200 (C); �400 (D).

TRPV1 Deficiency Ameliorates ALD
TRPV1 expression in the livers of control pair- and ethanol-fed
animals. We observed that ethanol exposure increased hepatic
TRPV1 mRNA expression in parallel with the increase in
circulating OXLAMs in ethanol but not in control pair-fed
animals (Figure 1B). Next, we performed in vitro studies
using HepG2 cells as a prototype for liver hepatocytes to
determine whether OXLAMs were able to activate TRPV1 and
thereby increase intracellular Ca2þ. We found that both 9- and
13-HODE exposure increased intracellular Ca2þ levels
(Figure 1, C and D), analogous to capsaicin, a classic TRPV1
agonist (Figure 1E).

Metabolic Characteristics of TRPV1�/� Mice in
Response to Chronic Binge Ethanol Feeding

To determine whether increased expression of TRPV1
plays a role in alcohol-induced liver injury, and to
examine the potential role of OXLAM/TRPV1 in-
teractions, we next evaluated the effects of TRPV1 dele-
tion in an experimental animal model of ALD. Both WT
and TRPV1�/� animals tolerated the experimental proto-
col, and no mortality was observed. The effects of geno-
type and ethanol on body weight and clinical chemistry
variables are presented in Table 2. Food consumption was
The American Journal of Pathology - ajp.amjpathol.org
similar in WT and TRPV1�/� mice fed an alcohol-
containing diet, and there were no significant differences
in body weight between the experimental groups. Ethanol
exposure significantly increased liver/body weight ratios,
which were not affected by mouse strain. At the end of
ethanol feeding, 9 hours after a single ethanol gavage,
elevated blood alcohol levels were observed in WT
compared with TRPV1�/� animals. No significant differ-
ences were detected between the experimental groups in
plasma lipopolysaccharide (LPS) levels, a marker of gut
permeability and blood endotoxemia. Plasma glucose, TG,
HDL, LDL, and VLDL levels were not substantially
altered by ethanol exposure in both WT and TRPV1�/�

animals. Plasma cholesterol was significantly increased in
WT þ ethanol compared with pair-fed mice; this effect of
ethanol was not observed in TRPV1�/� animals.

Deficiency of the TRPV1 Ameliorates Chronic Binge
Ethanol-Induced Liver Injury with No Effects on
Hepatic Steatosis

TRPV1 deficiency significantly attenuated chronic binge
ethanol-induced liver injury. Thus, compared with WT,
TRPV1�/� mice had significantly reduced plasma ALT and
47
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AST levels (Figure 2, A and B). Histological examination of
the liver samples and analysis of Oil-Red-O staining
revealed that alcohol exposure similarly increased hepatic
fat deposition in both TRPV1�/� and WT mice (Figure 2, C
and D); this effect was confirmed by hepatic TG measure-
ment (Figure 2E). Although increases in hepatic cholesterol
levels were observed in pair-fed TRPV1�/� mice compared
with pair-fed WT animals, there were no differences in liver
cholesterol in response to ethanol exposure in both
TRPV1�/� and WT animals (Figure 2F). Hence, the absence
of TRPV1 protected against chronic binge ethanol-induced
hepatic injury, despite not blunting steatosis caused by
ethanol exposure.

To investigate the possible mechanism(s) involved in
the TRPV1 deficiency protection against chronic binge
ethanol-induced liver injury, we next examined whether
TRPV1 depletion may attenuate ethanol-induced hepatic
apoptotic cell death. Ethanol exposure to WT mice
increased positive staining for TUNEL in hepatocytes
(Figure 3A); markedly fewer TUNEL-positive cells were
observed in the livers of TRPV1�/� animals. In addition,
we found that the alcohol-mediated increase in hepatic
48
cleaved caspase-3 activity, an established marker of
apoptosis, was attenuated in TRPV1�/� compared with
WT mice (Figure 3B).
TRPV1�/� Mice Are Resistant to Chronic Binge
Ethanol-Induced Hepatic Inflammation

To further investigate the mechanism(s) underlying hep-
atoprotective effects of TRPV1 deficiency on alcohol-
induced liver injury, we examined the ethanol-mediated
hepatic proinflammatory response. As expected,40 ethanol
exposure under these conditions caused a robust inflam-
matory response and increased the number of recruited
neutrophils in WT animals; TRPV1 deficiency significantly
blunted this increase caused by ethanol exposure (Figure 4,
A and B). Next, we examined expression of proin-
flammatory cytokines and chemokines known to play
important roles in alcohol-induced liver injury. Analysis of
mRNA revealed that hepatic levels of proinflammatory
ajp.amjpathol.org - The American Journal of Pathology
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Figure 5 Absence of TRPV1 prevents against chronic binge ethanol (EtOH)einduced hepatic inflammation. RT-qPCR analysis of mRNA levels of hepatic
proinflammatory cytokines and chemokines: TNF-a (A), IL-1b (B), IL-1a (C), IL-6 (D), MCP-1 (E), MIP-2 (F), and LCN2 (G). RT-qPCR data were normalized to
18s rRNA as an internal control. Values are means � SEM (n Z 5 to 6 animals per group). *P < 0.05 (two-way analysis of variance, followed by the Tukey’s
multiple-comparison test).

TRPV1 Deficiency Ameliorates ALD
cytokines TNF-a, IL-1b, IL-1a, and IL-6 (Figure 5, AeD)
and chemokines monocyte chemotactic protein (MCP)-1
and macrophage inflammatory protein (MIP)-2 (Figure 5, E
and F) were significantly induced by ethanol in WT, but not
in TRPV1�/�, animals. Given that lipocalin 2 (LCN2) has
previously been characterized as an adipokine/cytokine
playing a role in modulation of inflammation,41 we deter-
mined hepatic LCN2 mRNA levels. A similarly elevated
LCN2 expression was observed in both WT and TRPV1�/�

mice in response to ethanol feeding, not reaching statistical
significance because of the high intragroup variability
(Figure 5G).
TRPV1 Deficiency Decreases Hepatic PAI-1
Up-Regulation and Fibrin Deposition Caused by
Chronic Binge Ethanol Treatment

Our data indicated that TRPV1 deficiency conferred pro-
tection against alcohol-induced inflammation, despite not
affecting steatosis. Previous work has demonstrated that
the inhibition of hepatic fibrin degradation by plasminogen
activator inhibitor-1 (PAI-1) also plays a selective role in
hepatic inflammation caused by ethanol.42 The role of PAI-1
and fibrin deposition in the current study was, therefore,
determined. Indeed, PAI-1 mRNA levels were markedly up-
regulated in response to ethanol in both WT and TRPV1�/�

mice; the increase in WT mice was greater than fourfold
than that in TRPV1�/� mice (Figure 6A). Furthermore, we
observed that this substantial PAI-1 up-regulation in the
livers of WT mice fed ethanol was associated with a marked
increase in fibrin deposition in sinusoidal spaces of the liver
lobule (assessed by immunofluorescence staining), and this
effect was blunted by TRPV1 deficiency (Figure 6B).
The American Journal of Pathology - ajp.amjpathol.org
TRPV1 Depletion Prevents Ethanol-Induced Activation
of Hepatic NF-kB and ERK 1/2 MAPK Signaling
Pathways

We next evaluated which signaling cascades might be
involved in the ethanol-mediated hepatic proinflammatory
response and the protective effects of TRPV1 deletion. The
NF-kB signaling pathway regulates the expression of many
cytokines and is known to play an important role in the
proinflammatory response in ALD. Activation of the hepatic
NF-kB signaling pathway, confirmed by an increase in
nuclear pNF-kB p65, was observed in WT, but not TRPV1-
deficient, animals in response to ethanol treatment (Figure 7,
A and B). We also observed that chronic binge ethanol
administration activated pERK 1/2 MAPK signaling, and
TRPV1 deficiency completely abolished ethanol-induced
pERK 1/2 activation (Figure 7, C and D). Activation of
other MAPKs, including p38 MAPK and c-Jun N-terminal
kinase, was not found in either WT or TRPV1�/� ethanol-fed
mice (data not shown).
Discussion

Dietary fat and alcohol both play important roles in the
pathogenesis of ALD. Our group and others have demon-
strated that dietary fat enriched in linoleic acid (LA) exacer-
bated ethanol-induced hepatic steatosis, inflammation, and
injury.4e7 Moreover, it has been reported that dietary LA is
required for the development of experimental ALD.43 How-
ever, the mechanisms by which the combination of LA and
alcohol promotes liver injury are not fully understood. Our
current data and recently published reports8,9 demonstrate that
ethanol-induced liver inflammation and injury are associated
49
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with elevated plasma levels of bioactive OXLAMs in experi-
mental and clinical ALD. OXLAMs, specifically 9- and
13-HODEs, have recently been implicated as natural endoge-
nous ligands for the TRPV1 receptor,10,11 a ligand-gated
channel with high permeability for Ca2þ.12 Given these data,
it was hypothesized that the TRPV1 receptor is activated during
ALD and may contribute to liver injury. Although the
contribution and detailed mechanism(s) of OXLAMs/
TRPV1-mediated hepatic pathological features remain to be
established, a critical role of OXLAM/TRPV1 interactions
has been previously identified in other pathological condi-
tions. For example, it has been reported that activation of
TRPV1 by OXLAMs in the spinal cord contributed to in-
flammatory hyperalgesia.11 Inhibition of TRPV1 reduced
13-S-HODEemediated mitochondria dysfunction and
bronchial epithelial injury in vitro and severe airway
obstruction, and increased proinflammatory cytokines
in vivo.44 In our study, ethanol administration up-regulated
hepatic TRPV1 mRNA in parallel with the elevated levels of
circulating OXLAMs.We also showed that 9- and 13-HODEs
increased intracellular Ca2þ (as a marker of TRPV1 acti-
vation) in vitro, in HepG2 cells, suggesting that these
OXLAMs may serve as endogenous ligands for hepatic
50
TRPV1 in vivo. Evidence suggests that ethanol may also
sensitize TRPV1 to endogenous agonists/activators. For
example, it lowered the threshold for TRPV1 heat activa-
tion in primary sensory nerves.45

Ethanol-mediated increases in circulating OXLAMs and
TRPV1 levels were associated with hepatic steatosis,
inflammation, and injury. More important, we found that
TRPV1 deficiency protected against chronic binge alcohol-
induced hepatic inflammation and injury, as assessed by
decreased plasma ALT levels, decreased ethanol-induced
hepatocyte cell death via apoptosis, as indicated by
TUNEL staining, and decreased ethanol-induced caspase-3
activity. In light of previous reports of TRPV1-mediated
Ca2þ-dependent apoptosis in several cell types (eg, pri-
mary cortical neurons46 and retinal ganglion cells47), we
ajp.amjpathol.org - The American Journal of Pathology
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propose that TRPV1 activation promotes apoptosis in he-
patocytes via a Ca2þ-mediated mechanism.

TRPV1 deficiency had no impact on the degree of alcohol-
induced hepatic steatosis, indicating that the most prominent
role of TRPV1 is in progression to steatohepatitis. Control
TRPV1�/� mice fed only a high-fat diet (no ethanol was
added) did accumulate slightly more hepatic fat compared
with WT animals, indicating that TRPV1 may play a limited
role in hepatic lipid metabolism. Notably, recently published
reports showed that TRPV1 activation by dietary capsaicin,
an exogenous TRPV1 agonist, prevented development of
high-fat dieteinduced fatty liver in mice via up-regulation of
hepatic uncoupling protein 2, a mitochondria membrane
transporter involved in fatty acid oxidation,13 and peroxi-
some proliferator-activated receptor-dedependent auto-
phagy enhancement.31

A critical issue in the development of ALD is the pro-
gression from the simple steatosis to the inflamed state,
steatohepatitis, and to fibrosis. However, the exact mecha-
nisms driving/underlying hepatic inflammation during the
transition from steatosis to more advanced stages of ALD
are not well defined. Our data suggest that OXLAM/TRPV1
interactions may contribute to this progression. Indeed, in
our study, we observed that on the background of the equal
alcohol-mediated hepatic fat accumulation, TRPV1�/� mice
had decreased susceptibility to hepatic inflammation
compared with WT animals. TRPV1 deficiency prevented
alcohol-mediated hepatic inflammation and consequent liver
injury by significantly reducing TNF-a expression, one of
the main cytokines involved in hepatocyte injury, as well as
other hepatic proinflammatory cytokines, including IL-1b,
IL-1a, and IL-6. Ethanol-induced hepatic MCP-1 and MIP-2
mRNA levels, chemokines involved in hepatic inflam-
matory cell infiltration, were also decreased in parallel with
reduced hepatic neutrophil infiltration in TRPV1�/�

compared with WT mice. One of the possible mechanism(s)
underlying hepatic inflammation during the progression
from steatosis to steatohepatitis in our model might relate to
the nature of TRPV1 as a channel with high permeability for
Ca2þ. As a second messenger, intracellular Ca2þ is essential
for many cellular responses, including proinflammatory re-
sponses. In this regard, a recently published study demon-
strated a Ca2þ- and protein kinase Cedependent signaling
pathway for NF-kB activation, increased inducible nitric
oxide synthase expression, and TNF-a production in LPS-
stimulated rat peritoneal macrophages.48 Our observation
that TRPV1 deficiency attenuated NF-kB pathway activation
suggests that TRPV1 contributes to the hepatic NF-kB
activation via a Ca2þ-dependent mechanism; however,
further studies are needed to support this concept. Increases
in intracellular Ca2þ have recently been suggested as a
critical factor of NLRP3 inflammasome activation with the
consequent increase in IL-1b release,49e51 an important
proinflammatory response in ALD.52 Intracellular Ca2þ also
plays an important role in inflammasome-independent,
calcium-sensitive, cysteine protease calpain-mediated
The American Journal of Pathology - ajp.amjpathol.org
processing of proeIL-1a and production of IL-1a.53

Moreover, calcium-channel blockers have been shown to
have a hepatoprotective effect in animal models with
alcohol-induced liver injury.54

Resistance of TRPV1�/� mice to ethanol-induced hepatic
PAI-1 up-regulation and fibrin accumulation observed in our
study may also contribute to the protective effects of TRPV1
deficiency against alcohol-induced liver inflammation. Pre-
venting PAI-1 induction completely protected against chronic
alcohol-induced inflammation.55 Furthermore, the enhanced
LPS-induced inflammatory liver injury caused by ethanol
pre-exposure was shown to be mediated, at least in part, by
fibrin accumulation in livers, mediated by an inhibition of
fibrinolysis by PAI-1.56 The detailed molecular mechanisms
linking TRPV1 receptor to the alcohol-induced PAI-1 up-
regulation are not well understood. One of the possible
mechanism(s) might be an ethanol/OXLAM/TRPV1-
mediated increase in intracellular Ca2þ. Indeed, intracellular
Ca2þ, as an important intracellular messenger, plays a signif-
icant role in the up-regulation of PAI-1 gene expression in
several cell lines (eg, human lymphoma-derived histocytic cell
line,57 human dermal fibroblasts,58 and human hepatocellular
carcinoma HepG2 cells59). It has been shown in HepG2 cells
that Ca2þ stimulated the expression of PAI-1 via hypoxia-
inducible factor-1a transcription, which is, in turn, induced
by elevation of cytosolic Ca2þ via the ERK signaling
pathway.59 These in vitro observations are consistent with our
in vivo findings demonstrating that ethanol-induced activation
of hepatic ERK is in parallel with the liver PAI-1 up-regulation
51
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in WT, but not in TRPV1-deficient, animals. In addition,
linoleic acid itself may enhance secretion of PAI-1,60 possibly
via a direct effect of linoleic acid on fatty acideresponsive
regulatory elements present on the PAI-1 gene.61

The results from the current study are in agreement with the
concept that TRPV1 activation is proinflammatory; this has
been demonstrated in numerous nonhepatic cell types62e64

and animal models under different proinflammatory condi-
tions.65 It has been also shown that TRPV1 deficiency
decreased high-fat dieteinduced IL-1b and IL-6 release.30

However, anti-inflammatory and protective effects of
TRPV1 have also been reported both in vitro and in vivo in
certain experimental paradigms.32,66e68 Thus, TRPV1 may
exhibit both proinflammatory and anti-inflammatory proper-
ties that most likely depend on the nature of TRPV1 activation,
downstream signaling pathways involved in the response, type
of cells, diseases, and conditions.

In conclusion, these data demonstrate that TRPV1 defi-
ciency protected against experimental ALD through the
modulation/reduction of ethanol-induced proinflammatory
responses. Compared with WT, TRPV1�/� mice displayed
less ethanol-induced liver inflammation/injury but similar
levels of hepatic steatosis. These data provide new insights
into ALD pathogenesis, and suggest the involvement of
OXLAM/TRPV1 interactions in the alcohol-induced
inflammation and injury (Figure 8).
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